Skip to main content

Ideal Stem Cell Candidate for Regenerative Medicine: Pluripotent Stem Cells, Adult Stem Cells, or Pluripotent Stem Cells in Adult Organs?

  • Chapter
  • First Online:
  • 1035 Accesses

Abstract

A big divide was created among stem cell biologists because of ethical issues associated with human embryonic stem cells (hESCs). Adult stem cell biologists observed that hematopoietic stem cells (HSCs) in bone marrow possess considerable “plasticity” and could replace hESCs for regenerative medicine. As a result several trials using autologous bone marrow cells were undertaken; however, no significant success has been achieved. Human ESCs and induced pluripotent stem (iPS) cells tend to give rise to fetal counterparts and thus may not regenerate adult organs efficiently. Another novel population of pluripotent stem cells has also been reported in various adult organs termed very small embryonic-like stem cells (VSELs). VSELs explain the “plasticity” of the bone marrow/cord blood cells and have better differentiation potential compared to ES/iPS cells. Present article is an effort to make a case for pluripotent VSELs as ideal stem cell candidate for endogenous regeneration of diseased organs.

This is a preview of subscription content, log in via an institution.

Abbreviations

BMT:

Bone marrow transplantation

hES:

Human embryonic stem

HLA:

Human leukocyte antigen

IVF:

In vitro fertilization

IVM:

In vitro maturation

PGC:

Primordial germ cell

TNC:

Total nucleated cells

UCB:

Umbilical cord blood

VSELs:

Very small embryonic-like stem cells

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  3. Gurdon JB. The cloning of a frog. Development. 2013;140:2446–8.

    Article  CAS  PubMed  Google Scholar 

  4. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10:622–40.

    CAS  PubMed  Google Scholar 

  5. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  6. Catacchio I, Berardi S, Reale A, et al. Evidence for bone marrow adult stem cell plasticity: properties, molecular mechanisms, negative aspects, and clinical applications of hematopoietic and mesenchymal stem cells transdifferentiation. Stem Cells Int. 2013;2013:589139.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200.

    Article  CAS  PubMed  Google Scholar 

  8. Ilic D, Devito L, Miere C, et al. Human embryonic and induced pluripotent stem cells in clinical trials. Br Med Bull. 2015;116:19–27.

    PubMed  Google Scholar 

  9. Caulfield T, Sipp D, Murry CE, et al. Scientific Community- Confronting stem cell hype. Science. 2016;352:776–7.

    Article  CAS  PubMed  Google Scholar 

  10. Daley GQ, Hyun I, Apperley JF, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 2016;6(6):787–97.

    Article  Google Scholar 

  11. Kimmelman J, Heslop HE, Sugarman J, et al. New ISSCR guidelines: clinical translation of stem cell research. Lancet. 2016;pii:S0140-6736(16)30390-7.

    Google Scholar 

  12. Kimmelman J, Hyun I, Benvenisty N, et al. Policy: global standards for stem-cell research. Nature. 2016;533:311–3.

    Article  CAS  PubMed  Google Scholar 

  13. Ogawa M, La Rue AC, Mehrotra M. Plasticity of hematopoietic stem cells. Best Pract Res Clin Haematol. 2015;28:73–80.

    Article  PubMed  Google Scholar 

  14. Ogawa M, LaRue AC, Mehrotra M. Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol Dis. 2013;51:3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102:3483–93.

    Article  CAS  PubMed  Google Scholar 

  16. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells. 2004;22:487–500.

    Article  PubMed  Google Scholar 

  17. Nair V, Madan H, Sofat S, et al. Efficacy of stem cell in improvement of left ventricular function in acute myocardial infarction—MI3 trial. Indian J Med Res. 2015;142:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nowbar AN, Mielewczik M, Karavassilis M, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bhartiya D. Stem cells, progenitors & regenerative medicine: a retrospection. Indian J Med Res. 2015;141:154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rao M, Ahrlund-Richter L, Kaufman DS. Concise review: cord blood banking, transplantation and induced pluripotent stem cell: success and opportunities. Stem Cells. 2012;30:55–60.

    Article  CAS  PubMed  Google Scholar 

  21. Reardon S. NIH stem-cell programme closes. Nature. 2014;508:157.

    Article  CAS  PubMed  Google Scholar 

  22. IJZ F, de Abreu AC, Greco OT, et al. Measurement and feasibility of hematopoietic stem cell was greater for equipment in closed system. Int J Dev Res. 2013;3:33–9.

    Google Scholar 

  23. Rich IN. Improving quality and potency testing for umbilical cord blood: a new perspective. Stem Cells Transl Med. 2015;4:967–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patterson J, Moore CH, Palser E, et al. Detecting primitive hematopoietic stem cells in total nucleated and mononuclear cell fractions from umbilical cord blood segments and units. J Transl Med. 2015;13:94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ruggeri A, Labopin M, Sormani MP, et al. Engraftment kinetics and graft failure after single umbilical cord blood transplantation using a myeloablative conditioning regimen. Haematologica. 2014;99:1509–15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Solves P, Planelles D, Mirabet V, et al. Qualitative and quantitative cell recovery in umbilical cord blood processed by two automated devices in routine cord blood banking: a comparative study. Blood Transfus. 2013;11:405–11.

    PubMed  PubMed Central  Google Scholar 

  27. Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2:301–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan MJ. Banking on cord blood stem cells. Nat Rev Cancer. 2008;8:555–63.

    Article  CAS  PubMed  Google Scholar 

  29. Nietfeld JJ. Opinions regarding cord blood use need an update. Nat Rev Cancer. 2008;8:823.

    Article  CAS  PubMed  Google Scholar 

  30. Harris DT. Cord blood stem cells: worth the investment. Nat Rev Cancer. 2008;8:823.

    Article  CAS  PubMed  Google Scholar 

  31. Haller MJ, Wasserfall CH, Hulme MA, et al. Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide. Diabetes Care. 2011;34:2567–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giannopoulou EZ, Puff R, Beyerlein A, et al. Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: a non-randomized, controlled trial. Pediatr Diabetes. 2014;15:100–9.

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi M, Matsuoka Y, Keisuke S, et al. CD133 is a positive marker for a distinct class of primitive human cord blood derived CD34-negative hematopoietic stem cell. Leukemia. 2014;28:1308–15.

    Article  CAS  PubMed  Google Scholar 

  34. Bhartiya D, Shaikh A, Nagvenkar P, et al. Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev. 2012;21:1–6.

    Article  CAS  PubMed  Google Scholar 

  35. Gkountela S, Li Z, Vincent JJ, et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germline reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol. 2013;15:113–22.

    Article  CAS  PubMed  Google Scholar 

  36. Bhartiya D, Shaikh A, Anand S, et al. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update. 2016;23(1):41–76. doi:10.1093/humupd/dmw030.

    Article  PubMed  Google Scholar 

  37. Shaikh S, Anand S, Kapoor S, et al. Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and hematopoietic & germ cells in culture. Stem Cells Rev Rep 2017;13(2):202–216.

    Google Scholar 

  38. Wadman M. Medical research: cell division. Nature. 2013;498:422–6.

    Article  CAS  PubMed  Google Scholar 

  39. http://www.jsonline.com/news/opinion/use-of-fetal-tissue-is-unethical-and-unnecessary-b99572742z1-326513781.html

    Google Scholar 

  40. Maxmen A. Fetal tissue probe unsettles scientific community. Nat Biotechnol. 2016;34:447–8.

    Article  CAS  PubMed  Google Scholar 

  41. http://www.nationalreview.com/article/433689/abortion-clinics-quotas profits

    Google Scholar 

  42. Willyard C. The boom in mini stomachs, brains, breasts, kidneys and more. Nature. 2015;523:520–2.

    Article  CAS  PubMed  Google Scholar 

  43. Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet. 2014;15:82–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Yang ST. Advances in human pluripotent stem cells for regenerative medicine and drug discovery. J Tissue Sci Eng. 2014;5:e127.

    Google Scholar 

  45. Vassena R, Eguizabal C, Heindryckx B, et al. ESHRE special interest group stem cells. Stem cells in reproductive medicine: ready for the patient? Hum Reprod. 2015;30:2014–21.

    Article  CAS  PubMed  Google Scholar 

  46. Irie N, Weinberger L, Tang WW, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohinata Y, Payer B, O'Carroll D, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436:207–13.

    Article  CAS  PubMed  Google Scholar 

  48. Seisenberger S, Andrews S, Krueger F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. 2012;48:849–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi K, Ogushi S, Kurimoto K, et al. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338:971–5.

    Article  CAS  PubMed  Google Scholar 

  51. http://www.10news.com/news/viacyte-announces-results-of-preliminary-human-trial-on-vc-01-drug-to-cure-type-1-diabetes

    Google Scholar 

  52. Pethe P, Nagvenkar P, Bhartiya D. Polycomb group protein expression during differentiation of human embryonic stem cells into pancreatic lineage in vitro. BMC Cell Biol. 2014;15:18.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bhartiya D. Stem cells to replace or regenerate the diabetic pancreas: huge potential & existing hurdles. Ind J Med Res. 2016a;143:267–74.

    Article  Google Scholar 

  54. Kang E, Wang X, Hedges RT, et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell. 2016;18:1–12.

    Article  Google Scholar 

  55. Reardon S. Mutated mitochondria could hold back stem-cell therapies. Nature. 2016;533:43–4. doi:10.1038/nature.2016.19752.

    Article  Google Scholar 

  56. Reardon S, Cyranoski D. Japan stem-cell trial stirs envy. Nature. 2014;513:287–8.

    Article  CAS  PubMed  Google Scholar 

  57. Garber K. RiKen suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–1.

    Article  CAS  PubMed  Google Scholar 

  58. https://www.ipscell.com/2015/11/parkinsons-ips-cell-trial-in-japan-switching-to-allogeneic/

    Google Scholar 

  59. Saito MK, Matsunaga A, Takasu N, et al. Donor recruitment and eligibility criteria for HLA homozygous iPS cell bank in Japan. In: Ilic D, editor. Stem cell banking. New York, NY: Springer; 2014. p. 67–76.

    Chapter  Google Scholar 

  60. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26:739–40.

    Article  CAS  PubMed  Google Scholar 

  61. Ratajczak MZA. novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia. 2015;29:776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vojnits K, Yang L, Zhan M, et al. Very small embryonic-like cells in the mirror of regenerative medicine. J Stem Cells. 2014;9:1–16.

    PubMed  Google Scholar 

  63. Shin DM, Suszynska M, Mierzejewska K, et al. Very small embryonic-like stem-cell optimization of isolation protocols: an update of molecular signatures and a review of current in vivo applications. Exp Mol Med. 2013;e56:45.

    Google Scholar 

  64. Kassmer SH, Krause DS. Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev. 2013;80:677–90.

    Article  CAS  PubMed  Google Scholar 

  65. Feng G, Cui J, Zheng Y, et al. Identification, characterization and biological significance of very small embryonic-like stem cells (VSELs) in regenerative medicine. Histol Histopathol. 2012;27:827–33.

    CAS  PubMed  Google Scholar 

  66. Bhartiya D. Intricacies of pluripotency. J Stem Cells Regen Med. 2015;11:2–6.

    PubMed  PubMed Central  Google Scholar 

  67. Mierzejewska K, Heo J, Kang JW, et al. Genome-wide analysis of murine bone marrow-derived very small embryonic-like stem cells reveals that mitogenic growth factor signaling pathways play a crucial role in the quiescence and ageing of these cells. Int J Mol Med. 2013;32:281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shin DM, Zuba-Surma EK, Wu W, et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia. 2009;23:2042–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumar N, Hinduja I, Nagvenkar P, et al. Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev. 2009;18:435–45.

    Article  CAS  PubMed  Google Scholar 

  70. Nagvenkar P, Pethe P, Pawani H, et al. Evaluating differentiation propensity of in-house derived human embryonic stem cell lines KIND-1 and KIND-2. In Vitro Cell Dev Biol Anim. 2011;47:406–19.

    Article  CAS  PubMed  Google Scholar 

  71. Pawani H, Nagvenkar P, Pethe P, et al. Differentiation of human ES cell line KIND-2 to yield tripotent cardiovascular progenitors. In Vitro Cell Dev Biol Anim. 2013;49:82–93.

    Article  CAS  PubMed  Google Scholar 

  72. Shaikh A, Nagvenkar P, Pethe P, et al. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia. 2015;9:1909–17.

    Article  Google Scholar 

  73. Shaikh A, Bhartiya D, Kapoor S, et al. Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells. Stem Cell Res Ther. 2016;7:59.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sriraman K, Bhartiya D, Anand S, et al. Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reprod Sci. 2015;22:884–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parte S, Bhartiya D, Telang J, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20:1451–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Anand S, Bhartiya D, Sriraman K, et al. Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. 2014;4:216.

    Google Scholar 

  77. Bhartiya D, Kasiviswanathan S, Unni SK, et al. Newer insights into pre-meiotic development of germ cells in adult human testis using OCT-4 as a stem cell marker. J Histochem Cytochem. 2010;58:1093–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anand S, Bhartiya D, Sriraman K, et al. Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cells Rev Rep. 2016;12(6):682–97. doi:10.1007/s12015-016-9685-1.

    Article  CAS  Google Scholar 

  79. Anand S, Bhartiya D, Sriraman K, et al. Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. 2014;4:216.

    Google Scholar 

  80. Bhartiya D, Mundekar A, Mahale V, et al. Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Res Ther. 2014;5:106.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Havens AM, Sun H, Shiozawa Y, et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev. 2014;23:689–701.

    Article  PubMed  Google Scholar 

  82. Kucia M, Reca R, Campbell FR, et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006;20:857–69.

    Article  CAS  PubMed  Google Scholar 

  83. Bhartiya D. Use of very small embryonic-like stem cells to avoid legal, ethical, and safety issues associated with oncofertility. JAMA Oncol. 2016;2:689.

    Article  PubMed  Google Scholar 

  84. Bhartiya D, Anand S, Parte S. VSELs may obviate cryobanking of gonadal tissue in cancer patients for fertility preservation. J Ovarian Res. 2015;8:75.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Patel H, Bhartiya D. Testicular stem cells express follicle stimulating hormone receptors and are directly modulated by FSH. Reprod Sci. 2016;23(11):1493–508.

    Article  CAS  PubMed  Google Scholar 

  86. Kassmer SH, Jin H, Zhang PX, et al. Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells. 2013;31:2759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dawn B, Tiwari S, Kucia MJ, et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells. 2008;26:1646–55.

    Google Scholar 

  88. Taichman RS, Wang Z, Shiozawa Y, et al. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev. 2010;19:1557–70.

    Google Scholar 

  89. Zuba-Surma EK, Wojakowski W, Ratajczak MZ, et al. Very small embryonic-like stem cells: biology and therapeutic potential for heart repair. Antioxid Redox Signal. 2011;15:1821–34.

    Google Scholar 

  90. Chen ZH, Lv X, Dai H, et al. Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. J Cell Physiol. 2015;230(8):1852–61.

    Google Scholar 

  91. Guerin CL, Loyer X, Vilar J, et al. Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thromb Haemost. 2015;113:1084–94.

    Google Scholar 

  92. Abouzaripour M, RagerdiKashani I, Pasbakhsh P, et al. Intravenous transplantation of very small embryonic like stem cells in treatment of diabetes mellitus. Avicenna J Med Biotechnol. 2015;7:22–31.

    Google Scholar 

  93. Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–53.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ratajczak MZ. Why are hematopoietic stem cells so ‘sexy’? On a search for developmental explanation. Leukemia. 15 May 2017. doi:10.1038/leu.2017.148. [Epub ahead of print].

  95. Monti M, Imberti B, Bianchi N, et al. A novel method for the isolation of pluripotent stem cells from human umbilical cord blood. Stem Cells Dev. 5 June 2017. doi:10.1089/scd.2017.0012. [Epub ahead of print].

  96. Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy’s benefits and risks. N Engl J Med. 2017;376(11):1007–9. doi:10.1056/NEJMp1613723. Epub 30 Nov 2016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I acknowledge all my students who worked on embryonic stem cells (Neeraj, Punam, Harsha, Prasad, and Varsha) and very small embryonic-like stem cells (Seema, Poorna, Ambreen, Hiren, Sandhya, Pranesh, Sona) along with two postdoctoral fellows Kalpana and Ranita. It would not be possible to write this chapter without their painstaking and dedicated research. Neeraj is no longer with us; I dedicate this article to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bhartiya, D. (2017). Ideal Stem Cell Candidate for Regenerative Medicine: Pluripotent Stem Cells, Adult Stem Cells, or Pluripotent Stem Cells in Adult Organs?. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_9

Download citation

Publish with us

Policies and ethics