Skip to main content

Prospects and Retrospect of Clinical Applications of Stem Cells in Veterinary Animals

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

Immense scope in an area of stem cell biology, along with the sizable research output, has provided newer opportunities for the therapeutics in medical and veterinary healthcare. Various research outputs related to the experimental schemes using diverse types of stem cells from domestic animals such as bovine, bubaline, caprine, porcine, equine, and canine highlight probability for their use in different clinical conditions. The pace for the stem cell therapeutics in veterinary sciences is yet to match with the medical claims, as its progress still remains, relatively slower. Our attempts to treat livestock and pets, suffering from various clinical conditions, have shown promising results; however, many basic concepts related to stem cell physiology remain to be elucidated. This article will essentially deal with the prospects and retrospects for the usage of adult stem cells, specifically the mesenchymal stem cells (MSCs), for altered clinical applications in different animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ESCs:

Embryonic stem cells

HAC:

Hydroxyapatite ceramic

MSCs:

Mesenchymal stem cells

References

  1. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  CAS  PubMed  Google Scholar 

  2. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article  CAS  PubMed  Google Scholar 

  3. Gade NE, Pratheesh MD, Nath A, et al. Molecular and cellular characterization of buffalo bone marrow derived mesenchymal stem cells. Reprod Domest Anim. 2012;47:975–83.

    Article  PubMed  Google Scholar 

  4. Mudasir B, Pal A, Aithal HP, et al. Isolation, culture and characterization of New Zealand White rabbit mesenchymal stem cells derived from bone marrow. Asian J Anim Vet Adv. 2015;10:537–48.

    Article  Google Scholar 

  5. Ansari MM, Sreekumar TR, Chandra V, et al. Therapeutic potential of canine bone marrow derived mesenchymal stem cells and its conditioned media in diabetic rat wound healing. J Stem Cell Res Ther. 2013;3:141.

    Article  Google Scholar 

  6. Udehiya RK, Pal A, Aithal HP, et al. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Res Vet Sci. 2013;94:743–52.

    Article  CAS  PubMed  Google Scholar 

  7. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pratheesh MD, Gade NE, Dubey PK, et al. Molecular characterization and xenogenic application of Wharton’s jelly derived caprine mesenchymal stem cell. Vet Res Commun. 2014;38:139–48.

    Article  CAS  PubMed  Google Scholar 

  9. Pratheesh MD, Gade NE, Nath A, et al. Isolation and characterization of caprine mesenchymal stem cells derived from amniotic fluid. Res Vet Sci. 2013;94:313–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sreekumar TR, Matin AM, Chandra V, et al. Isolation and characterization of buffalo Wharton’s jelly derived mesenchymal stem cells. J Stem Cell Res Ther. 2014;4:207.

    Google Scholar 

  11. Somal A, Parmar MS, Pandey S, et al. Comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PLoS One. 2016; doi:10.1371/journal.pone.0156821.

  12. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18:696–704.

    Article  PubMed  Google Scholar 

  13. Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-Beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil. 2003;11:55–64.

    Article  CAS  PubMed  Google Scholar 

  14. De-Bari C, Dell AF, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–42.

    Article  CAS  PubMed  Google Scholar 

  15. Dev K, Giri SK, Kumar A, et al. Expression of transcriptional factor genes (Oct-4, Nanog, and Sox-2) and embryonic stem cell-like characters in placental membrane of buffalo (Bubalus bubalis). J Membr Biol. 2012;245:177–83.

    Article  CAS  PubMed  Google Scholar 

  16. Cao B, Zheng B, Jankowski RJ, et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol. 2003;5:640–6.

    Article  CAS  PubMed  Google Scholar 

  17. Dominici M, Le Blanc K, Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  18. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  19. Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol. 2004;10:3016–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40:1275–84.

    Article  CAS  PubMed  Google Scholar 

  21. Long X, Olszewski M, Huang W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells. Stem Cells Dev. 2005;14:65–9.

    Article  CAS  PubMed  Google Scholar 

  22. Tomita M, Adachi Y, Yamada H. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells. 2002;20:279–83.

    Article  CAS  PubMed  Google Scholar 

  23. Dicker A, Le Blanc K, Astrom G. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308:283–90.

    Article  CAS  PubMed  Google Scholar 

  24. Koch TG, Berg LC, Betts DH. Current and future regenerative medicine – principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J. 2009;50:155–65.

    PubMed  PubMed Central  Google Scholar 

  25. Frisbie DD, Smith RK. Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J. 2010;42:86–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ribitsch I, Burk J, Delling U, et al. Basic science and clinical application of stem cells in veterinary medicine. Adv Biochem Eng Biotechnol. 2010;123:219–63.

    CAS  PubMed  Google Scholar 

  27. Spencer ND, Gimble JM, Lopez MJ. Mesenchymal stromal cells: past, present, and future. Vet Surg. 2011;40:129–39.

    Article  PubMed  Google Scholar 

  28. Dasari VR, Spomar DG, Gondi CS, et al. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma. 2007;24:391–410.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  CAS  PubMed  Google Scholar 

  30. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Aca Sci U S A. 2002;99:2199–204.

    Article  CAS  Google Scholar 

  31. Deng YB, Liu XG, Liu ZG, et al. Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy. 2006;8:210–4.

    Article  PubMed  Google Scholar 

  32. Adel N, Gabr H. Stem cell therapy of acute spinal cord injury in dogs. Third World Cong Regen Med. 2007;2:523.

    Google Scholar 

  33. Junga DI, Had J, Kangb BT, et al. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci. 2009;285:67–77.

    Article  Google Scholar 

  34. Ryu HH, Kang BJ, Park SS, et al. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton’s jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci. 2012;74:1617–30.

    Article  CAS  PubMed  Google Scholar 

  35. Awad H, Butler D, Boivin G, et al. Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng. 1999;5:267–77.

    Article  CAS  PubMed  Google Scholar 

  36. Butler D, Awad H. Perspectives on cell and collagen composites for tendon repair. Clin Orthop Rel Res. 1999;367:S324–32.

    Article  Google Scholar 

  37. Young R, Butler D, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res. 1998;16:406–13.

    Article  CAS  PubMed  Google Scholar 

  38. Herthel DJ. Enhanced suspensory ligament healing in 100 horses by stem cell and other bone marrow components. Proc Am Assoc Equine Pract. 2001;47:319–21.

    Google Scholar 

  39. Pacini S, Spinabella S, Trombi L, et al. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng. 2007;13:2949–55.

    Article  PubMed  Google Scholar 

  40. Smith RKW, Korada M, Blunn GW, et al. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into superficial digital flexor tendon as a potential novel treatment. Equine Vet J. 2003;35:99–102.

    Article  CAS  PubMed  Google Scholar 

  41. Bruder SP, Kraus K, Goldberg V, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80-A:985–96.

    Article  Google Scholar 

  42. Arinzeh TL, Peter SJ, Archambault MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am. 2003;85:1927–35.

    Article  PubMed  Google Scholar 

  43. Liu X, Li X, Fan Y, et al. Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2010;94:44–52.

    PubMed  Google Scholar 

  44. Zscharnack M, Hepp P, Richter R, et al. Repair of chronic osteochondral defects using pre-differentiated mesenchymal stem cells in an ovine model. Am J Sports Med. 2010;38:1857–69.

    Article  PubMed  Google Scholar 

  45. Wu Y, Chen L, Scott PG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25:2648–59.

    Article  CAS  PubMed  Google Scholar 

  46. Borena BM, Pawde AM, Amarpal, Aithal HP, et al. Autologous bone marrow-derived cells for healing excisional dermal wounds of rabbits. Vet Rec. 2009;165:563–8.

    Article  CAS  PubMed  Google Scholar 

  47. Madhu DN, Ahmad RA, Pal A, et al. Caudal superficial epigastric axial pattern flap and stem cell therapy for the management of large wound on medial aspect of thigh in a dog. Adv Anim Vet Sci. 2014;2:188–91.

    Article  Google Scholar 

  48. McFarlin K, Gao X, Liu YB, et al. Bone marrow derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Rep Reg. 2006;14:471–8.

    Article  Google Scholar 

  49. Bhardwaj R, Ansari MM, Parmar MS, et al. Stem cell conditioned media contains important growth factors and improves in vitro buffalo embryo production. Anim Biotechnol. 2016;27:118–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge all the colleagues and students of the Stem Cell Team, especially Dr. Amarpal and Dr. Vikash Chandra. Authors are thankful to the Institute Animal Ethics Committee and CPCSEA for approvals to conduct these studies. Financial support of ICAR for this study is duly acknowledged. We would also like to thank the Director of ICAR-IVRI for all the supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Taru Sharma Ph.D.,A.R.S.,F.F.A.O.,F.N.A.A.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Taru Sharma, G., Saikumar, G. (2017). Prospects and Retrospect of Clinical Applications of Stem Cells in Veterinary Animals. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_18

Download citation

Publish with us

Policies and ethics