Skip to main content

Lipid Carriers: Role and Applications in Nano Drug Delivery

  • Chapter
  • First Online:
Particulate Technology for Delivery of Therapeutics

Abstract

The ability of lipid carriers to enhance solubility, absorption and thereby the bioavailability of poorly soluble molecules by selective mechanism makes these systems a unique delivery option for certain classes of drugs. Different types of delivery systems that include liposome, solid lipid nanoparticles, nanostructured lipid carriers, lipid–polymer hybrid nanoparticles, lipoplexes, and phytosomes can be produced depending on the lipids/excipients used and the formulation technique employed. In this chapter, focus will be on different lipid-based carrier systems, their role in nano delivery and the advantages offered in improvement of solubility, absorption, and bioavailability with relevant case studies. Manufacturing methods of different carrier systems will be elaborated with a brief overview of scale up feasibility. Gene delivery with the use of charged lipids and delivery of herbal actives and neutraceuticals by phytosomes will be presented. Commercial products based on the lipid technology and recent patents in this area will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCS:

Biopharmaceutics classification system

GI:

Gastrointestinal

GRAS:

Generally regarded as safe

HPH:

High-pressure homogenization

LPHNs:

Lipid polymer hybrid nanoparticles

LUV:

Large unilamellar vesicles

MLV:

Multilamellar vesicles

NLC:

Nanostructured lipid carriers

PEG:

Polyethylene glycol

PLs:

Phospholipids

RES:

Reticuloendothelial system

SCF:

Supercritical fluid

SFEE:

Supercritical fluid extraction of emulsions

SLNs:

Solid lipid nanoparticles

SUV:

Small unilamellar vesicles

References

  • Aditya NP, Macedo AS, Doktorovova S et al (2014) Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT—Food Sci Technol 59(1):115–121

    Article  CAS  Google Scholar 

  • Agrawal U, Chashoo G, Sharma PR et al (2015) Tailored polymer-lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting. Colloids Surf B 126:414–425

    Article  CAS  Google Scholar 

  • Ahmad I, Longenecker M, Samuel J, Allen TM (1993) Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 53(7):1484–1488

    CAS  PubMed  Google Scholar 

  • Aji Alex MR, Chacko AJ, Jose S, Souto EB (2011) Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 42(1–2):11–18

    Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali SO, Darwish HAE-m, Ismail NAE-f (2014) Modulatory effects of curcumin, silybin-phytosome and alpha-R-lipoic acid against thioacetamide-induced liver cirrhosis in rats. Chem Biol Interact 216:26–33

    Google Scholar 

  • Alyautdin RN, Petrov VE, Langer K et al (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14(3):325–328

    Article  CAS  PubMed  Google Scholar 

  • Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A Theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  CAS  PubMed  Google Scholar 

  • Ana Rute N, Joana Fontes Q, Babette W et al (2015) Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology 26(49):495103

    Article  CAS  Google Scholar 

  • Araújo J, Garcia ML, Mallandrich M, Souto EB, Calpena AC (2012) Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomed Nanotech Biol Med 8(6):1034–1041

    Google Scholar 

  • Baek J-S, Cho C-W (2015) Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles. Int J Pharm 478(2):617–624

    Article  CAS  PubMed  Google Scholar 

  • Bally MB, Mayer LD, Loughrey H et al (1988) Dopamine accumulation in large unilamellar vesicle systems induced by transmembrane ion gradients. Chem Phys Lipids 47(2):97–107

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC, Weissmann G (1967) The diffusion of ions from a phospholipid model membrane system. Protoplasma 63(1):183–187

    Article  CAS  PubMed  Google Scholar 

  • Battaglia L, Gallarate M, Panciani PP et al (2014) Techniques for the preparation of solid lipid nano and microparticles. In: Sezer AD (ed) Nanotechnology and nanomaterials—application of nanotechnology in drug delivery. pp 51–75

    Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochimica et Biophysica Acta (BBA). Biomembranes 298(4):1015–1019

    Article  CAS  Google Scholar 

  • Bombardelli E, Spelta M (1991) Phospholipid-polyphenol complexes: a new concept in skin care ingredients. Cosmet Toiletries 106(3):69–76

    CAS  Google Scholar 

  • Bombardelli E, Spelta M, Della Loggia R, Sosa S, Tubaro A (1991) Aging skin: protective effect of Silymarin Phytosome®. Fitoterapia 62:115–122

    Google Scholar 

  • Bombardelli E, Cristoni A, Morazzoni P (1994) Phytosomes in functional cosmetics. Fitoterapia 65:387–401

    Google Scholar 

  • Bondì ML, Azzolina A, Craparo EF et al (2014) Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells. J Nanobiotechnol 12(1):1–9

    Article  CAS  Google Scholar 

  • Buñuales María, Düzgüne Nejat, Zalba Sara et al (2011) Efficient gene delivery by EGF-lipoplexes in vitro and in vivo. Nanomedicine 6(1):89–98

    Article  PubMed  Google Scholar 

  • Cannon JB (2014) Lipids in transdermal and topical drug delivery. Am Pharm Rev

    Google Scholar 

  • Cardoso AL, Simoes S, de Almeida LP et al (2008) Tf-lipoplexes for neuronal siRNA delivery: a promising system to mediate gene silencing in the CNS. J Control Release 132(2):113–123

    Article  CAS  PubMed  Google Scholar 

  • Chan JM, Zhang L, Yuet KP, Liao G et al (2009) PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Charcosset C, El-Harati A, Fessi H (2005) Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 108(1):112–120

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay P, Shekunov BY, Yim D et al (2007) Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 59(6):444–453

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chang X, Du D et al (2006) Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 110(2):296–306

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lu Y, Chen J et al (2009) Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376(1–2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Chen ZP, Sun J, Chen HX et al (2010) Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions inrats. Fitoterapia 81:10145–10152)

    Google Scholar 

  • Chen M, Gupta V, Anselmo AC et al (2014) Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J Control Release 173:67–74

    Article  CAS  PubMed  Google Scholar 

  • Cheng WWK, Allen TM (2008) Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Control Release 126(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Choudhari KB, Labhasetwar V, Dorle AK (1994) Liposomes as a carrier for oral admnistration of insulin: effect of formulation factors. J Microencapsul 11(3):319–325

    Google Scholar 

  • ClinicalTrials.gov (2007) The effect of high-dose silybin-phytosome in men with prostate cancer. https://clinicaltrials.gov/ct2/show/NCT00487721. Accessed on 28 Jan 2016

  • ClinicalTrials.gov (2014) A phase II study to assess efficacy of combined treatment with Erlotinib (Tarceva) and Silybin-phytosome (Siliphos) in patients with EGFR mutant lung adenocarcinoma. https://clinicaltrials.gov/ct2/show/NCT02146118?term=phytosome&rank=2

  • ClinicalTrials.gov (2015) Effects of Greenselect Phytosome® on weight maintenance after weight loss in obese women. https://clinicaltrials.gov/ct2/show/NCT02542449?term=phytosome&rank=3. Accessed on Jan 2016

  • Daniels TR, Bernabeu E, Rodríguez JA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 1820(3):291–317

    Google Scholar 

  • Deamer DW (2010) From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J 24(5):1308–1310

    Article  CAS  PubMed  Google Scholar 

  • Duarte S, Faneca H, Lima MC (2012) Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo. Int J Pharm 423(2):365–377

    Article  CAS  PubMed  Google Scholar 

  • Ekambaram P, Abdul HSA (2011) Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm 3(3):216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gazayerly ON, Makhlouf AI, Soelm AM, Mohmoud MA (2014) Antioxidant and hepatoprotective effects of silymarin phytosomes compared to milk thistle extract in CCl4 induced hepatotoxicity in rats. J Microencapsul 31(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Elhissi AMA, Dennison SR, Ahmed W et al (2014) New delivery systems—liposomes for pulmonary delivery of antibacterial drugs. In: Novel antimicrobial agents and strategies. Wiley. KGaA, pp 387–406

    Google Scholar 

  • Elouahabi A, Ruysschaert J-M (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11(3):336–347

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Tang B, Chao Y et al (2015) Cysteine-functionalized nanostructured lipid carriers for oral delivery of docetaxel: a permeability and pharmacokinetic study. Mol Pharm 12(7):2384–2395

    Article  CAS  PubMed  Google Scholar 

  • Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84(21):7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaig TW, Glode M, Gustafson D et al (2010) A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate 70(8):848–855

    CAS  PubMed  Google Scholar 

  • Fonte P, Nogueira T, Gehm C et al (2011) Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 1(4):299–308

    Article  CAS  PubMed  Google Scholar 

  • Freag MS, Elnaggar YSR, Abdallah OY (2013) Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. IntJ Nanomed 8:2385–2397

    Google Scholar 

  • Garcı́a-Fuentes M, Torres D, Alonso MJ (2003) Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B 27(2–3):159–168

    Google Scholar 

  • Garg Tarun, Goya AK (2014) Liposomes: targeted and controlled delivery system. Drug Delivery Lett 4:62–71

    Article  CAS  Google Scholar 

  • Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. Google Patents

    Google Scholar 

  • Gaspar DP, Faria V, Gonçalves LMD et al (2016) Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int J Pharm 497(1–2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Gopal V, Prasad TK, Rao NM et al (2006) Synthesis and in vitro evaluation of glutamide-containing cationic lipids for gene delivery. Bioconjug Chem 17(6):1530–1536

    Article  CAS  PubMed  Google Scholar 

  • GRAS substances database. http://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS (1972–1980) U.S. FDA. Accessed Jan 2016

  • Gregoriadis G, Ryman BE (1971) Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 124(5):58P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8(5):565–580

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Gagne L, Chen H, Szoka FC (2014) Novel ortho ester-based, pH-sensitive cationic lipid for gene delivery in vitro and in vivo. J Liposome Res 24(2):90–98

    Article  CAS  PubMed  Google Scholar 

  • Hafeez A, Aqil M, Ali A (2015) Development and optimization of a nanostructured lipid carrier based gel formulation of Etoricoxib for topical delivery using Box-Behnken design. in vitro and ex vivo evaluation. Sci Adv Mater 7(8):1567–1580

    Article  CAS  Google Scholar 

  • Han F, Yin R, Che X et al (2012a) Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: design, characterization and in vivo evaluation. Int J Pharm 439(1-2):349–357.

    Google Scholar 

  • Han H-K, Shin H-J, Ha DH (2012b) Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur J Pharm Sci 46(5):500–507

    Article  CAS  PubMed  Google Scholar 

  • Hanato J, Kuriyama K, Mizumoto T et al (2009) Liposomal formulations of glucagon-like peptide-1: improved bioavailability and anti-diabetic effect. Int J Pharm 382(1–2):111–116

    Article  CAS  PubMed  Google Scholar 

  • Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Bioch BiophysBiom 1151(2):201–215

    Article  CAS  Google Scholar 

  • Harde H, Das M, Jain S (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv 8(11):1407–1424

    Article  CAS  PubMed  Google Scholar 

  • Hippalgaonkar K, Adelli GR, Hippalgaonkar K et al (2013) Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther 29(2):216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu FQ, Yuan H, Zhang HH, Fang M (2002) Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm 239(1–2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Hüsch J, Bohnet J, Fricker G et al (2013) Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome®) of Boswellia extract. Fitoterapia 84:89–98

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim WM, AlOmrani AH, Yassin AEB (2014) Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability. Int J Nanomed 9:129–144

    Google Scholar 

  • Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Juliano RL, Lopez-Berestein G, Hopfer R et al (1985) Selective toxicity and enhanced therapeutic index of liposomal polyene antibiotics in systemic fungal infections. Ann NY Acad Sci 446:390–402

    Article  CAS  PubMed  Google Scholar 

  • Kakkar V, Singh S, Singla D, Kaur IP (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 55(3):495–503

    Article  CAS  PubMed  Google Scholar 

  • Kakkar S, Karuppayil SM, Raut JS et al (2015) Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int J Pharm 495(1):276–289

    Article  CAS  PubMed  Google Scholar 

  • Kalam MA, Sultana Y, Ali A et al (2013) Part I: development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J Biomed Mater Res A 101A(6):1813–1827

    Article  CAS  Google Scholar 

  • Kidd PM (2009) Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev 14(3):226–246

    PubMed  Google Scholar 

  • Kim BK, Seu YB, Bae YU et al (2014) Efficient delivery of plasmid DNA using cholesterol-based cationic lipids containing polyamines and ether linkages. Int J Mol Sci 15(5):7293–7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby C, Gregoriadis G (1984) Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Nat Biotech 2(11):979–984

    Article  CAS  Google Scholar 

  • Krishnamurthy S, Vaiyapuri R, Zhang L, Chan JM (2015) Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater Sci 3(7):923–936

    Article  CAS  PubMed  Google Scholar 

  • Kubo T, Sugita T, Shimose S et al (2000) Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol 17(2):309–315

    CAS  PubMed  Google Scholar 

  • Li B, Xu H, Li Z et al (2012) Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine 7:187–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang X, Zhang T et al (2015) A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 10(2):81–98

    Article  CAS  Google Scholar 

  • Ling G, Zhang T, Zhang P, Sun J, He Z (2016) Nanostructured lipid-carrageenan hybrid carriers (NLCCs) for controlled delivery of mitoxantrone hydrochloride to enhance anticancer activity bypassing the BCRP-mediated efflux. Drug Dev Ind Pharm 42(8):1351–1359

    Google Scholar 

  • Liu R, Liu Z, Zhang C, Zhang B (2012) Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci 101(10):3833–3844

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fang J, Kim Y-J, Wong MK, Wang P (2014) Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm 11(5):1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Salituro GM, K-j Lee, Bak A, Leung HD (2015) Modulating drug release and enhancing the oral bioavailability of torcetrapib with solid lipid dispersion formulations. AAPS Pharm Sci Tech 16(5):1091–1100

    Article  CAS  Google Scholar 

  • Luan J, Zheng F, Yang X, Yu A, Zhai G (2015) Nanostructured lipid carriers for oral delivery of baicalin: in vitro and in vivo evaluation. Colloids Surf A Physicochem Eng Asp 466:154–159

    Article  CAS  Google Scholar 

  • Lucks S, Mueller R (1994) Medication vehicles made of solid lipid particles (solid lipid nanospheres - sln). Google Patents

    Google Scholar 

  • Luo Y, Chen D, Ren L, Zhao X, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Controlled Release 114(1):53–59

    Article  CAS  Google Scholar 

  • Lyass O, Uziely B, Ben-Yosef R et al (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89(5):1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Zhang S, Jiang H, Zhao B, Lv H (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 123(3):184–194

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I, Green MD (2005) Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 44(4):331–347

    Article  CAS  PubMed  Google Scholar 

  • Maiti K, Mukherjee K, Gantait A et al (2006) Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J Pharm Pharmacol 58(9):1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Maiti K, Mukherjee K, Murugan V et al (2010) Enhancing bioavailability and hepatoprotective activity of andrographolide from Andrographis paniculata, a well-known medicinal food, through its herbosome. J Sci Food Agric 90(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Makwana V, Jain R, Patel K et al (2015) Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 495(1):439–446

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  • Mandal B, Bhattacharjee H, Mittal N et al (2013) Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9(4):474–491

    Article  CAS  PubMed  Google Scholar 

  • Manjunath K, Reddy JS, Venkateswarlu V (2005) Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27(2):127–144

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Sainlos M, Aissaoui A et al (2005) The design of cationic lipids for gene delivery. Curr Pharm Des 11(3):375–394

    Article  CAS  PubMed  Google Scholar 

  • Martins S, Silva AC, Ferreira DC, Souto EB (2009) Improving oral absorption of samon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol 5(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Mazumder A, Dwivedi A, du Preez JL, du Plessis J (2016) In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex. Int J Pharm 498(1–2):283–293

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196

    Article  CAS  PubMed  Google Scholar 

  • Mhashilkar A, Chada S, Roth JA, Ramesh R (2001) Gene therapy: therapeutic approaches and implications. Biotechnol Adv 19(4):279–297

    Article  CAS  PubMed  Google Scholar 

  • Mohr L, Yoon SK, Eastman SJ et al (2001) Cationic liposome-mediated gene delivery to the liver and to hepatocellular carcinomas in mice. Hum Gene Ther 12(7):799–809

    Article  CAS  PubMed  Google Scholar 

  • Montenegro L, Lai F, Offerta A et al (2016) From nanoemulsions to nanostructured lipid carriers: a relevant development in dermal delivery of drugs and cosmetics. J Drug Del Sci Tech 32:100–112

    Article  CAS  Google Scholar 

  • Moreno-Sastre M, Pastor M, Esquisabel A et al (2016) Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm 498(1–2):263–273

    Article  CAS  PubMed  Google Scholar 

  • MuÈller RH, MaÈder Karsten, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J PharmBiopharm 50:161–177

    Article  Google Scholar 

  • Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee Pulok K, Harwansh Ranjit K, Bhattacharyya S (2015) Bioavailability of herbal products: approach toward improved pharmacokinetics. In: Mukherjee PK (ed) Evidence based validation of herbal medicine. Elsevier, UK, pp 217–245

    Chapter  Google Scholar 

  • Müller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242(1–2):121–128

    Article  PubMed  Google Scholar 

  • Müller RH, Shegokar R, M Keck C (2011) 20 Years of lipid nanoparticles (SLN & NLC): present state of development & industrial applications. Curr Drug Discov Technol 8(3):207–221

    Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Supplement):S131–S155

    Article  PubMed  Google Scholar 

  • Neves AR, Lúcio M, Martins S et al (2013) Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomed 8:177–187

    Article  CAS  Google Scholar 

  • Ohsawa T, Miura H, Harada K (1985) Improvement of encapsulation efficiency of water-soluble drugs in liposomes formed by the freeze-thawing method. Chem Pharm Bull 33(9):3945–3952

    Article  CAS  PubMed  Google Scholar 

  • Olbrich C, Müller RH (1999) Enzymatic degradation of SLN—effect of surfactant and surfactant mixtures. Int J Pharm 180(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • Palange AL, Di Mascolo D, Carallo C et al (2014) Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomedicine 10(5):991–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda VS, Naik SR (2008) Cardioprotective activity of ginkgo biloba phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp Toxicol Pathol 60(4–5):397–404

    Article  PubMed  Google Scholar 

  • Papahadjopoulos D, Watkins JC (1967) Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals. Biochim Biophys Acta 135(4):639–652

    Article  CAS  PubMed  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. IntJ Pharm 366(1–2):170–184

    Article  CAS  Google Scholar 

  • Patil S, Joshi M, Pathak S et al (2012) Intravenous beta-artemether formulation (ARM NLC) as a superior alternative to commercial artesunate formulation. J Antimicrob Chemother 67(11):2713–2716

    Article  CAS  PubMed  Google Scholar 

  • Patil H, Feng X, Ye X et al (2015) Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: a systematic study based on a quality by design approach. The AAPS J 17(1):194–205

    Article  CAS  PubMed  Google Scholar 

  • Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V (2014) Montelukast-loaded nanostructured lipid carriers: Part II Pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur J Pharm Biopharm 88(1):169–177

    Article  CAS  PubMed  Google Scholar 

  • Pignatello R, Carbone C, Puglia C et al (2015) Ophthalmic applications of lipid-based drug nanocarriers: an update of research and patenting activity. Ther Deliv 6(11):1297–1318

    Article  CAS  PubMed  Google Scholar 

  • Radtke Magdalene, Souto Eliana B, Müller RH (2005) Nanostructured lipid carriers: a novel generation of solid lipid drug carriers. Pharm Tech Europe 17(4):45–50

    CAS  Google Scholar 

  • Raj R, Mongia P, Ram A, Jain NK (2015) Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles. Artif Cells Nanomed Biotechnol. doi:10.3109/21691401.2015.1036997

    PubMed  Google Scholar 

  • Safinya CR, Ewert KK, Majzoub RN, Leal C (2014) Cationic liposome-nucleic acid complexes for gene delivery and gene silencing. New J Chem 38(11):5164–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai F, Inoue R, Nishino Y et al (2000) Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression. J Control Release 66(2–3):255–269

    Article  CAS  PubMed  Google Scholar 

  • Sakurai F, Terada T, Maruyama M et al (2003) Therapeutic effect of intravenous delivery of lipoplexes containing the interferon-beta gene and poly I: poly C in a murine lung metastasis model. Cancer Gene Ther 10(9):661–668

    Article  CAS  PubMed  Google Scholar 

  • Salminen H, Helgason T, Aulbach S et al (2014) Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J Colloid Interface Sci 426:256–263

    Article  CAS  PubMed  Google Scholar 

  • Sarmento B, Martins S, Ferreira D, Souto EB (2007) Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed 2(4):743–749

    CAS  Google Scholar 

  • Seyfoddin A, Al-Kassas R (2013) Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm 39(4):508–519

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Xu Y, Xu X et al (2014) Hybrid lipid-polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine 10(5):897–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha Hina, Bala Rajni, Arora S (2014) Lipid-based drug delivery systems. J Pharm 2014:10. doi:10.1155/2014/801820

    Google Scholar 

  • Siekmann B, Westesen K(1992) Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett 3:123–126

    Google Scholar 

  • Singh S, Singh M, Tripathi CB et al (2016) Development and evaluation of ultra-small nanostructured lipid carriers: novel topical delivery system for athlete’s foot. Drug Deliv Transl Res 6(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Sjöström B, Bergenståhl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 88(1–3):53–62

    Article  Google Scholar 

  • Solomon R, Gabizon AA (2008) Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clinical Lymphoma Myeloma 8(1):21–32

    Article  CAS  Google Scholar 

  • Souto EB, Wissing SA, Barbosa CM, Müller RH (2004) Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 278(1):71–77

    Article  CAS  PubMed  Google Scholar 

  • Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bio 9(1):467–508

    Google Scholar 

  • Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2001) Passive targeting of doxorubicin with polymer coated liposomes in tumor bearing rats. Biol Pharm Bull 24(7):795–799

    Article  CAS  PubMed  Google Scholar 

  • Talsma H, van Steenbergen MJ, Borchert JC, Crommelin DJ (1994) A novel technique for the one-step preparation of liposomes and nonionic surfactant vesicles without the use of organic solvents. Liposome formation in a continuous gas stream: the ‘bubble’ method. J Pharm Sci 83(3):276–280

    Google Scholar 

  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43

    Article  CAS  Google Scholar 

  • Tang J, Zhang L, Gao H et al (2014) Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Delivery, 1–14

    Google Scholar 

  • Taratula O, Kuzmov A, Shah M et al (2013) Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Rel 171(3):349–357

    Article  CAS  Google Scholar 

  • Tsukamoto T, Hironaka K, Fujisawa T et al (2013) Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Asian J Pharm Sci 8(2):104–109

    Article  CAS  Google Scholar 

  • Tung NT, Huyen VT, Chi SC (2015) Topical delivery of dexamethasone acetate from hydrogel containing nanostructured liquid carriers and the drug. Arch Pharm Res 38(11):1999–2007

    Article  CAS  PubMed  Google Scholar 

  • Uner M (2005) Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 61(5):375–386

    Google Scholar 

  • Uner M (2006) Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 61:375–386

    Google Scholar 

  • Ustundag-Okur N, Gokce EH, Bozbiyik DI et al (2014) Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci 63:204–215

    Article  CAS  PubMed  Google Scholar 

  • van den Hoven JM, Hofkens W, Wauben MH et al (2011) Optimizing the therapeutic index of liposomal glucocorticoids in experimental arthritis. Int J Pharm 416(2):471–477

    Article  PubMed  CAS  Google Scholar 

  • Venishetty VK, Chede R, Komuravelli R et al (2012) Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B 95:1–9

    Article  CAS  Google Scholar 

  • Videira M, Almeida AJ, Fabra A (2012) Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine 8(7):1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Vural I, Sarisozen C, Olmez SS (2011) Chitosan coated furosemide liposomes for improved bioavailability. J Biomed Nanotech 7(3):426–430

    Article  CAS  Google Scholar 

  • Vyas SP, Rai S, Paliwal R et al (2008) Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: one step up in nanotechnology. Current Nanosci 4(1):30

    Google Scholar 

  • Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116(2):255–264

    Article  CAS  PubMed  Google Scholar 

  • Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Bendayan R, Rauth AM et al (2006a) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharm Exp Ther 317(3):1372–1381

    Article  CAS  Google Scholar 

  • Wong HL, Rauth AM, Bendayan R et al (2006b) A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23(7):1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Szoka FC Jr (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35(18):5616–5623

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Cui FD, Choi MK et al (2007) Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 338(1–2):317–326

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Liu HZ, Fu ZX, Lu WD (2011) Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol 11:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Liu Y, Liu C, Zhang N (2012) Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J Biomed Nanotechn 8(5):834–842

    Article  CAS  Google Scholar 

  • Yang R, Zhang X, Li F et al (2013) Role of phospholipids and copolymers in enhancing stability and controlling degradation of intravenous lipid emulsions. Coll Surf A: PhysEng Asp 436:434–442

    Article  CAS  Google Scholar 

  • Yang T, Li B, Qi S et al (2014a) Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics 4(11):1096–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Corona A 3rd, Schubert B et al (2014b) The effect of oil type on the aggregation stability of nanostructured lipid carriers. J Colloid Interface Sci 418:261–272

    Article  CAS  PubMed  Google Scholar 

  • Yanyu X, Yunmei S, Zhipeng C, Qineng P (2006) The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm 307:77–82

    Article  PubMed  CAS  Google Scholar 

  • Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Rel 100(2):247–256

    Article  CAS  Google Scholar 

  • Youshia J, Kamel AO, El Shamy A, Mansour S (2012) Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. Int J Nanomed 7:2483–2496

    CAS  Google Scholar 

  • Yue Peng-Fei, Yuan Hai-Long, Yang Ming, Zhu WF (2009) Preparation, characterization and pharmacokinetics in vivo of oxymatrine phospholipid complex. J Bioequiv Availab 1:99–102

    Article  CAS  Google Scholar 

  • Zelphati O, Nguyen C, Ferrari M et al (1998) Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther 5(9):1272–1282

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chan JM, Gu F et al (2008a) Self-assembled lipidpolymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2(8):1696–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bradshaw-Pierce EL, Delille A et al (2008b) In vivo comparative study of lipid/DNA complexes with different in vitro serum stability: effects on biodistribution and tumor accumulation. J Pharm Sci 97(1):237–250

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tang Q, Xu X, Li N (2013) Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm 448(1):168–174

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu M-Q, Zhang J-L et al (2015) Biotinylated epidermal growth factor surface modified lipid nanoparticles to enhance the targeting efficiency in liver cancer therapy. J Biomater Tissue Eng 5(2):135–141

    Article  Google Scholar 

  • Zhang RX, Cai P, Zhang T et al (2016) Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin c and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine 12(5):1279–1290

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Temelli F (2015) Preparation of liposomes using supercritical carbon dioxide via depressurization of the supercritical phase. J Food Engineering 158:104–112

    Article  CAS  Google Scholar 

  • Zhou X, Zhang X, Ye Y et al (2015) Nanostructured lipid carriers used for oral delivery of oridonin: An effect of ligand modification on absorption. Int J Pharm 479(2):391–398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini R. Shastri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chella, N., Shastri, N.R. (2017). Lipid Carriers: Role and Applications in Nano Drug Delivery. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_8

Download citation

Publish with us

Policies and ethics