Skip to main content

Dendrimers as Nanostructured Therapeutic Carriers

  • Chapter
  • First Online:
Particulate Technology for Delivery of Therapeutics
  • 710 Accesses

Abstract

The unique features of dendrimers, such as their high degree of branching, multivalency, globular architecture, and well-defined molecular weight, make them promising carriers for the delivery of therapeutics. Dendrimer nanostructures represent outstanding nanocarriers in medicine. Dendrimeric structures are of particular interest in the field of drug delivery due to their peculiar structural properties including controllable internal cavities bearing specific species for the encapsulation of guest drugs and external periphery with 3D multiple functional moieties for solubilization, conjugation of bioactive compounds and targeting molecules, and recognition purposes. In addition, the low polydispersity of dendrimers provides reproducible pharmacokinetic behavior. Polyamidoamine (PAMAM) dendrimers, polypropyleneimine dendrimers, and peptide-based dendrimers such as those based on polylysine have been tested as promising nanostructured carriers for the delivery small drug molecules and macromolecules. Despite their broad applicability, it is generally necessary to modify the surface amine groups of these dendrimers with neutral or anionic moieties to avoid the toxicity associated with their polycationic surfaces. In recent years, much effort has been devoted to the preparation of dendrimers that are designed to be highly biocompatible, biodegradable, and water-soluble. In the past decade, research has been increased on the design and synthesis of biocompatible dendrimers and their application in the field of drug and macromolecules delivery. Recent progress in ocular, oral, brain, and tumor drug targeting application using dendrimers is discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agashe HB, Dutta TD, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J Pharm Pharmacol 58:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Amrite AC, Kompella UB (2005) Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 57:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Ercal N, Price TO (2006) The blood–brain barrier in neuro AIDS. Curr HIV Res 4:259–266

    Article  CAS  PubMed  Google Scholar 

  • Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bickel U, Yoshikawa T, Landaw EM, Faull KF (1993) Pharmacological effects in vivo in brain by vector-mediated peptide drug delivery. Proc Natl Acad Sci U.S.A 90:2618–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–4484

    CAS  PubMed  Google Scholar 

  • Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–3569

    Article  PubMed  Google Scholar 

  • Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, Goepferich A (2008) Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release 130:57–63

    Article  CAS  PubMed  Google Scholar 

  • Budka H (1991) Neuropathology of human immunodeficiency virus infection. Brain Pathol 1:163–175

    Article  CAS  PubMed  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Article  CAS  PubMed  Google Scholar 

  • Caminati G, Turro NJ, Tomalia DA (1990) Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants. J Am Chem Soc 112:8515–8522

    Article  CAS  Google Scholar 

  • Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 28:504–512

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-S, Lin C-F, Wu C-L, Kuo P-Y, Wu F-S, Shieh C-C et al (2011) Mechanisms underlying benzyl alcohol cytotoxicity (triamcinolone acetonide preservative) in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52:4214–4222

    Article  CAS  PubMed  Google Scholar 

  • Chen HT, Neerman MF, Parrish AR, Simanek E (2004) Cytotoxicity, haemolysis, and acute in vivo toxicity of dendrimer based on melamine, candidate vehicles for drug delivery. J Am Chem Soc 126:10044–10048

    Article  CAS  PubMed  Google Scholar 

  • Cheng YY, Xu TW (2005) Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. Eur J Med Chem 40:1188–1192

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Rao T, He X, Xu T (2008a) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13:1447–1471

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Xu Z, Ma M, Xu T (2008b) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97:123–143

    Article  CAS  PubMed  Google Scholar 

  • Cho YJ, Choi HK (1998) Enhancement of percutaneous absorption of ketoprofen: effect of vehicles and adhesive matrix. Int J Pharm 169:95–104

    Article  CAS  Google Scholar 

  • Chung H, Hwang JJ, Koh JY, J-G Kim, Yoon YH (2007) Triamcinolone acetonidemediated oxidative injury in retinal cell culture: comparison with dexamethasone. Invest Ophthalmol Vis Sci 48:5742–5749

    Article  PubMed  Google Scholar 

  • D’Emanuele A, Jevprasesphant R, Penny J, Attwood D (2004) The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release 95:447–453

    Article  PubMed  CAS  Google Scholar 

  • Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of noncarriers for anti-cancer drug delivery. J Control Release Soc 148:135–146

    Article  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas AA (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis R, Brogden RN (1994) Nimesulide. An update of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 48:431–454

    Article  CAS  PubMed  Google Scholar 

  • Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13:135–143

    Article  PubMed  CAS  Google Scholar 

  • del Palacio M, Alvarez S, Munoz-Fernandez MA (2012) HIV-1 infection and neurocognitive impairment in the current era. Rev Med Virol 22:33–45

    Article  PubMed  Google Scholar 

  • Dhanikula RS, Hildgen P (2006) Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. Bioconjug Chem 17:29–41

    Article  CAS  PubMed  Google Scholar 

  • Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  PubMed  CAS  Google Scholar 

  • Dufès C, Al Robaian M, Somani S (2013) Transferrin and the transferrin receptor for the targeted delivery of therapeutic agents to the brain and cancer cells. Ther Deliv 4:629–640

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Izzo L (2005) Adv. Dendrimer biocompatibility and toxicity. Drug Deliv Rev 57:2215–2237

    Article  CAS  Google Scholar 

  • Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB (2010) Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability and delivery of gatifloxacin. Invest Ophthalmol Vis Sci 51:5804–5816

    Article  PubMed  Google Scholar 

  • Eljarrat-Binstock E, Pe’er J, Domb AJ (2010) New techniques for drug delivery to the posterior eye segment. Pharm Res 27:530–543

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Frechet JMJ (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263:1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Friden PM (1994) Receptor-mediated transport of therapeutics across the blood–brain barrier. Neurosurgery 35:294–298

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Kapp T, Otto H, Schoeneberg T, Franke P, Gust R, Schlueter AD (2004) A surface-modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization. Chem—A Eur J 10:1167–1192

    Article  CAS  Google Scholar 

  • Fuentes-Paniagua E, Hernandez-Ros JM, Sanchez-Milla M, Camero MA, Maly M, Perez-Serrano J, Copa-Patino JL, Soliveri J, Gomez R, de la Mata FJ (2014) Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv 4:1256–1265

    Article  CAS  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37:48–57

    Article  CAS  PubMed  Google Scholar 

  • Gillies ER, Fréchet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–42

    Article  CAS  PubMed  Google Scholar 

  • Gillies ER, Dy E, Frechet JMJ, Szoka FC (2005) Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol Pharm 2:129–138

    Article  CAS  PubMed  Google Scholar 

  • Gupta U, Agashe HB, Asthana A, Jain NK (2006) Dendrimers: novel polymeric nonarchitectures for solubility enhancement. Biomacromol 7:649–658

    Article  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Heeg K, Dalpke A, Peter M, Zimmermann S (2008) Structural requirements for uptake and recognition of CpG oligonucleotides. Int J Med Microbiol 298:33–38

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci United States America 95:4607–4612

    Article  CAS  Google Scholar 

  • Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB et al (2012) Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomed Nanotechnol Biol Med 8:776–783

    Article  CAS  Google Scholar 

  • Hu G, Zhang H, Zhang L, Ruan S, He Q, Gao H (2015) Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment. Int J Pharm 496:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Ke W, Han L, Liu Y, Shao K, Ye L, Lou J, Jiang C, Pei Y (2009) Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab 29:1914–1923

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC, He S, Zhang X, Liang XJ (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6:4483–4493

    Google Scholar 

  • Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM (2012) Dendrimer based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials 33:979–988

    Article  CAS  PubMed  Google Scholar 

  • Ihre HR, Padilla De Jesus OL, Szoka FC, Frechet JMJ Jr (2002) Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 13:443–452

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  CAS  PubMed  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    Article  CAS  PubMed  Google Scholar 

  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    Article  CAS  PubMed  Google Scholar 

  • Jimenez JL, Clemente MI, Weber ND, Sanchez J, Ortega P, de la Mata FJ, Gomez R, Garcia D, Lopez-Fernandez LA, Munoz-Fernandez MA (2010) Carbosilane dendrimers to transfect human astrocytes with small interfering RNA targeting human immunodeficiency virus. BioDrugs 24:331–343

    Article  CAS  PubMed  Google Scholar 

  • Kaiser PK, Symons RC, Shah SM, Quinlan EJ, Tabandeh H, Do DV, Reisen G, Lockridge JA, Short B, Guerciolini R, Nguyen QD (2010) RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol 150:33–39

    Article  CAS  PubMed  Google Scholar 

  • Kambhampati SP, Mishra MK, Mastorakos P, Oh Y, Lutty GA, Kannan RM (2015) Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur J Pharm Biopharm 95:239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminskas LM, Boyd BJ, Porter CJH (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6:1063–1084

    Article  CAS  PubMed  Google Scholar 

  • Kaminskas LM, McLeod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M, Owen DJ, Porter CJH (2012) A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomed Nanotechnol Biol Med 8:103–111

    Article  CAS  Google Scholar 

  • Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJH (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro TL, Lu ZR (2009) Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials 30:5660–5666

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2007) Signaling to NF-(B) by toll-like receptors. Trends Mol Med 13:460–469

    Article  CAS  PubMed  Google Scholar 

  • Kesavan A, Ilaiyaraja P, Beaula WS, Kumari VV, Lal JS, Arunkumar C, Anjana G, Srinivas S, Ramesh A, Rayala SK, Ponraju D, Venkatraman G (2015) Tumor targeting using polyamidoamine dendrimer–cisplatin nanoparticles functionalized with diglycolamic acid and herceptin. Eur J Pharm Biopharm 96:255–263

    Article  CAS  PubMed  Google Scholar 

  • Kesharwani P, Gajbhiye V, Tekade RK, Jain NK (2011) Evaluation of dendrimer safety and efficacy through cell line studies. Curr Drug Targets 12:1478–1497

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  CAS  PubMed  Google Scholar 

  • Kim TI, Ou M, Lee M, Kim SW (2009) Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials 30:658–664

    Article  CAS  PubMed  Google Scholar 

  • Kim TI, Rothmund T, Kissel T, Kim SW (2011) Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J Control Release 152:110–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208

    CAS  PubMed  Google Scholar 

  • Kleinman ME, Westhouse SJ, Ambati J, Pearson PA, Halperin LS (2010) Triamcinolone crystal size. Ophthalmology 117:1–6

    Article  Google Scholar 

  • Koppu S, Oh YJ, Edrada-Ebel R, Blatchford DR, Tetley L, Tate RJ, Dufès C (2010) Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. J Control Release 143:215–221

    Article  CAS  PubMed  Google Scholar 

  • Lang JC (1995) Ocular drug-delivery conventional ocular formulations. Adv Drug Deliv Rev 16:39–43

    Article  CAS  Google Scholar 

  • Lemarié F, Croft DR, Tate RJ, Ryan KM, Dufès C (2012) Tumor regression following intravenous administration of a tumor-targeted p73 gene delivery system. Biomaterials 33:2701–2709

    Article  PubMed  CAS  Google Scholar 

  • Leng Z-H, Zhuang Q-F, Li Y-C, He Z, Chen Z, Huang S-P, Jia H-Y, Zhou J-W, Liu Y, Du L-B (2013) Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Carbohydr Polym 98:173–1178

    Google Scholar 

  • Li SD, Huang L (2007) Non-viral is superior to viral gene delivery. J Control Release 123:181–183

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cheng Y, Xu T (2007) Design, synthesis and potent pharmaceutical applications of glycodendrimers. Curr Drug Discov Technol 4:246–254

    Article  CAS  PubMed  Google Scholar 

  • Li Y, He H, Jia X, Lu WL, Lou J, Wei Y (2012) A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33:3899–3908

    Article  CAS  PubMed  Google Scholar 

  • Liu X (2010) Chitosan-siRNA complex nanoparticles for gene silencing. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 27:97–101

    CAS  PubMed  Google Scholar 

  • Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F et al (2012) Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm 9:470–481

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu C, Catapano CV, Peng L, Zhou J, Rocchi P (2014a) Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnol Adv 32:844–852

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Liu C, Chen C, Bentobji M, Cheillan FA, Piana JT, Qu F, Rocchi P, Peng L (2014b) Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. Nanomed Nanotechnol Biol Med 10:1627–1636

    Article  CAS  Google Scholar 

  • Liu Y, Ng Y, Toh MR, Chiu GNC (2015) Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. J Control Release 220:438–446

    Article  CAS  PubMed  Google Scholar 

  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R (2000) Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Gomi F, Oshima Y, Tohyama M, Tano Y (2005) Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE19 cells under oxidative stress. Invest Ophthalmol Vis Sci 46:1062–1068

    Article  PubMed  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn J (2001) The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer 8:3–9

    Article  CAS  PubMed  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  CAS  PubMed  Google Scholar 

  • Merino S, Brauge L, Caminade AM, Majoral JP, Taton D, Gnanou Y (2001) Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. Chem Eur J 7:3095–3105

    Article  CAS  PubMed  Google Scholar 

  • Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A (2012) Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomed 7:3637–3657

    Google Scholar 

  • Moos T, Morgan EH (2001) Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem 79:119–129

    Article  CAS  PubMed  Google Scholar 

  • Murugan E, Geetha Rani DP, Yogaraj V (2014) Drug delivery investigations of quaternised poly(propylene imine) dendrimer using nimesulide as a model drug. Colloids Surf B 114:121–129

    Article  CAS  Google Scholar 

  • Na M, Yiyun C, Tongwen X, Yang D, Xiaomin W, Zhenwei L, Zhichao C, Guanyi H, Yunyu S, Longping W (2006) Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur J Med Chem 41:670–674

    Article  PubMed  CAS  Google Scholar 

  • Najlah M, Freeman S, Attwood D, D’Emanuele A (2007) In vitro evaluation of dendrimer pro-drug for oral drug delivery. Int J Pharm 336:183–190

    Article  CAS  PubMed  Google Scholar 

  • Nam HY, Nam K, Lee M, Kim SW, Bull DA (2012) Dendrimer type bio-reducible polymer for efficient gene delivery. J. Control Release 160:592–600

    Article  CAS  PubMed  Google Scholar 

  • Nam J-P, Nam K, Jung S, Nah J-W, Kim SW (2015) Evaluation of dendrimer type bio-reducible polymer as a siRNA delivery carrier for cancer therapy. J Control Release 209:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan R, Mungcal JK, Kenney MC, Seigel GM, Kuppermann BD (2006) Toxicity of triamcinolone acetonide on retinal neurosensory and pigment epithelial cells. Invest Ophthalmol Vis Sci 47:722–728

    Article  PubMed  Google Scholar 

  • Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T (2007) Dendrimer modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 67:8156–8163

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2001) Brain drug targeting and gene technologies. Jpn J Pharmacol 87:97–103

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733–1744

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Nam JP, Kim YM, Kim JH, Nah JW, Jang MK (2013) Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo. Int J Nanomed 8:3663–3677

    Google Scholar 

  • Patri AK, Kukowska-Latallo JF, Baker JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    Article  CAS  PubMed  Google Scholar 

  • Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ (2004) A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117:83–94

    Article  CAS  PubMed  Google Scholar 

  • Piel G, Pirotte B, Delneuville I, Neven P, Llabres G, Delarge J, Delattre L (1997) Study of the influence of both cyclodextrins and L-lysine on the aqueous solubility of nimesulide; isolation and characterization of nimesulide-L-lysine-cyclodextrin complexes. J Pharm Sci 86:475–480

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen L, Ranta VP, Moilanen H, Urtti A (2005) Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci 46:641–646

    Article  PubMed  Google Scholar 

  • Ponchel G, Irache JM (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv Drug Deliv Rev 34:191–219

    Article  CAS  PubMed  Google Scholar 

  • Pourianazar NT, Gunduz U (2016) CpG oligodeoxynucleotide-loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells. Biomed Pharmacother 78:81–91

    Article  CAS  Google Scholar 

  • Ranta VP, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, Murtomaki L, Hornof M, Urtti A (2010) Barrier analysis of periocular drug delivery to the posterior segment. J Control Release 148:42–48

    Article  CAS  PubMed  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65

    Article  CAS  PubMed  Google Scholar 

  • Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L et al (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98:1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    Article  CAS  PubMed  Google Scholar 

  • Sarin H, Kanevsky AS, Wu H, Sousa AA, Wilson CM, Aronova MA, Griffiths GL, Leapman RD, Vo HQ (2009) Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med 7:1–13

    Article  CAS  Google Scholar 

  • Schlachetzki F, Zhang Y, Boado RJ, Pardridge WM (2004) Gene therapy to the brain: the trans-vascular approach. Neurology 62:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Serramía MJ, Álvarez S, Fuentes-Paniagua E, Clemente MI, Sánchez-Nieves J, Gómez R, de la Mata J, Muñoz-Fernández MA (2015) In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release 200:60–70

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson HH, Konradsdottir F, Loftsson T, Stefansson E (2007) Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand 85:598–602

    Article  CAS  PubMed  Google Scholar 

  • Siriviriyanun A, Popova M, Imae T, Kiew LV, Looi CY, Wong WF, Lee HB, Chung LY (2015) Preparation of graphene oxide/dendrimer hybrid carriers for delivery of doxorubicin. Chem Eng J 281:771–781

    Article  CAS  Google Scholar 

  • Smith PE, Brender JR, Dürr UH, Xu J, Mullen DG, Banaszak Holl MM, Ramamoorthy A (2010) Solid-state NMR reveals the hydrophobic-core location of poly(amidoamine) dendrimers in biomembranes. J Am Chem Soc 132:8087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somani S, Blatchford DR, Millington O, Stevenson ML, Dufès C (2014) Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J Control Release 188:78–86

    Article  CAS  PubMed  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  PubMed  Google Scholar 

  • Spataro G, Malecaze F, Turrin C-O, Soler V, Duhayon C, Elena P-P, Majoral J-P, Caminade A-M (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45:326–334

    Article  CAS  PubMed  Google Scholar 

  • Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589

    Article  CAS  PubMed  Google Scholar 

  • Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  CAS  PubMed  Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  CAS  PubMed  Google Scholar 

  • Teow HM, Zhou Z, Najlah M, Yusof SR, Abbott NJ, D’Emanuele A (2013) Delivery of paclitaxel across cellular barriers using a dendrimer-based Nanocarriers. Int J Pharm 441:701–711

    Article  CAS  PubMed  Google Scholar 

  • Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder Smith PJ (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: Molecular level control of size, shape, surface chemistry topology and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  • Uppuluri S, Keinath SE, Tomalia DA, Dvornic PR (1998) Rheology of dendrimers.I. Newtonian flow behavior of medium and highly concentrated solutions of polyamidomine(PAMAM) dendrimers in ethylenediamine(EDA) solvent. Macromolecules 31:4498–4510

    Article  CAS  Google Scholar 

  • Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    Article  CAS  PubMed  Google Scholar 

  • Weiner GJ (2009) CpG oligodeoxynucleotide-based therapy of lymphoid malignancies. Adv Drug Deliv Rev 61:263–267

    Article  CAS  PubMed  Google Scholar 

  • Won YW, Lee M, Kim HA, Nam K, Bull DA, Kim SW (2013) Synergistically combined gene delivery for enhanced VEGF secretion and antiapoptosis. Mol Pharm 10:3676–3683

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Barth RF, Yang W, Kawabata S, Zhang L, Green-Church K (2006) Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 5:52–59

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, Liang R, Wang A (2010) Preparation and characterization of puerarin-dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm 36:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Yavuz B, Pehlivan SB, Unlu N (2013) Dendrimeric systems and their applications in ocular drug delivery. Sci World J 732340:1–13

    Google Scholar 

  • Yavuz B, Pehlivan SB, Vural I, Unlu N (2015) In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci 104:3814–3823

    Article  CAS  PubMed  Google Scholar 

  • Yhee JY, Lee SJ, Lee S, Song S, Min HS, Kang SW, Son S, Jeong SY, Kwon IC, Kim SH, Kim K (2013) Tumor-targeting transferrin nanoparticles for systemic polymerized siRNA delivery in tumor-bearing mice. Bioconjug Chem 24:1850–8160

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Lee E, Yeudall WA, Yang H (2010) Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery. Oral Oncol 46:698–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Bao S, Lai D, Rapkins RW, Gillies MC (2008) Intravitreal triamcinolone acetonide inhibits breakdown of the blood–retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas. Diabetes 57:1026–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chen S, Zhi C, Yamazaki T, Hanagata N (2013) Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines. Int J Nanomed 8:1783–1793

    Google Scholar 

  • Zhang X, Wang N, Schachat AP, Bao S, Gillies MC (2014) Glucocorticoids: structure, signaling and molecular mechanisms in the treatment of diabetic retinopathy and diabetic macular edema. Curr Mol Med 14:376–384

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhang B, Shen S, Chen J, Zhang Q, Jiang X, Pang Z (2015) CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci 450:396–403

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD et al (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19:2228–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19:1448–1455

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Maiti, S., Jana, S. (2017). Dendrimers as Nanostructured Therapeutic Carriers. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_5

Download citation

Publish with us

Policies and ethics