Skip to main content

Nanotechnology-Based Immunotherapeutic Strategies for the Treatment of Cancer

  • Chapter
  • First Online:
Particulate Technology for Delivery of Therapeutics

Abstract

Cancer is a dreadful disease and presently the leading cause of death worldwide. Scientists are continuously exploring new treatment regimen for successful management of this disease. Advancement in the field of nanotechnology and its integration with the field of immunotherapy has paved new ways for improving the treatment of cancer. Immunotherapy refers to therapeutic approaches that treat cancer by using patient’s own immune system. By using nanometric-sized particulate and vesicular carriers, tumor-associated antigen(s) and adjuvant(s) can be simultaneously administered which augment the immune system activation and this concept can be wisely used for designing nanotechnology-based cancer immunotherapy. Also nanotechnology-based immunotherapy confers certain benefits like enhanced therapeutic effect, targeted delivery to immune cells, and reduced adverse outcomes. Nanotechnology-based therapeutic cancer vaccine consists of antigen(s), delivery system, and adjuvant. This chapter comprises of the expected outcomes of simultaneous delivery of tumor-associated antigen(s) and adjuvant to dendritic cells using vesicular and particulate vaccine delivery system(s). It is also a summarized overview on the advancement of polymeric- and lipid-based delivery systems for the development of nanotechnology-based cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACS cancer chemotherapy (2015)

    Google Scholar 

  • Amacker M, Engler O, Kammer AR et al (2005) Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells. IntImmunol 17:695–704

    Article  CAS  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruebo M, FernĂ¡ndez-Pacheco R, Ibarra Ricardo M et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Google Scholar 

  • Bal SM, Hortensius S, Ding Z et al (2011) Co-encapsulation of antigen and toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine 29:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Bedikian AY, Del Vecchio M (2008) Allovectin-7 therapy in metastatic melanoma. Expert Opin Biol Ther 8:839–844

    Article  CAS  PubMed  Google Scholar 

  • Bergmann C, Strauss L, Zeidler R et al (2007) Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol Immunother 56:1429–1442

    Article  PubMed  Google Scholar 

  • Berinstein NL, Karkada M, Morse MA et al (2012) First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med 10:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhassani A, Shima S, Rafati S (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10:3–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourquin C, Anz D, Zwiorek K et al (2008) Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity. J Immunol 181(5):2990–2998

    Google Scholar 

  • Brannon PL, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Article  CAS  Google Scholar 

  • Caldorera M, Peppas NA (2009) Micro and nanotechnologies for intelligent and responsive biomaterial based medical systems. Adv Drug Deliv Rev 61:1391–1401

    Article  CAS  Google Scholar 

  • Cancer fact and figures (2016) American chemical society

    Google Scholar 

  • Chan KW, Bulte JW, McMahon MT (2014) Diamagnetic chemical exchange saturation transfer (diaCEST) liposomes: physicochemical properties and imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:111–124

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Gu H, Zhang DS (2014) Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials 35:10058–10069

    Article  CAS  PubMed  Google Scholar 

  • Chikamatsu K, Sakakura K, Whiteside TL et al (2007) Relationships between regulatory T cells and CD8+ effector populations in patients with squamous cell carcinoma of the head and neck. Head Neck 29:120–127

    Article  PubMed  Google Scholar 

  • Chikh G, Schutze-Redelmeier MP (2002) Liposomal delivery of CTL epitopes to dendritic cells. Biosci Rep 22:339–353

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Wang X, Nie S et al (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Cho NH, Cheong TC, Min JH et al (2011) A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol 6:675–682

    Article  CAS  PubMed  Google Scholar 

  • Conniot J, Silva JM, Fernandes JG et al (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 26(2):105

    Google Scholar 

  • Cruz LJ, Tacken PJ, Fokkink R et al (2010) Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144(2):118–126

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Tacken PJ, Rueda F et al (2012) Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol 509:143–163

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Chen (Georgia) Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Drug discover 7:771–780

    Google Scholar 

  • Dhake K (2013) Strategies for cancer vaccine development. buzzle.com 1–8

    Google Scholar 

  • De Temmerman ML, Rejman J, Demeester J et al (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 16(13-14):569–582

    Google Scholar 

  • Dharmapuri S, Peruzzi D, Aurisicchio L (2009) Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther 9:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004a) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004b) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi PD, Tripathi A, Ansari KM et al (2011) Impact of nanoparticles on the immune system. J Biomed Nanotechnol 7:193–194

    Article  CAS  PubMed  Google Scholar 

  • Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    Article  CAS  PubMed  Google Scholar 

  • Fang RH, Hu C, Luk BT et al (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fecci PE, Mitchell DA, Whitesides JF et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302

    Article  CAS  PubMed  Google Scholar 

  • Fernald K, Kurokawa M (2013) Evading apoptosis in cancer. Trends Cell Biol 23(12):620–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8):630–641

    Article  CAS  PubMed  Google Scholar 

  • Frank MM (1993) The reticuloendothelial system and bloodstream clearance. J Lab Clin Med 122:487–488

    CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 6:532–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Hernandez ML, Hernandez-Pando R, Gariglio P, Berumen J (2002) Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunol 105:231–243

    Article  CAS  Google Scholar 

  • Garland SM, Hernandez-Avila M, Wheeler CM et al (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N Engl J Med 356:1928–1943

    Article  CAS  PubMed  Google Scholar 

  • Ge W, Li Y, Li ZS et al (2009) The antitumor immune responses induced by nanoemulsion encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother 58:201–208

    Article  CAS  PubMed  Google Scholar 

  • Goforth R, Salem AK, Zhu XY et al (2009) Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol Immunother 58:517–530

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Helmy KY, Patel SA, Nahas GR et al (2013) Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv 4:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Heo MB, Cho MY, Lim YT (2014) Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomater 10:2169–2176

    Article  CAS  PubMed  Google Scholar 

  • Hobo W, Novobrantseva TI, Fredrix H (2013) Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother 62:285–297

    Article  CAS  PubMed  Google Scholar 

  • Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F et al (2015) The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artif Cells NanomedBiotechnol 23:1–11

    Google Scholar 

  • HYi D, Appel S (2013) Current status and future perspectives of dendritic cell-based cancer immunotherapy. Scand J Immunol 78(2):167–171

    Article  CAS  Google Scholar 

  • Idoyaga J, Suda N, Suda K et al (2009) Antibody to Langerin/CD207 localizes large numbers of CD8 alpha+ dendritic cells to the marginal zone of mouse spleen. Proc Natl Acad Sci USA 106:1524–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatius R, Mahnke K, Rivera M et al (2000) Presentation of proteins encapsulated in sterically stabilized liposomes by dendritic cells initiates CD8(+) T-cell responses in vivo. Blood 96:3505–3513

    CAS  PubMed  Google Scholar 

  • Jeanbart L, de Titta BM, Corthesy P et al (2014) Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol Res 2:436–447

    Article  CAS  PubMed  Google Scholar 

  • Jimbow K, Takada T, Sato M (2008) Melanin biology and translational research strategy; melanogenesis and nanomedicine as the basis for melanoma-targeted DDS and chemothermo-immunotherapy. Pigment Cell Melanoma Res 21:243–245

    Article  Google Scholar 

  • Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R (2002) Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol 32:1567–1573

    Article  CAS  PubMed  Google Scholar 

  • Karande P, Mitragotri S (2010) Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol Eng 1:175–201

    Article  CAS  PubMed  Google Scholar 

  • Kasturi SP, Skountzou I, Albrecht RA et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikumori T, Kobayashi T, Sawaki M, Imai T (2009) Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat 113:435–441

    Article  CAS  PubMed  Google Scholar 

  • Koebel CM, Vermi W, Swann JB et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  CAS  PubMed  Google Scholar 

  • Krishnamachari Y, Geary SM, Lemke CD et al (2011) Nanoparticle delivery systems in cancer vaccines. Pharm Res 28:215–236

    Article  CAS  PubMed  Google Scholar 

  • Kumar VP, Prasanthi S, Lakshmi VRS et al (2010) Cancer vaccines: a promising role in cancer therapy. Acad J Cancer Res 3:16–21

    CAS  Google Scholar 

  • Kwong B, Liu H, Irvine DJ (2011) Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 32:5134–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei C, Liu P, Chen B et al (2010) Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc 132:6906–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leleux J, Roy K (2013) Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Health Mater 2:72–94

    Article  CAS  Google Scholar 

  • Li W, Zhang L, Zhang G et al (2013) The finely regulating well-defined functional polymeric nanocarriers for antitumor immunotherapy. Mini Rev Med Chem 13(5):643–652

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wei H, Li H et al (2014) Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine (Lond) 9(16):2587–2605

    Article  CAS  Google Scholar 

  • Lv H, Zhang S, Wang B et al (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114:100–109

    Article  CAS  PubMed  Google Scholar 

  • Macho-Fernandez E, Cruz LJ, Ghinnagow R et al (2014) Targeted delivery of alpha-galactosylceramide to CD8 alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses. J Immunol 193:961–969

    Article  CAS  PubMed  Google Scholar 

  • Matsuo K, Ishii Y, Matsuo K et al (2010) The utility of poly (gamma-glutamic acid) nanoparticles as antigen delivery carriers in dendritic cell-based cancer immunotherapy. Biol Pharm Bull 33:2003–2007

    Article  CAS  PubMed  Google Scholar 

  • Medina OP, Zhu Y, Kairemo K (2004) Targeted liposomal drug delivery incancer. Curr Pharm Des 10:2981–2989

    Article  CAS  PubMed  Google Scholar 

  • Muller AJ, Prendergast GC (2007) Indoleamine 2,3-dioxygenase in immune suppression and cancer. Curr Cancer Drug Targets 7:31–40

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Lee JR et al (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  CAS  PubMed  Google Scholar 

  • Nii T, Ishii F (2005) Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm 298:198–205

    Article  CAS  PubMed  Google Scholar 

  • Niikura K, Matsunaga T, Suzuki T et al (2013) Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 7:3926

    Article  CAS  PubMed  Google Scholar 

  • North S, Butts C (2005) Vaccination with BLP25 liposome vaccine to treat non-small cell lung and prostate cancers. Exp Rev Vaccines 4(3):249–257

    Article  CAS  Google Scholar 

  • Pardoll DM (1998) Cancer vaccines. Nat Med 4:525–531

    Article  CAS  PubMed  Google Scholar 

  • Park K, Lee S, Kang E et al (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19:1553–1566

    Article  CAS  Google Scholar 

  • Park Y, Lee Seung J, Kim YS et al (2013) Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Network 13(5):177–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel GB, Omri A, Deschatelets L, Sprott GD (2002) Safety of archaeosome adjuvants evaluated in a mouse model. J Liposome Res 12:353–372

    Article  CAS  PubMed  Google Scholar 

  • Perez E (2005) American Pharmaceutical Partners announces presentation of Abraxane survival data. In: 22nd annual Miami breast cancer conference, Miami, FL

    Google Scholar 

  • Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461

    Article  CAS  PubMed  Google Scholar 

  • Poggi A, Zocchi MR (2006) Mechanisms of tumor escape: role of tumor microenvironment in inducing apoptosis of cytolytic effector cells. Arch Immunol Ther Exp (Warsz) 54:323–333

    Article  CAS  Google Scholar 

  • Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Becker A, Ringe K et al (2008) Brain tumour therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27

    Article  CAS  PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Schuster M, Nechansky A, Kircheis R (2006) Cancer immunotherapy. Biotechnol J 1(2):138–147

    Article  CAS  PubMed  Google Scholar 

  • Scott AM, Allison JP, Wolchok JD (2012a) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14

    PubMed  PubMed Central  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012b) Antibody therapy of cancer. Nature Rev Cancer 12:278–287

    Article  CAS  Google Scholar 

  • Sharma R, Agrawal U, Mody N et al (2014) Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv 33(1):64–79

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Agrawal U, Mody N et al (2015) Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv 33(1):64–79

    Google Scholar 

  • Sheng WY, Huang L (2011) Cancer immunotherapy and nanomedicine. Pharm Res 28:200–214

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Hong L, Wu D et al (2005) Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion. Cancer Biol Ther 4:218–224

    CAS  PubMed  Google Scholar 

  • Siegelm R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63:11–30

    Article  Google Scholar 

  • Singh MS, Bhaskar S (2014) Nanocarrier-based immunotherapy in cancer management and research. Immuno Targets Ther 3:121–134

    Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  CAS  PubMed  Google Scholar 

  • Suckow MA (2013) Cancer vaccines: harnessing the potential of anti-tumor immunity. The Vet J 198:28–33

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lee Jerry SH, and Zhanga M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Google Scholar 

  • Tanaka K, Ito A, Kobayashi T et al (2005) Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 116:624–633

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Ju E, Li Z et al (2014) Engineered CpG-Antigen conjugates protected gold nanoclusters as smart self-vaccines for enhanced immune response and cell imaging. Adv Funct Mater 24:1004

    Article  CAS  Google Scholar 

  • Teicher BA (2007) Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 13:6247–6251

    Article  CAS  PubMed  Google Scholar 

  • Thiele L, Merkle HP, Walter E (2003) Phagocytosis and phagosomal fate of surface-modified microparticles in dendritic cells and macrophages. Pharm Res 20:221–228

    Article  CAS  PubMed  Google Scholar 

  • Thomas SN, Vokali E, Lund A et al (2014) Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35:814–824

    Article  CAS  PubMed  Google Scholar 

  • U’ren L, Kedl R, Dow S (2006) Vaccination with liposome–DNA complexes elicits enhanced antitumor immunity. Cancer Gene Ther 13:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Ugel S, Delpozzo F, Desantis G et al (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9:470–481

    Article  CAS  PubMed  Google Scholar 

  • Uyttenhove C, Pilotte L, ThĂ©ate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Van Broekhoven CL, Parish CR, Demangel C et al (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 64:4357–4365

    Article  PubMed  Google Scholar 

  • Van Mierlo GJ, Boonman ZF, Dumortier HM et al (2004) Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol 173:6753–6759

    Article  PubMed  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Google Scholar 

  • Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S et al (2002) Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196:541–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa LL, Costa RL, Petta CA et al (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 6:271–278

    Article  PubMed  Google Scholar 

  • Waeckerle-Men Y, Groettrup M (2005) PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57:475–482

    Article  CAS  PubMed  Google Scholar 

  • Wang AZ, Gu F, Zhang L et al (2008) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070

    Google Scholar 

  • Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    Article  CAS  PubMed  Google Scholar 

  • Weiner LM, Murray JC, Shuptrine CW (2012) Antibody-based immunotherapy of cancer. Cell 148(6):1081–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteside TL, Miescher S, MacDonald HR et al (1986) Separation of tumor-infiltrating lymphocytes from tumor cells in human solid tumors. A comparison between velocity sedimentation and discontinuous density gradients. J Immunol Methods 90:221–233

    Article  CAS  PubMed  Google Scholar 

  • Worth LL, Jia SF, An T et al (1999) A lipophilic disaccharide derivative of muramyl dipeptide, up-regulates specific monocyte cytokine genes and activates monocyte-mediated tumoricidal activity. Cancer Immunol Immunother 48:312–320

    Article  CAS  PubMed  Google Scholar 

  • Xiang SD, Scalzo-Inguanti K, Minigo G (2008) Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 7(7):1103–1119

    Article  PubMed  Google Scholar 

  • Xu Z, Wang Y, Zhang L et al (2014) Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8:3636–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S, Tatsumi T, Takehara T et al (2009) EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor. Cancer Immunol Immunother 9:29–34

    Google Scholar 

  • Yang H, Zhou Y, Fung S-Y et al (2013) Amino acid structure determines the immune responses generated by Peptide-Gold nanoparticle hybrids. Part Part Syst Charact 30(12):1039–1043

    Article  CAS  Google Scholar 

  • Yoshikawa T, Okada N, Tsujino M et al (2006) Vaccine efficacy of fusogenic liposomes containing tumor cell-lysate against murine B16BL6 melanoma. Biol Pharm Bull 29(1):100–104

    Article  CAS  PubMed  Google Scholar 

  • Yuba E, Tajima N, Yoshizaki Y et al (2014) Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy. Biomaterial 35:3091–3101

    Article  CAS  Google Scholar 

  • Zamboni WC, Torchilin V, Patri AK et al (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18:3229–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Guo Y, Feng SS (2012) Nanoimmunotherapy: application of nanotechnology for sustained and targeted delivery of antigens to dendritic cells. Nanomedicine 7(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen R (2003) Immunostimulating reconstituted influenza virosomes. Vaccine 21:921–924

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh P. Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, R., Mody, N., Vyas, S.P. (2017). Nanotechnology-Based Immunotherapeutic Strategies for the Treatment of Cancer. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_3

Download citation

Publish with us

Policies and ethics