Skip to main content

Nanoparticulate Immunotherapy: An Intelligent Way to Tailor Make Our Defense System

  • Chapter
  • First Online:
Particulate Technology for Delivery of Therapeutics
  • 745 Accesses

Abstract

The term ‘Immunotherapy’ refers to a complex process to combat cancer, infections, and other diseases by suppressing, enhancing, or inducing the immune response to the host. The major limitation of the therapy is its inability to produce enough trained immune cells in the system. Currently, researchers have pursued immunotherapy as a treatment protocol, based on training the host’s immune system to fight with the diseases. Immune response can be activated by dendritic cell based, T cell adoptive, autologous immune enhancement or genetically engineered T cell or can be suppressed by some drugs that are very much useful in organ transplantation. Immune tolerance refers to a process by which body will not launch an attack to its own cells but helps to stop attacks to its tissue, simultaneously, that occurs in autoimmune diseases, generally. In allergic conditions, immunotherapy is the only treatment option available, in which body can change or modify the immune response by reducing allergen sensitivity. In case of biological application, macro-size possesses numerous drawbacks on account of the smaller size of cellular compartment. Thus advance drug delivery system comprising nanoparticles encapsulating immunologically active compound holds great potential for target specific immunotherapy, in general. Hence, nanotechnology-based immunomodulatory drugs and vaccines help in the improvement in the field of immunotherapy, for the immunological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Jaoude MM, Najm R, Shaheen J et al (2005) Tacrolimus (FK506) versus cyclosporine microemulsion (neoral) as maintenance immunosuppression therapy in kidney transplant recipients. Transplant Proc 37:3025–3028

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akagi T, Kaneko T, Kida T et al (2005) Preparation and characterization of biodegradable nanoparticles based on poly(γ-glutamic acid) with L-phenylalanine as a protein carrier. J Control Rel 108(2–3):226–236

    Article  CAS  Google Scholar 

  • Akagi T, Wang X, Uto T et al (2007) Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28:3427–3436

    Article  CAS  PubMed  Google Scholar 

  • Akdis CA, Akdis M (2009) Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 123(4):735–746

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A (2002) Molecular biology of the cell, 4th edn. Garland Science, New York and London

    Google Scholar 

  • Aliberti J (ed) (2011) Control of innate and adaptive immune responses during infectious diseases. Springer, New York, p 145. ISBN 978-1-4614-0483-5

    Google Scholar 

  • Alimonti JB, Ball TB, Fowke KR et al (2003) Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 84:1649–1661

    Article  CAS  PubMed  Google Scholar 

  • Aline F, Brand D, Pierre J et al (2009) Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic pla nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine 27:5284–5291

    Article  CAS  PubMed  Google Scholar 

  • Amiji MM, Vyas TK, Shah LK (2006) Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discov Med 6:157–162

    PubMed  Google Scholar 

  • Amin HS, Liss GM, Bernstein DI (2006) Evaluation of near-fatal reactions to allergen immunotherapy injections. J Allergy Clin Immunol 117(1):169–175

    Article  PubMed  Google Scholar 

  • Anderson PM, Katsanis E, Sencer SF et al (1991) Depot characteristics and biodistribution of interleukin-2 liposomes: importance of route of administration. J Immunother 12:19–31

    Google Scholar 

  • Arbos P, Campanero MA, Arangoa MA et al (2003) Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J Control Rel 89(1):19–30

    Article  CAS  Google Scholar 

  • Ataman-Onal Y, Munier S, Ganee A et al (2006) Surfactant-free anionic pla nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release 112:175–185

    Article  PubMed  CAS  Google Scholar 

  • Atzeni F, Sarzi-Puttini P, Botsios C et al (2012) Long-term anti-TNF therapy and the risk of serious infections in a cohort of patients with rheumatoid arthritis: comparison of adalimumab, etanercept, and infliximab in the GISEA registry. Autoimmun Rev 12:225–229

    Article  CAS  PubMed  Google Scholar 

  • Azzi J, Tang L, Moore R et al (2010) Polylactide-cyclosporin A nanoparticles for targeted immunosuppression. FASEB J 24:3927–3938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baay M, Brouwer A, Pauwels P et al (2011) Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 12:1–12

    Article  CAS  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    Article  CAS  PubMed  Google Scholar 

  • Balmert SC, Little SR (2012) Biomimetic delivery with micro- and nanoparticles. Adv Mater 24(28):3757–3778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barouch DH (2008) Challenges in the development of an HIV-1 vaccine. Nature 455:613–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Batanero E, Barral P, Villalba M et al (2002) Biodegradable poly (D,L-lactide glycolide) microparticles as a vehicle for allergen-specific vaccines: a study performed with Ole e 1, the main allergen of olive pollen. J Immunol Methods 259(1–2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Bernatsky S, Hudson M, Suissa S (2010) Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis. Rheumatology 46(7):1157–1160

    Article  CAS  Google Scholar 

  • Bharali DJ, Pradhan V, Elkin G et al (2008) Novel nanoparticles for the delivery of recombinant hepatitis B vaccine. Nanomedicine 4(4):311–317

    Article  CAS  PubMed  Google Scholar 

  • Bielekova B, Goodwin B, Richertet N et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Bielinska AU, Janczak KW, Landers JJ et al (2008) Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 24:271–281

    Article  CAS  PubMed  Google Scholar 

  • Blattner W, Gallo RC, Temin HM et al (1988) HIV causes AIDS. Science 241:515–516

    Article  CAS  PubMed  Google Scholar 

  • Borchard G (2001) Chitosans for gene delivery. Adv Drug Deliv Rev 52(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Borges O, Borchard G, Verhoef JC et al (2005) Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int J Pharm 299(1–2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Borges O, Tavares J, De Sousa A et al (2007) Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci 32(4–5):278–290

    Article  CAS  PubMed  Google Scholar 

  • Borges O, Silva M, De Sousa A et al (2008) Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol 8(13–14):1773–1780

    Article  CAS  PubMed  Google Scholar 

  • Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomed 1(2):117–128

    Article  CAS  Google Scholar 

  • Bramwell VW, Perrie Y (2006) Particulate delivery systems for vaccines: what can we expect? J Pharm Pharmacol 58(6):717–728

    Article  CAS  PubMed  Google Scholar 

  • Brave A, Hinkula J, Cafaro A et al (2007) Candidate HIV-1 gp140δv2, gag and tat vaccines protect against experimental HIV-1/MULV challenge. Vaccine 25:6882–6890

    Article  PubMed  CAS  Google Scholar 

  • Brenchley JM, Schacker TW, Ruff LE et al (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200:749–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Broos S, Lundberg K, Akagi T et al (2010) Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: implications for specific immunotherapy. Vaccine 28(31):5075–5085

    Article  CAS  PubMed  Google Scholar 

  • Burke B, Gomez-Roman VR, Lian Y et al (2009) Neutralizing antibody responses to subtype b and c adjuvanted HIV envelope protein vaccination in rabbits. Virology 387:147–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burton DR, Desrosiers RC, Doms RW et al (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5:233–236

    Article  CAS  PubMed  Google Scholar 

  • Camacho AI, Da Costa Martins R, Tamayo I et al (2011) Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine 22:7130–7135

    Article  CAS  Google Scholar 

  • Caspi RR (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8(12):970–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chatenoud L (2006) Immune therapies of autoimmune diseases: are we approaching a real cure? Curr Opin Immunol 18:710–717

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Dorrigan A, Saad S et al (2013) In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS ONE 8(2):e58208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christian DA, Hunter CA (2012) Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 4:425–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chun TW, Jr Davey R T, Engel D, Lane HC et al (1999) Re-emergence of HIV after stopping therapy. Nature 401:874–875

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Casares X, Santamaria P (2014) Nanomedicine in auto-immunity. Immunol Lett 158(1–2):167–174

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Casares X, Tsai S, Yang Y et al (2011) Peptide-MHC-based nanovaccines for the treatment of auto-immunity: a “one size fits all” approach? J Mol Med 89:733–742

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Casares X, Tsai S, Huang C et al (2012) Antigen-specific therapeutic approaches in type 1 diabetes. Cold Spring Harb Perspect Med 2(2):a007773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cohen J (2007) Building an HIV-proof immune system. Science 317:612–614

    Article  CAS  PubMed  Google Scholar 

  • Cohen MS, Hellmann N, Levy JA et al (2008) The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest 118:1244–1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Combadiere B, Mahe B (2008) Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 31(2–3):293–315

    Article  PubMed  Google Scholar 

  • Cooper GS, Bynam ML, Somers EC (2009) Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun 33(3–4):197–207

    Article  PubMed Central  PubMed  Google Scholar 

  • Copland MJ, Rades T, Davies NM et al (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97–105

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Barratt G, Fattal E et al (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 19(2):99–134

    Article  CAS  PubMed  Google Scholar 

  • Couzin-Frankel J (2013) Breakthrough of the year 2013, Cancer immunotherapy. Science 342:1432–1433

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Rosalia RA, Kleinovink JW et al (2014) Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8 (+) T cell response: a comparative study. J Control Release 192:209–218

    Article  CAS  PubMed  Google Scholar 

  • Csaba N, Garcia-Fuentes M, Alonso MJ et al (2009) Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 61:140–157

    Article  CAS  PubMed  Google Scholar 

  • Cubillos-Ruiz JR, Engle X, Scarlett UK et al (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119:2231–2244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  PubMed  Google Scholar 

  • Das S, Haddadi A, Veniamin S et al (2008) Delivery of rapamycin-loaded nanoparticle down regulates ICAM-1 expression and maintains an immunosuppressive profile in human CD34+ progenitor-derived dendritic cells. J Biomed Mater Res A 85:983–992

    Article  PubMed  CAS  Google Scholar 

  • De SA, Campos AM, Alonso MJ et al (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168

    Article  Google Scholar 

  • De Souza Reboucas J et al (2012) Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. J Biomed Biotechnol 2012:1–13

    Google Scholar 

  • Descotes J (2004) Immunotoxicology of drugs and chemicals: an experimental and clinical approach, Amsterdam

    Google Scholar 

  • Dewitte H, Verbeke R, Breckpot K et al (2014) Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today 9:743–758

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domard A, Rinaudo M, Terrassin C (1986) New method for the quaternization of chitosan. ‎Int J Biol Mac 8(2):105–107

    Google Scholar 

  • Elamanchili P, Diwan M, Cao M et al (2004) Characterization of poly(d, l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22(19):2406–2412

    Article  CAS  PubMed  Google Scholar 

  • Eldrige JH, Staas JK, Meulbroek JA et al (1991) Biodegradable microspheres as a vaccine delivery system. Mol Immunol 28(3):287–294

    Article  Google Scholar 

  • Errasti P, Izquierdo D, Martin P et al (2010) Pneumonitis associated with mammalian target of rapamycin inhibitors in renal transplant recipients: a single-center experience. Transplant Proc 42:3053–3054

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Moon JJ (2015) Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines 3:662–685

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan Y, Du W, He B et al (2013) The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials 34:2277–2288

    Article  CAS  PubMed  Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B et al (2004) Size dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173(5):3148–3154

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Turnquist HR, Taner T, Thomson AW et al (2009) Use of rapamycin in the induction of tolerogenic dendritic cells. Handb Exp Pharmacol 215–232

    Google Scholar 

  • Fisher JD, Acharyad AP, Little SR et al (2015) Micro and nanoparticle drug delivery systems for preventing allotransplant rejection. Clin Immunol 160(1):24–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forrest ML, Won CY, Malick AY et al (2006) In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles. J Control Release 110:370–377

    Article  CAS  PubMed  Google Scholar 

  • Francis JN, Durham SR (2004) Adjuvants for allergen immunotherapy: experimental results and clinical perspectives. Curr Opin Allergy CL 4(6):543–548

    Article  CAS  Google Scholar 

  • Fung EM, Todo SJJ, Jain A et al (1996) The Pittsburgh randomized trial of tacrolimus compared to cyclosporine for hepatic transplantation. J Am Coll Surg 183:115–117

    Google Scholar 

  • Furin JJ, Behforouz HL, Shin SS et al (2008) Expanding global HIV treatment: case studies from the field. Ann NY Acad Sci 1136:12–20

    Article  CAS  PubMed  Google Scholar 

  • Gajanayake T, Olariu R, Leclère FM (2014) A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft. Sci Transl Med 6(249):249ra110

    Google Scholar 

  • Gallo RC (2002) Historical essay. The early years of HIV/AIDS. Science 298:1728–1730

    Article  CAS  PubMed  Google Scholar 

  • Gallo RC, Montagnier L (2003) The discovery of HIV as the cause of AIDS. N Engl J Med 349:2283–2285

    Article  CAS  PubMed  Google Scholar 

  • Gamazo C, Gastaminza G, Ferrer M et al (2014) Nanoparticle based-immunotherapy against allergy. Immunotherapy 6(7):885–897

    Article  CAS  PubMed  Google Scholar 

  • Gandhi RT, Walker BD (2002) Immunologic control of HIV-1. Ann Rev Med 53:149–172

    Article  CAS  PubMed  Google Scholar 

  • Gazzaniga S, Bravo AI, Guglielmotti A et al (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Investig Dermatol 127:2031–2041

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PB et al (2003) Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat Med 22(4):573–593

    Article  PubMed  Google Scholar 

  • Glowacki AJ, Gottardi R, Yoshizawa S et al (2014) Strategies to direct the enrichment, expansion, and recruitment of regulatory cells for the treatment of disease. Ann Biomed Eng 43(3):593–602

    Article  PubMed Central  PubMed  Google Scholar 

  • Glowacki AJ, Gottardi R, Yoshizawa S et al (2015) Strategies to direct the enrichment, expansion, and recruitment of regulatory cells for the treatment of disease. Ann Biomed Eng 43(3):593–602

    Article  PubMed  Google Scholar 

  • Goldberg MS (2015) Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161:201–204

    Article  CAS  PubMed  Google Scholar 

  • Goldsby RA, Kindt TJ, Osborne BA (2000) Kubi immunology, 4th edn. W.H. Freeman & Co, pp 5–13

    Google Scholar 

  • Gomez S, Gamazo C, Roman BS et al (2006) Development of a novel vaccine delivery system based on gantrez nanoparticles. J Nanosci Nanotechnol 6(9–10):3283–3289

    Article  CAS  PubMed  Google Scholar 

  • Gomez S, Gamazo C, Roman BS et al (2007) Gantrez AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine 25(29):5263–5271

    Article  CAS  PubMed  Google Scholar 

  • Gomez S, Gamazo C, San Roman B et al (2009) A novel nanoparticulate adjuvant for immunotherapy with Loliumperenne. J Immunol Methods 348(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Good RA (1972) Relations between immunity and malignancy. Proc Natl Acad Sci 69:1026–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    Article  PubMed  CAS  Google Scholar 

  • Grasso P, Gangolli S, Gaunt I (2002) Essentials of pathology for toxicologists. CRC Press, Boca Raton

    Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L et al (2002) Antigen presentation and t cell stimulation by dendritic cells. Ann Rev Immunol 20:621–667

    Article  CAS  Google Scholar 

  • Guillon C, Mayol K, Terrat C et al (2007) Formulation of HIV-1 tat and p24 antigens by pla nanoparticles or mf59 impacts the breadth, but not the magnitude, of serum and faecal antibody responses in rabbits. Vaccine 25:7491–7501

    Article  CAS  PubMed  Google Scholar 

  • Hackstein H, Taner T, Zahorchak AF et al (2003) Rapamycin inhibits IL-4 induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101:4457–4463

    Article  CAS  PubMed  Google Scholar 

  • Haddadi A, Elamanchili P, Lavasanifar A et al (2008) Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A 84:885–898

    Article  PubMed  CAS  Google Scholar 

  • Han B, Serra P, Yamanouchi J et al (2005) Developmental control of CD8 T cell-avidity maturation in autoimmune diabetes. J Clin Investig 115:1879–1887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrigan PR, Hogg RS, Dong WW et al (2005) Predictors of HIV drug-resistance mutations in a large antiretroviral-naive cohort initiating triple antiretroviral therapy. J Infect Dis 191:339–347

    Article  CAS  PubMed  Google Scholar 

  • Hartwell BL, Antunez L, Sullivan BP et al (2015) Multivalent nanomaterials: learning from vaccines and progressing to antigen-specific immunotherapies. J Pharm Sci 104:346–361

    Article  CAS  PubMed  Google Scholar 

  • Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med 205:565–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayder M, Poupot M, Baron M et al (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med 3(81):81ra35

    Google Scholar 

  • Hebert MF (1997) Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 15:201–214

    Article  Google Scholar 

  • Hester J, Schiopu A, Nadig SN et al (2012) Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant 12:2008–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirst SM, Karakoti AS, Tyler RD et al (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Al-Deen FMN, Al-Abboodi A et al (2011) N, N′-carbonyldiimidazole-mediated functionalization of superparamagnetic nanoparticles as vaccine carrier. Colloids Surf B 83(1):83–90

    Article  CAS  Google Scholar 

  • Hobo W, Novobrantseva TI, Fredrix H et al (2013) Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother 62:285–297

    Article  CAS  PubMed  Google Scholar 

  • Hong CA, Nam YS (2014) Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4:1211–1232

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hori Y, Winans AM, Huang CC et al (2008) Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29:3671–3682

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Miura S, Na K et al (2013) pH-responsive and charge shielded cationic micelle of poly(L-histidine)-block-short branched PEI for acidic cancer treatment. J Control Rel 172:69–76

    Article  CAS  Google Scholar 

  • Igartua M, Hernandez RM, Esquisabel A et al (1998) Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres. J Control Release 56(1–3):63–73

    Article  CAS  PubMed  Google Scholar 

  • Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41(1):5–11

    Google Scholar 

  • Illum L, Jabbal-Gill I, Hinchcliffe M et al (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51(1–3):81–96

    Article  CAS  PubMed  Google Scholar 

  • Immunotherapy. Immune Netw 13(5):177–183

    Google Scholar 

  • Irache JM, Salman HH, Gomez S et al (2010) Poly(anhydride) nanoparticles as adjuvants for mucosal vaccination. Front Biosci 2:876–890

    Article  Google Scholar 

  • Irache JM, Esparza I, Gamazo C et al (2011) Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol 180(1–2):47–71

    Article  PubMed  Google Scholar 

  • Irvine DJ, Swartz MA, Szeto GL (2013) Engineering synthetic vaccines using cues from natural immunity. Nat Mater 12:978–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irvine DJ, Hanson MC, Rakhra K et al (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115(19):11109–11146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janeway CA Jr, Travers P, Walport M et al (2001a) Immunobiology: the immune system in health and disease, the major histocompatibility complex and its functions, 5th edn. Garland Science, New York

    Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (2001b) Immunobiology, 5th edn. Garland Science, New York and London

    Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (2005) Immunobiology, 6th edn. Garland Science, New York and London

    Google Scholar 

  • Jhunjhunwala S, Raimondi G, Thomson AW et al (2009) Little, delivery of rapamycin to dendritic cells using degradable microparticles. J Control Release 133:191–197

    Article  CAS  PubMed  Google Scholar 

  • Jiang HL, Kim YK, Arote R et al (2007) Chitosan-graft polyethylenimine as a gene carrier. J Control Rel 117(2):273–280

    Article  CAS  Google Scholar 

  • Jolly C, Kashefi K, Hollinshead M et al (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaewsaneha C, Tangboriboonrat P, Polpanich D et al (2013) Janus colloidal particles: preparation, properties, and biomedical applications. ACS Appl Mater Interfaces 1857–1869

    Google Scholar 

  • Kappos L, Comi G, Panitch H et al (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat Med 6:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Kawamura M, Wang X, Uto T et al (2005) Induction of dendritic cell-mediated immune responses against HIV-1 by antigen-capturing nanospheres in mice. J Med Virol 76:7–15

    Article  CAS  PubMed  Google Scholar 

  • Kedar E, Braun E, Rutkowski Y et al (1994) Delivery of cytokines by liposomes. II. Interleukin-2 encapsulated in long-circulating sterically stabilized liposomes: immunomodulatory and anti-tumor activity in mice. J Immunother Emphasis Tumor Immunol 16:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kedar E, Palgi O, Golod G et al (1997) Delivery of cytokines by liposomes. III. Liposome-encapsulated GM-CSF and TNF-alpha show improved pharmacokineticand biological activity and reduced toxicity in mice. J Immunother 20:180–193

    Article  CAS  PubMed  Google Scholar 

  • Kedar E, Gur H, Babai I et al (2000) Delivery of cytokines by liposomes: hematopoietic and immunomodulatory activity of interleukin-2 encapsulated in conventional liposomes and in long-circulating liposomes. J Immunother 23:131–145

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Doh HJ, Jang MH, Ha YJ, Chung SI, Park HJ (1999) Oral immunization with Helicobacter pylori-loaded poly(D, L-lactide-co-glycolide) nanoparticles. Helicobacter 4:33–39

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Jeong YI, Jin SG et al (2011) Preparation of polylactide-co-glycolide nanoparticles incorporating celecoxib and their antitumor activity against brain tumor cells. Int J Nanomed 6:2621–2631

    Article  CAS  Google Scholar 

  • Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kotze AF, Thanou MM, Luessen HL et al (1999) Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). Eur J Pharm Biopharm 47(3):269–274

    Article  CAS  PubMed  Google Scholar 

  • Kumar CS, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Gupta P, Sharma S et al (2011) A review on immunostimulatory plants. Chin J Integr Med 9(2):117–128

    Article  Google Scholar 

  • Kwon YJ, James E, Shastri N et al (2005a) In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A 102(51):18264–18268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon YJ, Standley SM, Goh SL et al (2005b) Enhanced antigen presentation and immunostimulation ofdendritic cells using acid-degradable cationic nanoparticles. J Control Rel 105(3):199–212

    Article  CAS  Google Scholar 

  • Lamers SL, Salemi M, Galligan DC et al (2009) Extensive HIV-1 intra-host recombination is common in tissues with abnormal histopathology. PLoS ONE 4:E5065

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lamprecht A, Yamamoto H, Takeuchi H et al (2005a) Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Ther 315:196–202

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht A, Yamamoto H, Ubrich N et al (2005b) FK506 microparticles mitigate experimental colitis with minor renal calcineurin suppression. Pharm Res 22:193–199

    Article  CAS  PubMed  Google Scholar 

  • Lang TJ (2004) Estrogen as an immunomodulator. Clin Immunol 113(3):224–230

    Article  CAS  PubMed  Google Scholar 

  • Leleux J, Roy K (2013) Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2:72–94

    Article  CAS  PubMed  Google Scholar 

  • Letvin NL (2006) Progress and obstacles in the development of an AIDS vaccine. Nat Rev Immunol 6:930–939

    Article  CAS  PubMed  Google Scholar 

  • Leu D, Manthey B, Kreuter J et al (1984) Distribution and elimination of coated polymethyl [2–14C] methacrylate nanoparticles after intravenous injection in rats. J Pharm Sci 73:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Leung L, Srivastava IK, Kan E et al (2004) Immunogenicity of HIV-1 env and gag in baboons using a DNA prime/protein boost regimen. AIDS 18:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Leuschner F, Dutta P, Gorbatov R et al (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lévy JA (1993) HIV pathogenesis and long-term survival. AIDS 7:1401–1410

    Article  PubMed  Google Scholar 

  • Lindau D, Gielen P, Kroesen M et al (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loeffler CM, Platt JL, Anderson PM et al (1991) Antitumor effects of interleukin 2 liposomes and anti-CD3-stimulated T-cells against murine MCA-38 hepatic metastasis. Cancer Res 51:2127–2132

    CAS  PubMed  Google Scholar 

  • Look M, Stern E, Wang QA et al (2013) Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J Clin Investig 123:1741–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Look M, Saltzman WM, Craft J, Fahmy TM et al (2014) The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials 35:1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Machen J, Harnaha J, Lakomy R et al (2004) Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 173:4331–4341

    Article  CAS  PubMed  Google Scholar 

  • Madan T, Munshi N, De TK et al (1997) Biodegradable nanoparticles as a sustained release system for the antigens/allergens of Aspergillus fumigatus: preparation and characterization. Int J Pharm 159(2):135–147

    Article  CAS  Google Scholar 

  • Maldonado RA, LaMothe RA, Ferrari JD et al (2015) Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci USA 112:E156–E165

    Article  CAS  PubMed  Google Scholar 

  • Mallapragada SK, Narasimhan B (2008) Immunomodulatory biomaterials. Int J Pharm 364(2):265–271

    Article  CAS  PubMed  Google Scholar 

  • Manolova V, Flace A, Bauer M et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Marsden MD, Zack JA (2009) Eradication of HIV: current challenges and new directions. J Antimicrob Chemother 63:7–10

    Article  CAS  PubMed  Google Scholar 

  • Martínez MS (2010) RNA interference and viruses: current innovations and future trends. In: Miguel Angel (ed). Caister Academic Press, Norfolk, p 73. ISBN 978-1-904455-56-1

    Google Scholar 

  • Masotti A, Ortaggi G (2009) Chitosan micro- and nanospheres: fabrication and applications for drug and DNA delivery. Mini-Rev Med Chem 9(4):463–469

    Article  CAS  PubMed  Google Scholar 

  • McHeyzer-Williams LJ, McHeyzer-Williams MG (2005) Antigen-specific memory b cell development. Ann Rev Immunol 23:487–513

    Article  CAS  Google Scholar 

  • McMichael AJ, Borrow P, Tomaras GD et al (2010) The immune response during acute HIV78-1 infection: clues for vaccine development. Nat Rev Immunol 10(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Mehandru S, Poles MA, Tenner-Racz K et al (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T cells from effector sites in the gastrointestinal tract. J Exp Med 200:761–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake A, Akagi T, Enose Y et al (2004) Induction of HIV-specific antibody response and protection against vaginal sHIV transmission by intranasal immunization with inactivated sHIV-capturing nanospheres in macaques. J Med Virol 73:368–377

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Uno T, Yamamoto H et al (2004) Pharmacokinetic and immunosuppressive effects of tacrolimus-loaded biodegradable microspheres. Liver Transpl 10:392–396

    Article  PubMed  Google Scholar 

  • Mohamed EA, Zhao Y, Meshali MM et al (2012) Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine. J Pharm Sci 101:3787–3798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montagnier L (2002) Historical essay. A history of HIV discovery. Science 298:1727–1728

    Article  CAS  PubMed  Google Scholar 

  • Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24:3724–3746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moriyama A, Shimoya K, Ogata I et al (1999) Secretory leukocyte protease inhibitor (SLPI) concentrations in cervical mucus of women with normal menstrual cycle. Mol Hum Reprod 5(7):656–661

    Article  CAS  PubMed  Google Scholar 

  • Mueller SN, Tian S, DeSimone JM (2015) Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm 12:1356–1365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4:481–508

    CAS  PubMed  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58(11):1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Neelapu SS, Baskar S, Gause BL et al (2004) Human autologous tumor-specific T-cell responses induced by liposomal delivery of a lymphoma antigen. Clin Cancer Res 10:8309–8317

    Article  CAS  PubMed  Google Scholar 

  • Neelapu SS, Gause BL, Harvey L et al (2007) A novel proteoliposomal vaccine induces antitumor immunity against follicular lymphoma. Blood 109:5160–5163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ngo ST, Steyn FJ, McCombe PA (2014) Gender differences in autoimmune disease. Front Neuroendocrinol 35:347–369

    Article  CAS  PubMed  Google Scholar 

  • Niederberger V, Horak F, Vrtala S et al (2004) Vaccination with genetically engineered allergens prevents progression of allergic disease. Proc Natl Acad Sci 101:14677–14682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niethammer D, Kummerle-Deschner J, Dannecker GE (1999) Side-effects of long-term immunosuppression versus morbidity in autologous stem cell rescue: striking the balance. Rheumatology 38(8):747–750

    Article  CAS  PubMed  Google Scholar 

  • Nune SK, Gunda P, Majeti BK et al (2011) Advances in lymphatic imaging and drug delivery. Adv Drug Deliv Rev 63:876–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochoa J, Irache JM, Tamayo I et al (2007) Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella Enteritidis in mice. Vaccine 25(22):4410–4419

    Article  CAS  PubMed  Google Scholar 

  • Olson WC, Jacobson JM (2009) CCR5 monoclonal antibodies for HIV-1 therapy. Curr Opin HIV AIDS 4:104–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Ott G, Barchfeld GL, Chernoff D et al (1995) Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol 6:277–296

    Article  CAS  PubMed  Google Scholar 

  • Pagliari F, Mandoli C, Forte G et al (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6:3767–3775

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo G, Demarest JF, Schacker T et al (1997) The qualitative nature of the primary immune response to HIV infection is a prognosticator of disease progression independent of the initial level of plasma viremia. Proc Natl Acad Sci U S A 94:254–258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park YM, Lee SJ, Kim YS et al (2013) Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw 13(5):177–183

    Google Scholar 

  • Partidos CD, Vohra P, Jones DH et al (1999) Induction of cytotoxic T-cell responses following oral immunization with synthetic peptides encapsulated in PLG microparticles. ‎J Control Rel 62(3):325–332

    Google Scholar 

  • Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. ‎Adv Drug Deliv Rev 60(8):915–928

    Google Scholar 

  • Petersen LK, Ramer-Tait AE, Broderick SR et al (2011) Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials 32:6815–6822

    Article  CAS  PubMed  Google Scholar 

  • Pett SL (2009) Immunotherapies in HIV-1 infection. Curr Opin HIV AIDS 4:188–193

    Article  PubMed  Google Scholar 

  • Porporatto C, Bianco ID, Correa SG (2005) Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J Leukoc Biol 78:62–69

    Article  CAS  PubMed  Google Scholar 

  • Praveen G, Sreerekha PR, Menon D et al (2012) Fibrin nanoconstructs: a novel processing method and their use as controlled delivery agents. Nanotec 23:095102

    Article  CAS  Google Scholar 

  • Ragusa VF, Massolo A (2004) Non-fatal systemic reactions to subcutaneous immunotherapy: a 20-year experience comparison of two 10-year periods. Eur Ann Allergy Clin Immunol 36(2):52–55

    PubMed  Google Scholar 

  • Rahimian S, Kleinovink JW, Fransen MF et al (2015) Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: in vivo tracking and evaluation of antigen-specific CD8 (+) T cell immune response. Biomaterials 37:469–477

    Article  CAS  PubMed  Google Scholar 

  • Reddy ST, Rehor A, Schmoekel HG et al (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112:26–34

    Article  CAS  PubMed  Google Scholar 

  • Richman DD, Margolis DM, Delaney M et al (2009) The challenge of finding a cure for HIV infection. Science 323:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo CR (2009) Dendritic cell-based human immunodeficiency virus vaccine. J Intern Med 265:138–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roeven MW, Hobo W, van der Voort R, Fredrix H et al (2015) Efficient nontoxic delivery of PD-L1 and PD-L2 siRNA into dendritic cell vaccines using the cationic lipid SAINT-18. J Immunother 38:145–154

    Article  CAS  PubMed  Google Scholar 

  • Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT et al (2015) Ossendorp, CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40:88–97

    Article  CAS  PubMed  Google Scholar 

  • Rosata E, Pisarri S, Salsano F (2010) Current strategies for the treatment of autoimmune diseases. J Biol Regul Homeost Agents 24(3):251–259

    Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosman Z, Shoenfeld Y, Zandman-Goddard G (2013) Biologic therapy for autoimmune diseases: an update. BMC Med 11:88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. ‎Int J Pharm 399(1–2):1–11

    Google Scholar 

  • Sabatino R, Antonelli A, Battistelli S et al (2014) Macrophage depletion by free bisphosphonates and zoledronate-loaded red blood cells. PLoS ONE 9:e101260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sacchetti C, Rapini N, Magrini A et al (2013) In vivo targeting of intratumor regulatory T cells using PEG modified single-walled carbon nanotubes. Bioconjug Chem 24:852–858

    Article  CAS  PubMed  Google Scholar 

  • Sahdev P, Ochyl LJ, Moon JJ (2014) Biomaterials for nanoparticle vaccine delivery systems. Pharm Res 31:2563–2582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez A, Alonso MJ (1995) Poly(D, L-lactide-co-glycolide) micro and nanospheres as a way to prolong blood/plasma levels of subcutaneously injected cyclosporin A. Eur J Pharm Biopharm 41:31–37

    CAS  Google Scholar 

  • Sánchez AJVJ, Alonso MJ (1993) Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporine A. Int J Pharm 99:263–273

    Article  Google Scholar 

  • Sánchez A, Seoane R, Quireza O et al (1995) In vivo study of the tissue distribution and immunosuppressive response of cyclosporin a-loaded polyester micro- and nanospheres. Drug Deliv 2:21–28

    Article  Google Scholar 

  • Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6:815–826

    Article  CAS  PubMed  Google Scholar 

  • Saunders RN, Nicholson ML et al (2001) Rapamycin in transplantation: a review of the evidence. Kidney Int 59:3–16

    Google Scholar 

  • Sax PE, Cohen CJ, Kuritzkes DR et al (2007) HIV essentials. Physicians’ Press, Royal Oak

    Google Scholar 

  • Schanen BC, Das S, Reilly CM et al (2013) Immunomodulation and T helper TH(1)/ TH(2) response polarization by CeO(2) and TiO(2) nanoparticles. PLoS ONE 8(5):e62816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schweingruber N, Haine A, Tiede K et al (2011) Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J Immunol 187:4310–4318

    Article  CAS  PubMed  Google Scholar 

  • Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    Article  CAS  PubMed  Google Scholar 

  • Serra P, Santamaria P (2015) Nanoparticle-based autoimmune disease therapy. Clin Immunol 160(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Shah AU, D’Souza MJ (1999) Sustained-release interleukin-12 microspheres in the treatment of cancer. Drug Dev Ind Pharm 25:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Shameli A, Clemente-Casares X, Wang J et al (2011) Development of memory-like autoregulatory CD8+ T cells is CD4+ T cell dependent. J Immunol 187:2859–2866

    Article  CAS  PubMed  Google Scholar 

  • Shameli A, Yamanouchi J, Tsai S et al (2013) IL-2 promotes the function of memory-like autoregulatory CD8+ T cells but suppresses their development via FoxP3+ Treg cells. Eur J Immunol 43:394–403

    Article  CAS  PubMed  Google Scholar 

  • Shao K, Singha S, Clemente-Casares X et al (2015) Nanoparticle-based immunotherapy for cancer. ACS Nano 9(1):16–30

    Article  CAS  PubMed  Google Scholar 

  • Shirali AC, Look M, Du W, Kassis E et al (2011) Nanoparticle delivery of myco- phenolic acid upregulates PD-L1 on dendritic cells to prolong murine allograft survival. Am J Transplant 11:2582–2592

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Kim JT, Balazs AB et al (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477:95–98

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Videira M, Gaspar R et al (2013) Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Rel 168:179–199

    Article  CAS  Google Scholar 

  • Singh SK, Bisen PS (2006) Adjuvanticity of stealth liposomes on the immunogenicity of synthetic gp41epitope of HIV-1. Vaccine 24:4161–4166

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, René D (2006) Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem Biol 1:217–226

    Article  CAS  PubMed  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel 70(1–2):1–20

    Article  CAS  Google Scholar 

  • Spiers ID, Eyles JE, Baillie LWJ et al (2000) Biodegradable microparticles with different release profiles: effect on the immune response after a single administration via intranasal and intramuscular routes. J Pharm Pharmacol 52(10):1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Starnes CO (1992) Coley’s toxins in perspective. Nature 357:11–12

    Article  CAS  PubMed  Google Scholar 

  • Steinke JW, Lawrence MG (2014) T-cell biology in immunotherapy. Ann Allergy Asthma Immunol 112:195–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens EV, Carpenter AW, Shin JH et al (2010) Nitric oxide releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm 7:775–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su X, Wang Z, Li L et al (2013) Lipidpolymer nanoparticles encapsulating doxorubicin and 2′-deoxy-5-azacytidine enhance the sensitivity of cancer cells to chemical therapeutics. Mol Pharm 10:1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Sumbayev VV, Yasinska IM, Garcia CP et al (2013) Gold nanoparticles downregulate interleukin-1beta-induced pro-inflammatory responses. Small 9:472–477

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Liu Y, Li SY et al (2015) Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37:405–414

    Article  CAS  PubMed  Google Scholar 

  • Sunshine JC, Green JJ (2013) Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 8:1173–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swartz MA, Hirosue S, Hubbell JA (2012) Engineering approaches to immunotherapy. Sci Transl Med 4(148):148rv9

    Google Scholar 

  • Tacken PJ, de Vries IJM, Torensma R et al (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    Article  CAS  PubMed  Google Scholar 

  • Tamayo I, Irache JM, Mansilla C et al (2010) Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin Vaccine Immunol 17:1356–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan S, Sasada T, Bershteyn A et al (2014) Combinational delivery of lipid-enveloped polymeric nanoparticles carrying different peptides for anti-tumor immunotherapy. Nanomed Nanotech Biol Med 9:635–647

    CAS  Google Scholar 

  • Taner T, Hackstein H, Wang Z et al (2005) Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant 5:228–236

    Article  CAS  PubMed  Google Scholar 

  • Teo PY, Yang C, Whilding LM et al (2015) Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine:strategies to enhance T cell killing. Adv Healthcare Mater 4:1180–1189

    Article  CAS  Google Scholar 

  • Tewodros M, Moseman AE, Kolishetti N et al (2010) Carolina Salvador-Morales 1,4, Jinjun Shi1,4, Daniel R Kuritzkes5, Robert Langer4,6, Ulrich von Andrian3, and Omid C Farokhzad, Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomed Nanotech Biol 5:269–285

    Google Scholar 

  • Thomas TP, Goonewardena SN, Majoros IJ et al (2011) Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 63:2671–2680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tkach AV, Shurin GV, Shurin MR et al (2011) Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5:5755–5762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres MP, Wilson-Welder JH, Lopac SK et al (2011) Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater 7:2857–2864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tran TH, Ramasamy T, Truong DH et al (2014) Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells. Pharm Res 31:1978–1988

    Article  CAS  PubMed  Google Scholar 

  • Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334

    Article  CAS  PubMed  Google Scholar 

  • Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Ann Rev Immunol 23:975–1028

    Article  CAS  Google Scholar 

  • Tsai S, Shameli A, Yamanouchi J et al (2010) Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32:568–580

    Article  CAS  PubMed  Google Scholar 

  • Turnquist HR, Raimondi G, Zahorchak AF et al (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178:7018–7031

    Article  CAS  PubMed  Google Scholar 

  • Ulery BD, Phanse Y, Sinha A et al (2009) Polymer chemistry influences monocytic uptake of polyanhydride nanospheres. Pharm Res 26:683–690

    Article  CAS  PubMed  Google Scholar 

  • Ulery BD, Kumar D, Ramer-Tait AE et al (2011) Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS ONE 6(3):e17642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urata AKT, Nakano H (1999) Modification of release rates of cyclosporin A from polyl(L-lactic acid) microspheres by fatty acid esters and in-vivo evaluation of the microspheres. J Control Release 29:133–141

    Article  Google Scholar 

  • Van der Lubben IM, Verhoef JC, Borchard G et al (2001) Chitosan for mucosal vaccination. Adv Drug Deliv Rev 52(2):139–144

    Article  PubMed  Google Scholar 

  • Van der Veen AH, Eggermont AM, Seynhaeve AL et al (1998) Biodistribution and tumor localization of stealth liposomal tumor necrosis factoralpha in soft tissue sarcoma bearing rats. Int J Cancer 77:901–906

    Article  PubMed  Google Scholar 

  • Vasievich EA, Ramishetti S, Zhang Y et al (2012) Trp2 peptide vaccine adjuvanted with (R)-DOTAP inhibits tumor growth in an advanced melanoma model. Mol Pharm 9:261–268

    Article  CAS  PubMed  Google Scholar 

  • Vila A, Sanchez A, Tobıo M et al (2002) Design of biodegradable particles for protein delivery. J Control Rel 78(1–3):15–24

    Article  CAS  Google Scholar 

  • Vila A, Gill H, McCallion O et al (2004a) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Cont Rel 98(2):231–244

    Article  CAS  Google Scholar 

  • Vila A, Sanchez A, Janes K et al (2004b) Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 57(1):123–131

    Article  CAS  PubMed  Google Scholar 

  • Vyas TK, Shah L, Amiji MM et al (2006) Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv 3:613–628

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Stiegler G, Vorauer-Uhl K et al (2007) One step membrane incorporation of viral antigens as a vaccine candidate against HIV. J Liposome Res 17:139–154

    Article  CAS  PubMed  Google Scholar 

  • Walensky RP, Paltiel AD, Losina E et al (2006) The survival benefits of AIDS treatment in the United States. J Infect Dis 194:11–19

    Article  PubMed  Google Scholar 

  • Wang Q, Uno T, Miyamoto Y et al (2004) Biodegradable microsphere-loaded tacrolimus enhanced the effect on mice islet allograft and reduced the adverse effect on insulin secretion. Am J Transplant 4:721–727

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Uto T, Akagi T, Akashi M et al (2007) Induction of potent CD8+ T-cell responses by novel biodegradable nanoparticles carrying human immunodeficiency virus type 1 gp120. J Virol 81:10009–10016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Uto T, Akagi T et al (2008) Poly (gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J Med Virol 80:11–19

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yigit MV, Medarova Z et al (2011) Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60:565–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang P, Yigit MV, Ran C et al (2012) A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes 61:3247–3254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Wang H, Lv X, Liu C et al (2014) Enhancement of all-trans retinoic acid-induced differentiation by pH-sensitive nanoparticles for solid tumor cells. Macromol Biosci 14:369–379

    Article  CAS  PubMed  Google Scholar 

  • Watson DS, Huang Z, Jr Szoka F C et al (2009) All-trans retinoic acid potentiates the antibody response in mice to a lipopeptide antigen adjuvanted with liposomal lipid A. Immunol Cell Biol 87(8):630–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberger EE, Himly M, Myschik J et al (2013) Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: a novel tool for specific immunotherapy. J Control Rel 165(2):101–109

    Article  CAS  Google Scholar 

  • Weiss R, Scheiblhofer S, Machado Y et al (2013) New approaches to transcutaneous immunotherapy: targeting dendritic cells with novel allergen conjugates. Curr Opin Allergy Clin Immunol 13(6):669–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wheeler AW, Woroniecki SR (2001) Immunological adjuvants in allergy vaccines: past, present and future. Allergol Int 50(4):295–301

    Article  Google Scholar 

  • Wira CR, Crane-Godreau M, Grant K (2004) Endocrine regulation of the mucosal immune system in the female reproductive tract. In: Ogra PL, Mestecky J, Lamm ME, Strober W, McGhee JR, Bienenstock J (eds) Mucosal immunology. Elsevier, San Francisco. ISBN 0-12-491543-4

    Google Scholar 

  • Xu Z, Ramishetti S, Tseng YC et al (2013) Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lungmetastasis. J Control Release 172:259–265

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wang Y, Zhang L et al (2014) Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8:3636–3645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeste A, Nadeau M, Burns EJ et al (2012) Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 109:11270–11275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoncheva K, Gomez S, Campanero MA et al (2005) Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv 2(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa HSS (1996) Lymphotropic delivery of cyclosporin A by intramuscular injection of biodegradable microspheres in mice. Biol Pharm Bull 19:1527–1529

    Article  CAS  PubMed  Google Scholar 

  • Yuan XB, Yuan YB, Jiang W, Liu J et al (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Tran KK, Shen H (2012) Effect of the poly(ethylene glycol) (PEG) density on the access and uptake of particles by antigen-presenting cells (APCs) after subcutaneous administration. Mol Pharm 9:3442–3451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Li X, Ding J et al (2013) Delivery of ursolic acid (UA) in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2). Int J Pharm 441:261–268

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhou S, Groppelli E et al (2015) Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection. PLoS Comput Biol 11:e1004179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu S, Niu M, O’Mary H et al (2013) Targeting of tumor-associated macrophagesmade possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm 10:3525–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zolnik BS, Fernandez AG, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465

    Article  CAS  PubMed  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CSIR-CGCRI for providing the support and opportunity for the present communication. Thanks are also due to the colleagues and staffs of Bioceramics and Coating Division, CSIR-CGCRI for the fruitful discussions w.r.t the write up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Acharya, R., Saha, S., Ray, S., Chakraborty, J. (2017). Nanoparticulate Immunotherapy: An Intelligent Way to Tailor Make Our Defense System. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_13

Download citation

Publish with us

Policies and ethics