Skip to main content

Polymers, Blends and Nanocomposites for Implants, Scaffolds and Controlled Drug Release Applications

  • Chapter
  • First Online:
Advances in Biomaterials for Biomedical Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 66))

Abstract

Polymer blends and nanocomposites are widely explored for different biomedical applications such as biodegradable scaffolds, biosensors, implants and controlled drug release. Both, synthetic and semi-synthetic polymers are used in medical applications and have their inherent advantages and disadvantages. Synthetic polymers offer flexibility of varying monomer unit, molecular weight, branching and thus offer a diverse set of physico-mechanical properties, whereas natural polymers offer superior biocompatibility and biodegradation profile. Availability of polymer blending techniques adds another dimension to the property set that polymers can offer, and therefore polymer blending is often used to tailor biodegradability and physico-mechanical properties. Polymers, in general, have poor mechanical properties when compared to metals and ceramics, putting a load bearing limit on polymer-based medical implants. The addition of reinforcing/functional filler is expected to overcome such disadvantages of polymers. Polymers composites are heterogeneous systems wherein polymers are compounded with micron or nano-size particles to render high strength, electrical conductivity or any other functional attribute. This chapter describes the technological aspects of polymer blends and nanocomposites with a specific reference to synthesis, characteristics and applications of multi-phasic polymer systems as implants, scaffolds, and controlled drug release matrices. A detailed account of synthetic and natural polymer nanocomposites along with a brief discussion on important nano-fillers used in medical applications and interface modification techniques is presented. Few examples of recently explored novel polymer blends and composites that displayed promising properties as implants, scaffolds, biosensors and control release matrices have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABS:

Acrylonitrile butadiene styrene

AFM:

Atomic force microscopy

Bi2O3 :

Bismuth oxide

BN:

Boron nitride

BNT:

Born nitride tubes

DMF:

Dimethyl formamide

CNTs:

Carbon nanotubes

CTAB:

Cetyl trimethylammonium bromide

CVD:

Chemical vapour deposition

EG:

Exfoliated graphene

EVA:

Ethylene-vinyl acetate

EPDM:

Ethylene propylene diene monomer

GIC:

Graphene intercalated compound

GO:

Graphene oxide

HDPE:

High-density polyethylene

HEMA:

2-Hydroxyethyl methacrylate

HUVEC:

Human umbilical vein endothelial cells

LDPE:

Low density polyethylene

LDS:

Lauryl dodecyl sulfonate

MoS2 :

Molybdenum disulfide

MWNT:

Multi walled nanotube

NCB:

Nano carbon black

NP:

Nanoparticle

NCC:

Nanocrystalline cellulose

NMP:

N-Methylpyrrolidone

PC:

Polycarbonates

PCL:

Polycaprolactone

PDMS:

Polydimethylsiloxane

PET:

Polyethylene terephthalate

PEG:

Polyethylene glycol

PEEK:

Polyether ether ketone

PEI:

Polyethylenimine

pHEMA:

Polyhydroxyethylmethacrylate

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic acid)

PMMA:

Poly methylmethacrylate

PTFE:

Polytetrafluoroethylene

PU:

Polyurethane

PVA:

Poly vinyl alcohol

PVC:

Polyvinyl chloride

PVDF:

Polyvinylidene fluoride

ROS:

Reactive oxygen species

SC:

Sodium cholate

SDBS:

Sodium dodecylbenzenesulfonate

SDS:

Sodium dodecyl sulphonate

SEM:

Scanning electron microscopy

SPR:

Surface plasmon resonance

STM:

Scanning tunnelling microscopy

SWNT:

Single walled nanotube

TDOC:

Sodium taurodeoxycholate

TEOS:

Tetraethoxysilane

THF:

Tetrahydrofuran

TPU:

Thermoplastic polyurethane

TTAB:

Tetradecyltrimethylammonium bromide

UHMWPE:

Ultra-high-molecular-weight polyethylene

VEGF:

Vascular endothelial growth factor

WS2:

Tungsten sulphide

XRD:

X-ray diffraction

Nd:YAG:

Neodymium-doped yttrium aluminium garnet

References

  • Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  • Agren MS, Söderberg TA, Reuterving CO, Hallmans G, Tengrup I (1991) Effect of topical zinc oxide on bacterial growth and inflammation in full-thickness skin wounds in normal and diabetic rats. Eur J Surg 157(2):97–101

    Google Scholar 

  • Aguilar Z (2013) Nanomaterials for medical applications, nanomaterials for medical applications

    Google Scholar 

  • Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design Dev Therapy 10:483–507

    Article  Google Scholar 

  • Aliyar H, Schalau G 2nd (2015) Recent developments in silicones for topical and transdermal drug delivery. Ther Deliv 6(7):827–839

    Article  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  Google Scholar 

  • Anisha BS, Biswas R, Chennazhi KP, Jayakumar R (2013a) Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biol Macromol 62:310–320

    Article  Google Scholar 

  • Anisha BS, Sankar D, Mohandas A, Chennazhi KP, Nair SV, Jayakumar R (2013b) Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydr Polym 92(2):1470–1476

    Article  Google Scholar 

  • Antoniadou EV, Cousins BG, Seifalian AM (2010) Development of conductive polymer with carbon nanotubes for regenerative medicine applications. Conf Proc IEEE Eng Med Biol Soc 2010:815–818

    Google Scholar 

  • Arami S, Rashidi MR, Mahdavi M, Fathi M, Entezami AA (2016) Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol

    Google Scholar 

  • Aslam S, Darouiche RO (2010) Mechanical integrity of hemodialysis catheters is maintained after exposure to a novel catheter lock solution. Infection Control Hospital Epidemiol: Off J Soc Hospital Epidemiol Am 31(11):1124–1129

    Article  Google Scholar 

  • Associates JIW (2016) http://www.mddionline.com/article/using-polyurethanes-medical-applications. Accessed June 2016

  • Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C Mater Biol Appl 44:24–37

    Article  Google Scholar 

  • Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100(5):1451–1457

    Article  Google Scholar 

  • Baran GR, Kiani MF, Samuel SP (2014) Healthcare and biomedical technology in the 21st century: an introduction for non-science majors. Healthcare Biomed Technol 21st Century: Introd Non-Sci Majors

    Google Scholar 

  • Barboza EP, Caúla AL, Caúla FdO, de Souza RO, Geolás Neto L, Sorensen RG, Li XJ Wikesjö UME (2004) Effect of recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge with space-providing biomaterials on the augmentation of chronic alveolar ridge defects. J Periodontol 75(5):702–708

    Google Scholar 

  • Bergström J (2015) Mechanics of solid polymers: theory and computational modeling, mechanics of solid polymers: theory and computational modeling

    Google Scholar 

  • Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan–agarose–gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J R Soc Interface 8(57):540–554

    Article  Google Scholar 

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28(2):237–259

    Article  Google Scholar 

  • Bozkir A, Saka OM (2004) Chitosan-DNA nanoparticles: effect on DNA integrity, bacterial transformation and transfection efficiency. J Drug Target 12(5):281–288

    Article  Google Scholar 

  • Brostow W, Pietkiewicz D, Wisner SR (2007) Polymer tribology in safety medical devices: Retractable syringes. Adv Polym Technol 26(1):56–64

    Article  Google Scholar 

  • Cancienne JM, Burrus MT, Weiss DB, Yarboro SR (2015) Applications of local antibiotics in orthopedic trauma. Orthop Clin North Am 46(4):495–510

    Article  Google Scholar 

  • Charles-Harris M, Koch MA, Navarro M, Lacroix D, Engel E, Planell JA (2008) A PLA/calcium phosphate degradable composite material for bone tissue engineering: an in vitro study. J Mater Sci Mater Med 19(4):1503–1513

    Article  Google Scholar 

  • Chaudhuri B, Mondal B, Ray SK, Sarkar SC (2016) A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids Surf B Biointerfaces 143:71–80

    Article  Google Scholar 

  • Chen C, Li H, Pan J, Yan Z, Yao Z, Fan W, Guo C (2015) Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration. Biotechnol Lett 37(2):457–465

    Article  Google Scholar 

  • Chen C, Liu L, Huang T, Wang Q, Fang Y (2013) Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications. Int J Biol Macromol 62:188–193

    Article  Google Scholar 

  • Chen CY, Chung YC (2012) Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J Appl Oral Sci 20(6):620–627

    Article  Google Scholar 

  • Chiono V, Tonda-Turo C, Ciardelli G (2009) Chapter 9: Artificial scaffolds for peripheral nerve reconstruction. Int Rev Neurobiol 87:173–198

    Google Scholar 

  • Chiono V, Vozzi G, Vozzi F, Salvadori C, Dini F, Carlucci F, Arispici M, Burchielli S, Di Scipio F, Geuna S, Fornaro M, Tos P, Nicolino S, Audisio C, Perroteau I, Chiaravalloti A, Domenici C, Giusti P, Ciardelli G (2009b) Melt-extruded guides for peripheral nerve regeneration. Part I: poly(epsilon-caprolactone). Biomed Microdev 11(5):1037–1050

    Article  Google Scholar 

  • Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6(1):13–26

    Article  Google Scholar 

  • Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976

    Article  Google Scholar 

  • Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS (2014) Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2:105

    Article  Google Scholar 

  • Cutiongco MF, Teo BK, Yim EK (2015) Composite scaffolds of interfacial polyelectrolyte fibers for temporally controlled release of biomolecules. J Vis Exp 102:e53079

    Google Scholar 

  • Deutekom M, Dobben AC (2015) Plugs for containing faecal incontinence. Cochrane Database Syst Rev 7:CD005086

    Google Scholar 

  • Ding S-J (2006) Preparation and properties of chitosan/calcium phosphate composites for bone repair. Dent Mater J 25(4):706–712

    Article  Google Scholar 

  • Dore CMPG, das C Faustino Alves MG, Will LSEP, Costa TG, Sabry DA, de Souza Rêgo LAR, Accardo CM, Rocha HAO, Filgueira LGA, Leite EL (2013) A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr Polym 91(1):467–475

    Google Scholar 

  • Dubey KA, Bhardwaj YK, Chaudhari CV, Sarma KSS, Goel NK, Sabharwal S (2011) Electron beam processing of LDPE/EVA/PCR ternary blends: radiation sensitivity evaluation and physico-mechanical characterization. J Polym Res 18(1):95–103

    Article  Google Scholar 

  • Dubey KA, Chaudhari CV, Raje N, Panickar L, Bhardwaj YK, Sabharwal S (2012) Radiation-assisted morphology modification of LDPE/TPS blends: a study on starch degradation-processing-morphology correlation. J Appl Polym Sci 124(4):3501–3510

    Article  Google Scholar 

  • Dutta S, Parida S, Maiti C, Banerjee R, Mandal M, Dhara D (2016) Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci 467:70–80

    Article  Google Scholar 

  • El-Assmy A, Eassa W, El-Hamid MA, Nour EM, Hafez AT (2007) Use of oxidized cellulose for corporal body grafting and suture-less correction of severe penile chordee: an experimental study in rabbits. BJU Int 99(5):1098–1102

    Article  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135

    Article  Google Scholar 

  • Fabian TK, Wulff HCH (2014) Implant dentistry: theory and practice, implant dentistry: theory and practice

    Google Scholar 

  • Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351

    Article  Google Scholar 

  • Fathi E, Nassiri SM, Atyabi N, Ahmadi SH, Imani M, Farahzadi R, Rabbani S, Akhlaghpour S, Sahebjam M, Taheri M (2013) Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol-dextran blend hydrogel in an ovine model of acute myocardial infarction. J Tissue Eng Regen Med 7(9):697–707

    Article  Google Scholar 

  • Feneley RCL, Hopley IB, Wells PNT (2015) Urinary catheters: history, current status, adverse events and research agenda. J Med Eng Technol 39(8):459–470

    Article  Google Scholar 

  • Foldvari M, Bagonluri M (2008) ‘Carbon nanotubes as functional excipients for nanomedicines: II drug delivery and biocompatibility issues. Nanomedicine 4(3):183–200

    Google Scholar 

  • Frazer RQ, Byron RT, Osborne PB, West KP (2005) PMMA: an essential material in medicine and dentistry. J Long Term Eff Med Implants 15(6):629–639

    Article  Google Scholar 

  • Fueki K, Ohkubo C, Yatabe M, Arakawa I, Arita M, Ino S, Kanamori T, Kawai Y, Kawara M, Komiyama O, Suzuki T, Nagata K, Hosoki M, Masumi S, Yamauchi M, Aita H, Ono T, Kondo H, Tamaki K, Matsuka Y, Tsukasaki H, Fujisawa M, Baba K, Koyano K, Yatani H (2014) Clinical application of removable partial dentures using thermoplastic resin Part II: Material properties and clinical features of non-metal clasp dentures. J Prosthodont Res 58(2):71–84

    Article  Google Scholar 

  • Galano A (2008) Carbon nanotubes as free-radical scavengers. J Phys Chem C 112(24):8922–8927

    Article  Google Scholar 

  • Gao W, Wang L, Wang X, Liu H (2016) ‘Magnetic driving flowerlike soft platform: biomimetic fabrication and external regulation’. ACS Appl Mater Interfaces

    Google Scholar 

  • Garcia Cruz DM, Gomez Ribelles JL, Salmeron Sanchez M (2008) Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. J Biomed Mater Res B Appl Biomater 85(2):303–313

    Google Scholar 

  • Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R (2012) Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res B Appl Biomater 100(5):1444–1450

    Article  Google Scholar 

  • George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49(19):3280–3294

    Article  Google Scholar 

  • Gopinathan J, Quigley AF, Bhattacharyya A, Padhye R, Kapsa RMI, Nayak R, Shanks RA, Houshyar S (2016) Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells. J Biomed Mater Res A 104(4):853–865

    Article  Google Scholar 

  • Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H (2008) Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 5:107

    Article  Google Scholar 

  • Gulati N, Gupta H (2012) Two faces of carbon nanotube: toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 29(1):65–88

    Article  Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2(1):23–39

    Article  Google Scholar 

  • Gupta D, Chaudhary H, Gupta C (2015) Sericin-based polyester textile for medical applications. J Text Inst 106(4):366–376

    Article  Google Scholar 

  • Hall BK (2015) Bones and cartilage: developmental and evolutionary skeletal biology, 2nd edn. In: Bones and cartilage: developmental and evolutionary skeletal biology

    Google Scholar 

  • Hamady ZZR (2013) Novel xylan-controlled delivery of therapeutic proteins to inflamed colon by the human anaerobic commensal bacterium. Ann R Coll Surg Engl 95(4):235–240

    Article  Google Scholar 

  • Han SK (2015) Innovations and advances in wound healing. Innov Adv Wound Healing

    Google Scholar 

  • Ho M-P, Lau K-T, Wang H, Hui D (2015) Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos B Eng 81:14–25

    Article  Google Scholar 

  • Inzana JA, Schwarz EM, Kates SL, Awad HA (2016) Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 81:58–71

    Article  Google Scholar 

  • Ivanova EP, Bazaka K, Crawford RJ (2014) New functional biomaterials for medicine and healthcare

    Google Scholar 

  • Jaeblon T (2010) Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg 18(5):297–305

    Article  Google Scholar 

  • Jayalekshmi AC, Victor SP, Sharma CP (2013) Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications. Colloids Surf B Biointerfaces 101:196–204

    Article  Google Scholar 

  • Jin X, Sun Y, Zhang K, Wang J, Shi T, Ju X, Lou S (2007) Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28(19):2994–3003

    Article  Google Scholar 

  • Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    Article  Google Scholar 

  • Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater 5(1):406–418

    Article  Google Scholar 

  • Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R (2011) 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem 22(12):2383–2389

    Article  Google Scholar 

  • Khan R, Khan MH (2013) Use of collagen as a biomaterial: an update. J Indian Soc Periodontol 17(4):539–542

    Article  Google Scholar 

  • Kikionis S, Ioannou E, Toskas G, Roussis V (2015) Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. J Appl Polymer Sci 132(26):n/a-n/a

    Google Scholar 

  • Kim MS, You HJ, You MK, Kim NS, Shim BS, Kim HM (2004) Inhibitory effect of water-soluble Chitosan on TNF-α and IL-8 Secretion from HMC-1 Cells. Immunopharmacol Immunotoxicol 26(3):401–409

    Article  Google Scholar 

  • Kluin OS, van der Mei HC, Busscher HJ, Neut D (2013) Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 10(3):341–351

    Article  Google Scholar 

  • Koch MA, Vrij EJ, Engel E, Planell JA, Lacroix D (2010) Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J Biomed Mater Res A 95(4):1011–1018

    Article  Google Scholar 

  • Kockerling F, Schug-Pass C (2014) What do we know about titanized polypropylene meshes? an evidence-based review of the literature. Hernia 18(4):445–457

    Article  Google Scholar 

  • Koppes AN, Keating KW, McGregor AL, Koppes RA, Kearns KR, Ziemba AM, McKay CA, Zuidema JM, Rivet CJ, Gilbert RJ, Thompson DM (2016) Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomater

    Google Scholar 

  • Lahaye M, Robic A (2007) Structure and functional properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8(6):1765–1774

    Article  Google Scholar 

  • Lan G, Lu B, Wang T, Wang L, Chen J, Yu K, Liu J, Dai F, Wu D (2015) Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids Surf B Biointerfaces 136:1026–1034

    Article  Google Scholar 

  • Lan S-F, Kehinde T, Zhang X, Khajotia S, Schmidtke DW, Starly B (2013) Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants. Dent Mater 29(6):656–665

    Article  Google Scholar 

  • Laustriat S, Geiss S, Becmeur F, Bientz J, Marcellin L, Sauvage P (1990) Medical history of teflon. Eur Urol 17(4):301–303

    Google Scholar 

  • Lee JS, Jin GH, Yeo MG, Jang CH, Lee H, Kim GH (2012) Fabrication of electrospun biocomposites comprising polycaprolactone/fucoidan for tissue regeneration. Carbohydr Polym 90(1):181–188

    Article  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  Google Scholar 

  • Leggat PA, Smith DR, Kedjarune U (2009) Surgical applications of methyl methacrylate: a review of toxicity. Arch Environ Occup Health 64(3):207–212

    Article  Google Scholar 

  • Lewis KM, Kuntze CE, Gulle H (2016) Control of bleeding in surgical procedures: critical appraisal of HEMOPATCH (Sealing Hemostat). Med Dev (Auckland, N.Z.), 9:1–10

    Google Scholar 

  • Li D, Li P, Zang J, Liu J (2012) Enhanced hemostatic performance of tranexamic acid-loaded chitosan/alginate composite microparticles. J Biomed Biotechnol 2012:981321

    Google Scholar 

  • Li N, Fan X, Tang K, Zheng X, Liu J, Wang B (2016) Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide. Colloids Surf B Biointerfaces 140:287–296

    Article  Google Scholar 

  • Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q (2011) Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf B Biointerfaces 83(2):367–375

    Article  Google Scholar 

  • Liu G, Qin H, Amano T, Murakami T, Komatsu N (2015) Direct fabrication of the graphene-based composite for cancer phototherapy through graphite exfoliation with a photosensitizer. ACS Appl Mater Interfaces 7(42):23402–23406

    Article  Google Scholar 

  • Liu Y, Miyoshi H, Nakamura M (2007) Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer 120(12):2527–2537

    Article  Google Scholar 

  • Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  Google Scholar 

  • Lizundia E, Sarasua JR, D’Angelo F, Orlacchio A, Martino S, Kenny JM, Armentano I (2012) Biocompatible poly(L-lactide)/MWCNT nanocomposites: morphological characterization, electrical properties, and stem cell interaction. Macromol Biosci 12(7):870–881

    Article  Google Scholar 

  • Lu HH, El-Amin SF, Scott KD, Laurencin CT (2003) Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 64(3):465–474

    Article  Google Scholar 

  • Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841

    Article  Google Scholar 

  • Maalej NM, Qurashi A, Assadi AA, Maalej R, Shaikh MN, Ilyas M, Gondal MA (2015) Synthesis of Gd(2)O(3): Eu nanoplatelets for MRI and fluorescence imaging. Nanoscale Res Lett 10:215

    Article  Google Scholar 

  • Madhumathi K, Shalumon KT, Rani VV, Tamura H, Furuike T, Selvamurugan N, Nair SV, Jayakumar R (2009) Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 45(1):12–15

    Article  Google Scholar 

  • Mahmoudifard M, Soleimani M, Hatamie S, Zamanlui S, Ranjbarvan P, Vossoughi M, Hosseinzadeh S (2016) The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Biomed Mater 11(2):025006

    Article  Google Scholar 

  • Mamunya EP, Davidenko VV, Lebedev EV (1996) Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black. Compos Interfaces 4(4):169–176

    Article  Google Scholar 

  • Maruyama K, Haniu H, Saito N, Matsuda Y, Tsukahara T, Kobayashi S, Tanaka M, Aoki K, Takanashi S, Okamoto M, Kato H (2015) Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. BioMed Res Int 2015:9

    Article  Google Scholar 

  • McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (Lond) 2(2):153–167

    Article  Google Scholar 

  • McKeen LW (2014) 3—plastics used in medical devices A2—Modjarrad, Kayvon. In: Ebnesajjad S (ed) Handbook of polymer applications in medicine and medical devices. William Andrew Publishing, Oxford, pp 21–53

    Google Scholar 

  • McLachlan DS (1986) Equations for the conductivity of macroscopic mixtures. J Phys C: Solid State Phys 19(9):1339

    Article  Google Scholar 

  • McLachlan DS (1987) An equation for the conductivity of binary mixtures with anisotropic grain structures. J Phys C: Solid State Phys 20(7):865

    Article  Google Scholar 

  • McLachlan DS (1988) Measurement and analysis of a model dual-conductivity medium using a generalised effective-medium theory. J Phys C: Solid State Phys 21(8):1521

    Article  Google Scholar 

  • Mei N, Chen G, Zhou P, Chen X, Shao ZZ, Pan LF, Wu CG (2005) Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan–the fibroblasts proliferation in vitro. J Biomater Appl 19(4):323–339

    Article  Google Scholar 

  • Michels MAJ (1992) Scaling relations and the general effective-medium equation for isolator-conductor mixtures. J Phys: Condens Matter 4(15):3961

    Google Scholar 

  • Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP (2014) Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed Mater 9(3):035001

    Article  Google Scholar 

  • Modjarrad K (2014) 1—Introduction in handbook of polymer applications in medicine and medical devices. William Andrew Publishing, Oxford, pp 1–7

    Book  Google Scholar 

  • Mohandas A, Anisha BS, Chennazhi KP, Jayakumar R (2015) Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surf B Biointerfaces 127:105–113

    Article  Google Scholar 

  • Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963

    Article  Google Scholar 

  • Newman P, Minett A, Ellis-Behnke R, Zreiqat H (2013) Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomed: Nanotechnol Biol Med 9(8):1139–1158

    Google Scholar 

  • Nymark P, Jensen KA, Suhonen S, Kembouche Y, Vippola M, Kleinjans J, Catalan J, Norppa H, van Delft J, Briede JJ (2014) Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Part Fibre Toxicol 11:4

    Article  Google Scholar 

  • Oliveira EE, Silva AE, Junior TN, Gomes MC, Aguiar LM, Marcelino HR, Araujo IB, Bayer MP, Ricardo NM, Oliveira AG, Egito ES (2010) Xylan from corn cobs, a promising polymer for drug delivery: production and characterization. Bioresour Technol 101(14):5402–5406

    Article  Google Scholar 

  • Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29(32):4323–4332

    Article  Google Scholar 

  • Park BK, Kim M-M (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11(12):5152–5164

    Article  Google Scholar 

  • Park SY, Kang BS, Hong S (2013) Improved neural differentiation of human mesenchymal stem cells interfaced with carbon nanotube scaffolds. Nanomedicine (Lond) 8(5):715–723

    Article  Google Scholar 

  • Patel RM, Martin J, Claasen G, Allgeuer T (2009) Advances in polyolefin-based fibers for hygienic and medical applications. In: Polyolefin fibres: industrial and medical application, pp 154–182

    Google Scholar 

  • Prowse CV, de Korte D, Hess JR, van der Meer PF (2014) Commercially available blood storage containers. Vox Sang 106(1):1–13

    Article  Google Scholar 

  • Pruitt LA, Chakravartula AM (2011) Mechanics of biomaterials: fundamental principles for implant design

    Google Scholar 

  • Pulieri E, Chiono V, Ciardelli G, Vozzi G, Ahluwalia A, Domenici C, Vozzi F, Giusti P (2008) Chitosan/gelatin blends for biomedical applications. J Biomed Mater Res A 86(2):311–322

    Article  Google Scholar 

  • Pumera M (2011) Graphene in biosensing. Mater Today 14(7–8):308–315

    Article  Google Scholar 

  • Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2(2):186–201

    Article  Google Scholar 

  • Reddy N, Jiang Q, Yang Y (2013a) Investigation of the properties and potential medical applications of natural silk fibers produced by Eupackardia calleta. J Biomater Sci Polym Ed 24(4):460–469

    Article  Google Scholar 

  • Reddy N, Jiang Q, Yang Y (2013b) Properties and potential medical applications of silk fibers produced by Rothischildia lebeau. J Biomater Sci Polym Ed 24(7):820–830

    Article  Google Scholar 

  • Rodriguez-Arco L, Rodriguez IA, Carriel V, Bonhome-Espinosa AB, Campos F, Kuzhir P, Duran JD, Lopez-Lopez MT (2016) Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues. Nanoscale 8(15):8138–8150

    Article  Google Scholar 

  • Ruys AJ (2013) Biomimetic biomaterials: structure and applications

    Google Scholar 

  • Saad WE (2014) The history and future of transjugular intrahepatic portosystemic shunt: food for thought. Semin Intervent Radiol 31(3):258–261

    Article  Google Scholar 

  • Samadikuchaksaraei A, Gholipourmalekabadi M, Erfani Ezadyar E, Azami M, Mozafari M, Johari B, Kargozar S, Jameie SB, Korourian A, Seifalian AM (2016) Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneratio. J Biomed Mater Res A

    Google Scholar 

  • Sampson J, de Korte D (2011) DEHP-plasticised PVC: relevance to blood services. Transfus Med 21(2):73–83

    Article  Google Scholar 

  • Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed 9:467–483

    Google Scholar 

  • Scognamiglio F, Travan A, Rustighi I, Tarchi P, Palmisano S, Marsich E, Borgogna M, Donati I, de Manzini N, Paoletti S (2016) Adhesive and sealant interfaces for general surgery applications. J Biomed Mater Res B Appl Biomater 104(3):626–639

    Article  Google Scholar 

  • Seckold T, Walker S, Dwyer T (2015) A comparison of silicone and polyurethane PICC lines and postinsertion complication rates: a systematic review. J Vasc Access 16(3):167–177

    Article  Google Scholar 

  • Sherman VR, Yang W, Meyers MA (2015) The materials science of collagen. J Mech Behav Biomed Mater 52:22–50

    Article  Google Scholar 

  • Shi M, Kretlow JD, Nguyen A, Young S, Scott Baggett L, Wong ME, Kurtis Kasper F, Mikos AG (2010) Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials 31(14):4146–4156

    Article  Google Scholar 

  • Shi X, Fang Q, Ding M, Wu J, Ye F, Lv Z, Jin J (2016) Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J Biomater Appl 30(7):1092–1102

    Article  Google Scholar 

  • Singh D, Tripathi A, Nayak V, Kumar A (2011) Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel. J Biomater Sci Polym Ed 22(13):1733–1751

    Article  Google Scholar 

  • Singh N, Chen J, Koziol KK, Hallam KR, Janas D, Patil AJ, Strachan AJGH, Rahatekar SS (2016) Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale 8(15):8288–899

    Google Scholar 

  • Sokolova EV, Byankina AO, Kalitnik AA, Kim YH, Bogdanovich LN, Solov’eva TF, Yermak IM (2014) Influence of red algal sulfated polysaccharides on blood coagulation and platelets activation in vitro. J Biomed Mater Res A 102(5):1431–1438

    Article  Google Scholar 

  • Song JJ, Chang HH, Naguib HE (2015) Biocompatible shape memory polymer actuators with high force capabilities. Eur Polymer J 67:186–198

    Article  Google Scholar 

  • St John KR (2014) The use of polyurethane materials in the surgery of the spine: a review. Spine J 14(12):3038–3047

    Article  Google Scholar 

  • Sudheesh Kumar PT, Lakshmanan V-K, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano zno composite bandages for wound dressing vitro and in vivo evaluation. ACS Appl Mater Interfaces 4(5):2618–2629

    Article  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  Google Scholar 

  • Tanase CE, Spiridon I (2014) PLA/chitosan/keratin composites for biomedical applications. Mater Sci Eng C 40:242–247

    Article  Google Scholar 

  • Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2(4):454–472

    Article  Google Scholar 

  • Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res A 90(3):680–694

    Article  Google Scholar 

  • Tripathi A, Vishnoi T, Singh D, Kumar A (2013) Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth. Macromol Biosci 13(7):838–850

    Article  Google Scholar 

  • Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115

    Article  Google Scholar 

  • Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645

    Article  Google Scholar 

  • Uttayarat P, Perets A, Li M, Pimton P, Stachelek SJ, Alferiev I, Composto RJ, Levy RJ, Lelkes PI (2010) Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater 6(11):4229–4237

    Article  Google Scholar 

  • Vargas KF, Borghetti RL, Moure SP, Salum FG, Cherubini K, de Figueiredo MA (2012) Use of polymethylmethacrylate as permanent filling agent in the jaw, mouth and face regions–implications for dental practice. Gerodontology 29(2):e16–e22

    Article  Google Scholar 

  • Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, Storm G (2011) SiRNA delivery with functionalized carbon nanotubes. Int J Pharm 416(2):419–425

    Article  Google Scholar 

  • Venkatesan J, Kim S-K (2010) Chitosan Composites for bone tissue engineering—an overview. Marine Drugs 8(8):2252–2266

    Article  Google Scholar 

  • Via MD, King JA, Keith JM, Bogucki GR (2011) Electrical conductivity modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites. J Appl Polymer Sci

    Google Scholar 

  • Wang X, Shi N, Chen Y, Li C, Du X, Jin W, Chang PR (2012) Improvement in hemocompatibility of chitosan/soy protein composite membranes by heparinization. Biomed Mater Eng 22(1–3):143–150

    Google Scholar 

  • Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13(2):125–138

    Article  Google Scholar 

  • Yadav P, Yadav H, Shah VG, Shah G, Dhaka G (2015) Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J Clin Diag Res: JCDR 9(9):ZE21–ZE25

    Google Scholar 

  • Yang L (2015) Nanotechnology-enhanced orthopedic materials: fabrications, applications and future trends

    Google Scholar 

  • Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2(6):1707–1713

    Article  Google Scholar 

  • Yin J-J, Lao F, Meng J, Fu PP, Zhao Y, Xing G, Gao X, Sun B, Wang PC, Chen C, Liang X-J (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74(4):1132–1140

    Article  Google Scholar 

  • Yoda R (1998) Elastomers for biomedical applications. J Biomater Sci Polym Ed 9(6):561–626

    Article  Google Scholar 

  • Zhai P, Chen XB, Schreyer DJ (2015) PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater Sci Eng C Mater Biol Appl 56:251–259

    Article  Google Scholar 

  • Zhang L, Liang S, Liu R, Yuan T, Zhang S, Xu Z, Xu H (2016) Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging. Colloids Surf B Biointerfaces 144:344–354

    Article  Google Scholar 

  • Zhuang C, Mizuno T, Shimada A, Ito H, Suzuki C, Mayuzumi Y, Okamoto H, Ma Y, Li J (1993) Antitumor protein-containing polysaccharides from a Chinese mushroom Fengweigu or Houbitake, Pleurotus sajor-caju (Fr.) Sings. Biosci Biotechnol Biochem 57(6):901–906

    Article  Google Scholar 

  • Zuber M, Zia F, Zia KM, Tabasum S, Salman M, Sultan N (2015) Collagen based polyurethanes-A review of recent advances and perspective. Int J Biol Macromol 80:366–374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Abhinav Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dubey, K.A., Chaudhari, C.V., Bhardwaj, Y.K., Varshney, L. (2017). Polymers, Blends and Nanocomposites for Implants, Scaffolds and Controlled Drug Release Applications. In: Tripathi, A., Melo, J. (eds) Advances in Biomaterials for Biomedical Applications. Advanced Structured Materials, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-3328-5_1

Download citation

Publish with us

Policies and ethics