Skip to main content

Phytoremediation of Heavy Metal-Contaminated Soil Using Bioenergy Crops

  • Chapter
  • First Online:

Abstract

Heavy metal contamination of soils affects large areas worldwide. Excessive amount of metals, whether essential or nonessential, adversely affects the health of wildlife, humans, and plants and makes the land unusable for agricultural production. Phytoremediation, a sustainable, environment-friendly, and potentially cost-effective technology, can be used to decontaminate heavy metal-contaminated land. Use of nonfood, dedicated bioenergy crops for remediation of heavy metal-polluted sites has the advantage that biomass produced can be used to generate bioenergy, a cheaper, safer, sustainable, and renewable energy source compared to fossil fuels, avoids direct competition with food, and uses land unsuitable for growing food crops. Identifying dedicated bioenergy crops suitable for a particular metal-contaminated land and strategies to increase their phytoremediation potential are important for the success of this approach. Some dedicated bioenergy crops including poplars (Populus spp.), willows (Salix spp.), elephant grass (Miscanthus × giganteus), castor bean (Ricinus communis), and switchgrass (Panicum virgatum) can tolerate high concentrations of heavy metal, accumulate metal, and grow well on contaminated lands. Phytoremediation potential of these crops can be further improved by the effective use of metal solubilizing agents, endophytic bacteria, and genetic engineering. A better understanding of the mechanisms of heavy metal uptake, translocation, accumulation, and tolerance in normal and metal hyperaccumulator plants will help scientists to develop effective and economic transgenic bioenergy crops for remediation of heavy metals in soil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Ricinus communis L. to nickel. Int J Phytoremediation 14:481–492

    Article  CAS  Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TMM et al (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11:14036–14043

    CAS  Google Scholar 

  • Åhman I, Larsson S (1994) Genetic improvement of willow (Salix) as a source of bioenergy. Nor J Agric Sci 18:47–56

    Google Scholar 

  • Ali MB, Tripathi RD, Rai UN et al (1999) Physico-chemical characteristics and pollution level of Lake Nainital (U.P., India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions. Chemosphere 39:2171–2182

    Article  CAS  Google Scholar 

  • Andreazza R, BortolonL PS et al (2013) Use of high-yielding bioenergy plant castor (Ricinus communis L.) as a potential phytoremediator for copper-contaminated soils. Pedosphere 23:651–661

    Article  CAS  Google Scholar 

  • Angelova V, Perifanova-Nemska M, Ivanov K (2016) Potential of castor (Ricinus communis L.) for phytoremediation of soils contaminated with heavy metals. World Academy of Science, Engineering and Technology, Int J Environ Ecol Eng 3:2016

    Google Scholar 

  • Arduini I, Masoni A, Ercoli L (2006) Effects of high chromium applications on miscanthus during the period of maximum growth. Environ Exp Bot 58:234–243

    Article  CAS  Google Scholar 

  • Arnoult S, Brancourt-Hulmel M (2015) A review on Miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Biol Res 8:502–526

    CAS  Google Scholar 

  • Arora K, Sharma S, Monti A (2015) Bio-remediation of Pb and Cd polluted soils by switchgrass: a case study in India. Int J Phytoremediation. doi:10.1080/15226514.2015.1131232

    Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D et al (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Balestrazzi A, Botti S, Zelasco S et al (2009) Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28:1179–1192

    Article  CAS  Google Scholar 

  • Bang J, Kamala-Kannan S, Lee KJ et al (2015) Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. IntJ Phytoremediation 17:515–520

    Article  CAS  Google Scholar 

  • Banuelos G, Terry N, LeDuc DL et al (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  CAS  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EAH et al (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  CAS  Google Scholar 

  • Barbosa B, Boléo S, Sidella S et al (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Biol Res 8:1500–1511

    CAS  Google Scholar 

  • Barbu CH, Pavel BP, Sand C et al. (2010) Miscanthus sinensis x giganteus cultivated on soils polluted with heavy metals- a valuable replacement for coal. Papers presented at Green Remediation Conference, University of Massachusetts Amherst, pp. 2–5, 15–17 June 2010

    Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytoremediation 14:772–785

    Article  CAS  Google Scholar 

  • Bello EI, Makanju A (2011) Production characterization and evaluation of castor oil biodiesel as alternative fuel for diesel engines. J Emerg Trends Eng Appl Sci 2:525–530

    Google Scholar 

  • Berman P, Nisri S, Wiesman Z (2011) Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy 35:2861–2866

    Article  CAS  Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G et al (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc (2+) stress. Environ Int 31:251–254

    Article  CAS  Google Scholar 

  • Bizily SJ, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Breckle CW (1991) Growth under heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 351–373

    Google Scholar 

  • Brereton NJ, Pitre FE, Hanley SJ et al (2010) Mapping of enzymatic saccharification in short rotation coppice willow and its independence from biomass yield. Biol Res 3:251–261

    Google Scholar 

  • Brittaine R, Lutaladio N (2010) Jatropha: a smallholder bioenergy crop- the potential for pro-poor development. Integrated crop management, vol 8, Rome

    Google Scholar 

  • Casler MD, Boe AR (2003) Cultivar x environment interactions in switchgrass. Crop Sci 43:2226–2233

    Article  Google Scholar 

  • Castro-Rodríguez V, García-Gutiérrez A, Canales J et al (2016) Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotechnol J 14:299–312

    Article  CAS  Google Scholar 

  • Cerrate S, Yan F, Wang Z et al (2006) Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. Int J Poult Sci 5:1001–1007

    Article  Google Scholar 

  • Chaney RL, Li YM, Brown SL et al (2000) Improving metal hyperaccumulator wild plants to develop phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 129–158

    Google Scholar 

  • Chang FC, Ko CH, Tsai MJ et al (2014) Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology 23:1969–1978

    Article  CAS  Google Scholar 

  • Chatzakis MK, Tzanakakis VA, Mara DD et al (2011) Irrigation of castor (Ricinus communis L.) and sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: Impacts on soil properties and seed yield. Water 3:1112–1127

    Article  CAS  Google Scholar 

  • Che D, Meagher RB, Heaton ACP et al (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Xiao X et al (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Article  Google Scholar 

  • Claire LC, Adriano DC, Sajwan KS et al (1991) Effects of selected trace metals on germinating seeds of six plant species. Water Air Soil Pollut 59:231–240

    Article  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–314

    Article  CAS  Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518

    Article  Google Scholar 

  • Cluis C (2004) Junk-Greedy Greens: phytoremediation as a new option for soil decontamination. BioTeach J 2:61–67

    Google Scholar 

  • Conceicao MM, Candeia RA, Silva FC et al (2007) Thermochemical characterization of castor oil biodiesel. Renew Sust Energ Rev 11:964–975

    Article  CAS  Google Scholar 

  • Confalonieri M, Balestrazzi A, Bisoffi S et al (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Organ Cult 72:109–138

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of the contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Da Silva NDL, Maciel MRW, Batistella CB et al (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 130:405–414

    Article  Google Scholar 

  • Dagar JC, Tomar OS, Kumar Y et al (2006) Performance of some under-explored crops under saline irrigation in a semiarid climate in northwest India. Land Degrad Dev 17:285–299

    Article  Google Scholar 

  • DalCorso G, Farinati S, Maistri S et al (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R et al (2009) Vetiver Grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11:664–691

    Article  CAS  Google Scholar 

  • de Souza Costa ET, Guilherme LR, de Melo EE et al (2012) Assessing the tolerance of castor to Cd and Pb for phytoremediation purposes. Biol Trace Elem Res 145:93–100

    Article  CAS  Google Scholar 

  • Deng X, Fang Z, Liu YH (2010) Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energy Convers Manag 51:2802–2807

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Dietz KJ, Bair M, Krämer U (1999) Free radical and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants from molecules to ecosystems. Spinger-Verlag, Berlin, pp 73–79

    Chapter  Google Scholar 

  • Doty SL, Oakley B, Xin G et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Eriksson J, Ledin S (1999) Changes in phytoavailability and concentration of cadmium in soil following long term Salix cropping. Water Air Soil Pollut 11:171–184

    Article  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y et al (2000) Expression of aluminium induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    Article  CAS  Google Scholar 

  • Felix HRZ (1997) Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants. Z Pflanzenernähr Bodenk 160:525–529

    Article  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  • Fischerová Z, Tlustoš P, Száková J et al (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    Article  CAS  Google Scholar 

  • Fodor F (2002) Physiological responses of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 149–177

    Chapter  Google Scholar 

  • Foidl N, Foidl G, Sánchez M et al (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:77–82

    Article  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Fulekar MH, Singh A, Bhaduri AM (2008) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535

    Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G et al (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66

    Article  CAS  Google Scholar 

  • González-García S, Mola-Yudego B, Dimitriou I et al (2012) Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Sci Total Environ 421-422:210–219

    Article  CAS  Google Scholar 

  • Greger M (1999) Metal availability and bioconcentration in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. Springer-Verlag, Berlin, pp 1–27

    Chapter  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotechnol 81:45–53

    Article  CAS  Google Scholar 

  • Gross R, Leach M, Bauen A (2003) Progress in renewable energy. Environ Int 29:105–122

    Article  Google Scholar 

  • Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    Article  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R et al (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  CAS  Google Scholar 

  • Hadi F, Ul Arifeen MZ, Aziz T et al (2015) Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition. Am-Eurasian J Agric Environ Sci 15:1155–1162

    Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL et al (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    Article  CAS  Google Scholar 

  • Hansen EM, Christensen BT, Jensen LS et al (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass Bioenergy 26:97–105

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • Harrison RM, Chirgawi MB (1989) The assessment of air and soil as contributors of some trace metals to vegetable plants. Use of a filtered air growth cabinet. Sci Total Environ 83:13–34

    Article  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  CAS  Google Scholar 

  • Hastings A, Clifton-Brown JC, Wattenbach M et al (2008) Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agron Sustain Dev 28:465–472

    Article  Google Scholar 

  • Heiss S, Wachter A, Bogs J et al (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  CAS  Google Scholar 

  • Heller J (1996) Physic nut. Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. 1. Institute of Plant Genetics and Crop Plant Research, Gatersleben/Intemational Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EG (1996) Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater. In: Proceedings, International Topical Meeting on Nuclear and Hazardous Waste Management, Spectrum, 96, Seattle, WA, p 1–13, August 1996

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT and Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot Article ID 872875, 37 pages http://dx.doi.org/10.1155/2012/872875

  • Huang H, Yu N, Wang L et al (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102:11034–11038

    Article  CAS  Google Scholar 

  • Hughes JB, Shanks J, Vanderford M et al (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    Article  CAS  Google Scholar 

  • Huo W, Zhuang C, Cao Y et al (2012) Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiol Plant 34:139–150

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    Article  CAS  Google Scholar 

  • Jamil S, Abhilash PC, Singh N et al (2009) Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater 172:269–275

    Article  CAS  Google Scholar 

  • Janssen J, Weyens N, Croes S et al (2015) Phytoremediation of metal contaminated soil using willow: exploiting plant-associated bacteria to improve biomass production and metal uptake. Int J Phytoremediation 17:1123–1136

    Article  CAS  Google Scholar 

  • Jha AB, Dubey RS (2004a) Arsenic exposure alters the activities of key nitrogen assimilatory enzymes in growing rice seedlings. Plant Growth Regul 43:259–268

    Article  CAS  Google Scholar 

  • Jha AB, Dubey RS (2004b) Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. J Plant Physiol 161:867–872

    Article  CAS  Google Scholar 

  • Jha AB, Dubey RS (2004c) Effect of arsenic on nitrogen assimilatory enzymes in germinating rice seeds. Indian J Plant Physiol 9:438–441

    CAS  Google Scholar 

  • Jha AB, Dubey RS (2005) Effect of arsenic on behaviour of enzymes of sugar metabolism in germinating rice seeds. Acta Physiol Plant 27:341–347

    Article  CAS  Google Scholar 

  • Kang W, Bao J, Zheng J et al (2015) Distribution and chemical forms of copper in the root cells of castor seedlings and their tolerance to copper phytotoxicity in hydroponic culture. Environ Sci Pollut Res 22:7726–7734

    Article  CAS  Google Scholar 

  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32

    Article  Google Scholar 

  • Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. Crit Rev Plant Sci 24:385–406

    Article  Google Scholar 

  • Khan Z, Dotty S (2011) Endophyte-assisted phytoremediation. Curr Top Plant Biol 12:97–105

    Google Scholar 

  • Kocon A, Matyka M (2012) Phytoextractive potential of Miscanthus giganteus and Sida hermaphrodita growing under moderate pollution of soil with Zn and Pb. J Food Agric Environ 10:1253–1256

    CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M et al (2010) Bacteria associated with Zn and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R et al (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  Google Scholar 

  • Kumar RV, Tripathi YK, Yadav V et al (2008) Oil percentage in Jatropha curcas L. germplasm of national agroforestry repository. Indian J Gen Plant Breed 68:463–466

    Google Scholar 

  • Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation 6:269–287

    Article  CAS  Google Scholar 

  • Laghlimi M, Baghdad B, El Hadi H et al (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5:375–388

    Article  Google Scholar 

  • Lavanya C, Mukta N (2008) Varieties and hybrids of castor. Directorate of Oilseeds Research, Hyderabad, p. 88

    Google Scholar 

  • LeDuc DL, Abdel Samie M, Montes-Bayon M et al (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock J, Lindvall E et al (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and in Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  • Li HY, Wei DQ, Shen M et al (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Li C, Xiao B, Wang QH, Yao SH, Wu JY (2014) Phytoremediation of Zn- and Cr-contaminated soil using two promising energy grasses. Water Air Soil Pollut 225:2027

    Article  CAS  Google Scholar 

  • Liang ZY, Pilon-Smits EA, Jouanin L et al (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    Article  Google Scholar 

  • Lodewyckx C, Taghavi S, Mergeay M et al (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediat 3:173–187

    Article  CAS  Google Scholar 

  • Łukaszewicz JP, Wesołowski RP, Cyganiuk A (2009) Enrichment of Salix viminalis wood in metal ions by phytoextraction. Pol J Environ Stud 18:507–511

    Google Scholar 

  • Lyyra S, Meagher RB, Kim T et al (2007) Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M et al (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa TM (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243

    Article  CAS  Google Scholar 

  • Mangkoedihardjo S, Surahmaida A (2008) Jatropha curcas L. for phytoremediation of lead and cadmium polluted soil. World Appl Sci J4:519–522

    Google Scholar 

  • Mangkoedihardjo S, Ratnawati R, Alfianti N (2008) Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J 4:338–342

    Google Scholar 

  • Marques MC, do Nascimento CWA (2013) Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas). J Photochem Photobiol B Biol 127:88–93

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J et al (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127:58–63

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  Google Scholar 

  • McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  • McLaughlin S, Bouton J, Bransby D et al (1999) Developing switchgrass as a bioenergy crop. In: Janick J (ed) Perspectives on new crops and uses. ASHS Press, Alexandria, pp 282–299

    Google Scholar 

  • Mehdi B, Duxbury P, Samson R (2000) Development of bioenergy feedstocks: agronomy data from eastern Canada, final report. Resource Efficient Agricultural Production (REAP), Quebec

    Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification- a review. Renew Sust Energ Rev 10:248–268

    Article  CAS  Google Scholar 

  • Mello-Farias PC, Chaves ALS (2008) Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. In: Tiznado-Hernandez ME, Troncoso-Rojas R, Rivera Domínguez MA (eds) Transgenic approach in plant biochemistry and physiology. Research Signpost, Kerala, pp 253–266

    Google Scholar 

  • Melo EEC, Costa ETS, Guilherme LRG et al (2009) Accumulation of arsenic and nutrients by castor plants grown on an As-enriched nutrient solution. J Hazard Mater 168:479–483

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroeder P et al (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Metzger L, Fouchault I, Glad C et al (1992) Estimation of cadmium availability using transformed roots. Plant Soil 143:249–257

    Article  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  CAS  Google Scholar 

  • Morera MT, Echeverria JC, Garrido JJ (2001) Mobility of heavy metals in soils amended with sewage sludge. Can J Soil Sci 81:405–414

    Article  CAS  Google Scholar 

  • Naidu SL, Moose SP, AL-Shoaibi AK et al (2003) Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697

    Article  CAS  Google Scholar 

  • Ndong R, Montrejaud-Vignolesk M, Saint Girons O et al (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy 1:197–210

    Article  CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  CAS  Google Scholar 

  • Newman Y, Williams MJ, Helsel Z and Vendramini J (2008) Production of biofuel crops in Florida: Switchgrass. Publication #SS AGR 291, Series of the Agronomy Department, UF/IFAS Extension. http://edis.ifas.ufl.edu

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term % heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut B 1:3–26

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Oelmuller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Olivares AR, Carrillo-González R, González-Chávez MC et al (2013) Potential of castor (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manag 114:316–323

    Article  CAS  Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas L.: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15

    Article  Google Scholar 

  • Ostman G (1994) Cadmium in Salix - a study of the capacity of Salix to remove cadmium from arable soils. In: Aronsson P, Perttu K (eds) Proceedings of a study tour, conference and workshop in Sweden, Swedish University of Agricultural Sciences Report 50, p 153–155 June 1994

    Google Scholar 

  • Pahlsson AMB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319

    Article  Google Scholar 

  • Park J, Song WY, Ko D et al (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  Google Scholar 

  • Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459

    Article  Google Scholar 

  • Pedroso G, De Ben C, Hutmacher R et al (2011) Switchgrass is a promising, high-yielding crop for California biofuel. Cal Ag 65:168–173

    Article  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    Article  CAS  Google Scholar 

  • Pogrzeba M, Krzyżak J, Sas-Nowosielska A et al. (2011) A heavy metal environmental threat resulting from combustion of biofuels of plant origin. In: Simeonov LI, Kochubovski M, Simeonova B (eds) Environmental heavy metal pollution and effects on child mental development- risk assessment and prevention strategies. Springer Science + Business Media BV, Dordrecht

    Google Scholar 

  • Pogrzeba M, Krzyżak J, Sas-Nowosielska A (2013) Environmental hazards related to Miscanthus x giganteus cultivation on heavy metal contaminated soil. E3S Web Conf 1, 29006, p 1–4

    Google Scholar 

  • Poovaiah CR, Mazarei M, Decker SR et al (2015) Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1). Biotechnol J 10:552–563

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:284–321

    Article  Google Scholar 

  • Prasad MNV, Strzalka K (1999) Impact of heavy metals on photosynthesis. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Spinger-Verlag, Berlin, pp 117–138

    Chapter  Google Scholar 

  • Pulford I, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Pulford ID, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation 4:59–72

    Article  CAS  Google Scholar 

  • Punshon T, Dickinson NM (1997) Acclimation of Salix to metal stress. New Phytol 137:303–314

    Article  CAS  Google Scholar 

  • Punshon T, Lepp NW, Dickinson NM (1995) Resistance to copper toxicity in some British willows. J Geochem Explor 52:259–266

    Article  CAS  Google Scholar 

  • Purdy JJ, Smart LB (2008) Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake. Int J Phytoremediation 10:515–528

    Article  CAS  Google Scholar 

  • Rajagopal D (2007) Rethinking current strategies for biofuel production in India. Paper presented at the international conference on linkages in water and energy in developing countries, ICRISAT, Hyderabad, 29–30 January

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH et al (2005) Growth of Brassica juncea under chromium stress: influence of siderophores and indole-3-acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699

    CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ et al (2006) Influence of plant growth promoting bacteria and Cr6+on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Ram SG, Parthiban KT, Kumar RS et al (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55:803–809

    Article  CAS  Google Scholar 

  • Rao CH, Lavanya C, Anjani K et al (2003) Crop improvement in castor. In: Hegde DM, Sujatha M, Singh NB (eds) Castor in India. Directorate of Oilseeds Research, Hyderabad, pp 14–35

    Google Scholar 

  • Riddell-Black DA (1993) Review of the potential for the use of trees in the rehabilitation of contaminated land, WRc report CO 3467. Water Research Centre, Medmenham

    Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Rockwood DL, Naidu CV, Carter DR et al (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? Agrofor Syst 61:51–63

    Google Scholar 

  • Romeiro S, Lagôa AMMA, Furlani PR et al (2006) Lead uptake and tolerance of Ricinus communis L. Braz J Plant Physiol 18:483–489

    Article  CAS  Google Scholar 

  • Ruttens A, Boulet J, Weyens N et al (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:194–207

    Article  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  Google Scholar 

  • Schmidt U (2003) Enhancing phytoremediation: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Scott JS, Smith PG (1981) Dictionary of waste and water treatment. Butterworths, London

    Google Scholar 

  • Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides x maximowiczii) and I-214 (P. x euramericana) exposed to industrial waste. Environ Exp Bot 52:79–88

    Article  CAS  Google Scholar 

  • Shah K, Dubey RS (1998) A 18 kDa Cd inducible protein complex: its isolation and characterization from rice (Oryza sativa L.) seedlings. J Plant Physiol 152:448–454

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY et al (2008) Characterization of metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  Google Scholar 

  • Shim D, Kim S, Choi YI et al (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486

    Article  CAS  Google Scholar 

  • Simpson JA, Picchi G, Gordon AM et al (2009) Short rotation crops for bioenergy systems: environmental benefits associated with short-rotation woody crops, Task 30, Technical review no 3. IEA Bioenergy secretariat, Rotorua

    Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B et al (2006) Energy Crops: current status and future prospects. Glob Chang Biol 12:1–23

    Article  Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM et al (2007) A bottom up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106

    Article  CAS  Google Scholar 

  • Song WY, Martinoia E, Lee J et al (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  CAS  Google Scholar 

  • Song WY, Choi YI, Shim D et al (2007) Transgenic poplar for phytoremediation. In: Xu Z, Li J, Xue Y, Yang W (eds) Biotechnology and Sustainable Agriculture 2006 and Beyond, Proceedings of the 11th IAPTC&B Congress, August 31–18, 2006 Beijing. China, Springer science & business media, pp 265–271

    Google Scholar 

  • Sresty TVS, Rao KVM (1999) Ultrastructural alterations in response of zinc and nickel stress in the root cells of pigeonpea. Environ Exp Bot 41:3–13

    Article  CAS  Google Scholar 

  • Steer P, Baker RM (1997) Colliery spoil, sewage and biomass- potential for renewable energy from wastes. Paper presented at Biomass and energy crops, meeting of the association of applied biologists, Royal Agricultural College, Cirencester, UK, 7–8 April 1997,Aspects Appl Biol 49:300–305

    Google Scholar 

  • Taiz L, Zeiger E (1998) Plant Physiology, 2nd edn. Sinauer Associates Inc, Publishers, Sunderland

    Google Scholar 

  • Tandon M, Vasudevan P, Naik SN et al (2013) Oil bearing seasonal crops in India: energy and phytoremediation potential. Int J Energ Sect Manage 7:338–354

    Article  Google Scholar 

  • Thomine S, Wang R, Ward JM et al (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  CAS  Google Scholar 

  • Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from Jatropha oil (Jatropha curcas L.) with high free fatty acid: an optimized process. Biomass Bioenergy 31:569–575

    Article  CAS  Google Scholar 

  • Trivedi S, Erdei L (1992) Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status. Physiol Plant 84:94–100

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313:1596–1604

    Article  CAS  Google Scholar 

  • Vaezi M, Passandideh-Fard M, Moghiman M et al (2012) On a methodology for selecting biomass materials for gasification purposes. Fuel Process Technol 98:74–81

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Coletto L et al (2009) Phytoremediation trials on metal and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase. J Plant Physiol 125:355–360

    Article  CAS  Google Scholar 

  • van Slycken S, Witters N, Meiresonne L et al (2013) Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int J Phytoremediation 15:677–689

    Article  CAS  Google Scholar 

  • Vandecasteele B, Meers E, Vervaeke P et al (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58:995–1002

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794

    Article  CAS  Google Scholar 

  • Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation and distribution in willow. J Environ Qual 33:1779–1785

    Article  CAS  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton

    Google Scholar 

  • Weiss EA (2000) Oil seed crops, 2nd edn. Blackwell Science, Oxford, p. 364

    Google Scholar 

  • Welch RM, Norvell WA, Schaefer SC et al (1993) Induction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? Planta 190:555–561

    Article  CAS  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Microbial ecology of rhizosphere microorganisms. Weinheim, VCH, pp 1–18

    Chapter  Google Scholar 

  • Weyens N, Croes S, Dupae J et al (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  Google Scholar 

  • Wildner GF, Henkel J (1979) The effect of divalent metal ions on the activity of Mg2+ depleted ribulose-1,5-bisphosphate oxygenase. Planta 146:223–228

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP et al (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  CAS  Google Scholar 

  • Zabaniotou AA, Kantarelis EK, Theodoropoulos DC (2008) Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics. Bioresour Technol 99:3174–3181

    Article  CAS  Google Scholar 

  • Zalesny RS Jr, Bauer EO (2007) Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation. Int J Phytoremediation 9:497–511

    Article  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  Google Scholar 

  • Zhang K, Johnson L, Prasad PVV et al (2015) Comparison of big bluestem with other native grasses: chemical composition and biofuel yield. Energy 83:358–365

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS et al (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial Support from DBT Builder programme project No. BT/PR-9028/INF/22/193/2013 is gratefully acknowledged (ANM and PS). PS is thankful to UGC-FRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jha, A.B., Misra, A.N., Sharma, P. (2017). Phytoremediation of Heavy Metal-Contaminated Soil Using Bioenergy Crops. In: Bauddh, K., Singh, B., Korstad, J. (eds) Phytoremediation Potential of Bioenergy Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-3084-0_3

Download citation

Publish with us

Policies and ethics