Skip to main content

Cells Transplantation for the Repair of Peripheral Nerve Injuries

  • Chapter
  • First Online:
Advanced Trauma and Surgery
  • 1219 Accesses

Abstract

Peripheral nerve injury , resulted from different trauma and diseases, is quite popular in clinic and frequently leading to life-long disability. Although the peripheral nerve system has a more suitable environment for axon regeneration than the central nerve system, the treatment for the nerve injury is still a practical problem in clinic. Particularly, it is more difficult to repair the nerve defects with a greater gap, which needs to be bridged with different grafts. Autografts are considered as “gold standard” for surgical repair, but have many limitations. Therefore, the cells transplantation for the repair of peripheral nerve injury is a current interesting field in order to replace autografts. Generally, the donor cells derived from different tissue and ages, such as stem cells, mesenchymal stem cells , olfactory ensheathing cells and Schwann cells , are filled into the lumen of the synthetic and natural conduits to form artificial nerve for repairing the peripheral nerve defect, but the outcomes are various in the current literatures due to different donor cells , nerve conduits and animal injury model. The firearm nerve injuries are more special for surgical treatment as their wound features, so the research about it should be enhanced in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AchR:

Acetylcholine receptors

ADSCs:

Adipose derived stem cells

AFDSCs:

Amniotic fluid derived stem cells

CAP1:

Cyclase-associated protein 1

BDNF:

Brain-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

BMSCs:

Bone marrow derived stem cells

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CSPGs:

Chondroitin sulphate proteoglycan

DPSCs:

Dental pulp stem cells

DRG:

Dorsal root ganglia

ECM:

Extracellular matrix

EGF:

Endothelial growth factor

ERK1/2:

Extracellular regulated protein kinases

ESCs:

Embryonic stem cells

FGF:

Fibroblast growth factor

FOX:

Forkhead box

FSCs:

Fetal derived stem cells

GDNF:

Glial cell derived neurotrophic factor

GFP:

Green fluorescent protein

HGF:

Hepatocyte growth factor

IFN-γ:

Interferon-γ

IL:

Interleukin

MSCs:

Mesenchymal stem cells

NGF:

Nerve growth factor

NSCs:

Nerve stem cells

NT-3:

Neurotrophin-3

OB-OECs:

Olfactory-ensheathing cells from the olfactory bulb

OECs:

Olfactory-ensheathing cells

OM-OECs:

Olfactory-ensheathing cells from the olfactory mucosa

PCL:

Polyester poly(E-caprolactone)

PFTBA:

Perfluorotributylamine

PGA:

Polyglycolic acid

PLLA:

Poly(l-lactide)

PLGA:

Poly(lactic-co-glycolic acid)

PNI:

Peripheral nerve injury

PNS:

Peripheral nervous system

SCs:

Schwann cells

SFS:

Silk fibroin scaffolds

SFI:

Sciatic function index

SKPs:

Skin derived precursors

SKPSCs:

Schwann cells derived from skin-derived Schwann cell precursors

TNF-α:

Tumor necrotic factor-α

VEGF:

Vascular endothelial growth factor

References

  1. Allodi I, Mecollari V, Gonzalez-Perez F, et al. Schwann cells transduced with a lentiviral vector encoding FGF-2 promote motor neuron regeneration following sciatic nerve injury. Glia. 2014;62:1736–46.

    Article  PubMed  Google Scholar 

  2. Asplund M, Nilsson M, Jacobsson A, et al. Incidence of traumatic peripheral nerve injuries and amputations in Sweden between 1998 and 2006. Neuroepidemiology. 2009;32:217–28.

    Article  PubMed  Google Scholar 

  3. Aszmann OC, Korak K, Luegmair M, et al. Bridging critical nerve defects through an acellular homograft seeded with autologous Schwann cells obtained from a regeneration neuroma of the proximal stump. J Reconstr Microsurg. 2008;24:151–8.

    Article  PubMed  Google Scholar 

  4. Ao Q, Fung CK, Tsui AY, et al. The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cellderived Schwann cells. Biomaterials. 2011;32:787–96.

    Article  CAS  PubMed  Google Scholar 

  5. Berrocal YA, Almeida VW, Gupta R, et al. Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats: laboratory investigation. J Neurosurg. 2013;119:720–32.

    Article  PubMed  Google Scholar 

  6. Brokhman I, Gamarnik-Ziegler L, Pomp O, et al. Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. Differentiation. 2008;76:145–55.

    Article  CAS  PubMed  Google Scholar 

  7. Battiston B, Geuna S, Ferrero M, et al. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery. 2005;25:258–67.

    Article  PubMed  Google Scholar 

  8. Cao J, Cheng Zhou Z, et al. Changes in the Foxj1 expression of Schwann cells after sciatic nerve crush. J Mol Hist. 2013;44:391–9.

    Article  CAS  Google Scholar 

  9. Casansa J, de la Torre J, Solerc F, et al. Peripheral nerve regeneration after experimental section in ovine radial and tibial nerves using synthetic nerve grafts, including expanded bone marrow mesenchymal cells: morphological and neurophysiological results. Injury. 2014;45:S2–6.

    Article  Google Scholar 

  10. Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol. 2015;131:87–104.

    Article  PubMed  Google Scholar 

  11. Cui L, Jiang J, Wei L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells. 2008;26:1356–65.

    Google Scholar 

  12. Dadon-Nachum M, Sadan O, Srugo I, et al. Differentiated mesenchymal stem cells for sciatic nerve injury. Stem Cell Rev. 2011;7:664–71.

    Article  PubMed  Google Scholar 

  13. Daly W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9:202–21.

    Article  CAS  PubMed  Google Scholar 

  14. Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.

    Article  CAS  PubMed  Google Scholar 

  15. Evans GR, Brandt K, Katz S, et al. Bioactive poly(l-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002;23:841–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fairbairn NG, Meppelink AM, Ng-Glazier J, et al. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells. 2015;7:11–26.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fan Z, Shen Y, Zhang F, et al. Control of olfactory ensheathing cell behaviors by electrospun silk fibroin fibers. Cell Transplant. 2013;1:S39–50.

    Article  Google Scholar 

  18. Fan W, Gu J, Hu W, et al. Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery. 2008;28:238–42.

    Article  PubMed  Google Scholar 

  19. Firat C, Geyik Y, Aytekin AH, et al. Comparison of nerve, vessel, and cartilage grafts in promoting peripheral nerve regeneration. Ann Plast Surg. 2014;73:54–61.

    Article  CAS  PubMed  Google Scholar 

  20. Gamez Sazo RE, Maenaka K, Gu W, et al. Fabrication of growth factor- and extracellular matrix-loaded gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia. Biomaterials. 2012;33:8529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gardiner NJ. Integrins and the extracellular matrix: key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol. 2011;71:1054–72.

    Article  CAS  PubMed  Google Scholar 

  22. Goulart CO, Sofia J, Souto A, et al. A combination of Schwann-cell grafts and aerobic exercise enhances sciatic nerve regeneration. PLoS ONE. 2014;9(10):e110090. doi:10.1371/journal.pone.0110090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu J, Hu W, Deng A, et al. Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan PGA nerve guidance conduit. J Tissue Eng Regen Med. 2012;6(2):163–8.

    Article  PubMed  Google Scholar 

  24. Guérout N, Paviot A, Bon-Mardion N, et al. Co-transplantation of olfactory ensheathing cells from mucosa and bulb origin enhances functional recovery after peripheral nerve lesion. PLoS ONE. 2011;6:e22816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guntinas-Lichius O, Angelov DN, Tomov TL, et al. Transplantation of olfactory ensheathing cells stimulates the collateral sprouting from axotomized adult rat facial motoneurons. Exp Neurol. 2001;172:70–80.

    Article  CAS  PubMed  Google Scholar 

  26. Guntinas-Lichius O, Wewetzer K, Tomov TL, et al. Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats. J Neurosci. 2002;22:7121–31.

    CAS  PubMed  Google Scholar 

  27. Haastert-Talini K, Geuna S, Dahlin LB, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials. 2013;34:9886–904.

    Article  CAS  PubMed  Google Scholar 

  28. Heine W, Conant K, Griffin JW, et al. Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Exp Neurol. 2004;189:231–40.

    Article  CAS  PubMed  Google Scholar 

  29. Hung V, Dellon AL. Reconstruction of a 4-cm human median nerve gap by including an autogenous nerve slice in a bioabsorbable nerve conduit: case report. J Hand Surg. 2008;33:313–5.

    Article  Google Scholar 

  30. Ibrahim A, Li D, Collins A, et al. Comparison of olfactory bulbar and mucosal cultures in a rat rhizotomy model. Cell Transplant. 2014;23:1465–70.

    Article  PubMed  Google Scholar 

  31. Jesuraj NJ, Santosa KB, MacEwan MR, et al. Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle Nerve. 2014;49(2):267–76.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson TS, O’Neill AC, Motarjem PM, et al. Tumor formation following murine neural precursor cell transplantation in a rat peripheral nerve injury model. J Reconstr Microsurg. 2008;24:545–50.

    Article  PubMed  Google Scholar 

  33. Kang H, Tian L, Mikesh M, et al. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci. 2014;34(18):6323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khuong HT, Kumar R, Senjaya F, et al. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol. 2014;254:168–79.

    Article  CAS  PubMed  Google Scholar 

  35. Kriebel A, Rumman M, Scheld M, et al. Three-dimensional configuration of orientated fibers as guidance structures for cell migration and axonal growth. J Biomed Mater Res, Part B. 2014;102B:356–65.

    Article  CAS  Google Scholar 

  36. Konofaos P, Ver Halen JP. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg. 2013;29:149–64.

    Article  CAS  PubMed  Google Scholar 

  37. Kubo T, Randolph MA, Gröger A, et al. Embryonic stem cell-derived motor neurons form neuromuscular junctions in vitro and enhance motor functional recovery in vivo. Plast Reconstr Surg. 2009;123:139S–48S.

    Article  CAS  PubMed  Google Scholar 

  38. Lehmanna HC, Hoke A. Use of engineered Schwann cells in peripheral neuropathy: hopes and hazards. Brain Res. 2015. doi:10.1016/j.brainres.2015.10.040.

    Google Scholar 

  39. Lee EJ, Xu L, Kim GH, et al. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials. 2012;33:7039–46.

    Article  CAS  PubMed  Google Scholar 

  40. Li BC, Jiao SS, Xu C, et al. PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. J Biomed Mater Res, Part A. 2010;94A:769–80.

    CAS  Google Scholar 

  41. Liu Q, Ye J, Yu H, et al. Survival-enhancing of spiral ganglion cells under influence of olfactory ensheathing cells by direct cellular contact. Neurosci Lett. 2010;478:37–41.

    Article  CAS  PubMed  Google Scholar 

  42. Lokanathan Y, Ng MH, Hasan S, et al. Olfactory ensheathing cells seeded muscle-stuffed vein as nerve conduit for peripheral nerve repair: a nerve conduction study. J Biosci Bioeng. 2014;118:231–4.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 2000;868:315–28.

    Article  CAS  PubMed  Google Scholar 

  44. Mittnacht U, Hartmann H, Hein S, et al. Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett. 2010;10:3933–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mohammadi R, Azizi S, Delirezh N, et al. Comparison of beneficial effects of undifferentiated cultured bone marrow stromal cells and omental adipose-derived nucleated cell fractions on sciatic nerve regeneration. Muscle Nerve. 2011;43:157–63.

    Article  PubMed  Google Scholar 

  46. Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev. 2012;18:40–50.

    Article  CAS  PubMed  Google Scholar 

  47. Paviot A, Guérout N, Bon-Mardion N, et al. Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells. Neurobiol Dis. 2011;41:688–94.

    Article  PubMed  Google Scholar 

  48. Radtke C, Aizer AA, Lankford KL, et al. Transplantation of olfactory ensheathing cells to enhance peripheral nerve regeneration after microsurgical nerve repair. Brain Res. 2009;1254:10–7.

    Article  CAS  PubMed  Google Scholar 

  49. Radtke C, Akiyama Y, Lankford KL, et al. Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons. Neurosci Lett. 2005;387:85–89.

    Google Scholar 

  50. Radtke C, Allmeling C, Waldmann KH, et al. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS ONE. 2011;6:e16990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Radtke C, Kocsis JD. Olfactory-ensheathing cell transplantation for peripheral nerve repair: update on recent developments. Cells Tissues Organs. 2014;200:48–58.

    Article  CAS  PubMed  Google Scholar 

  52. Raheja A, Suri V, Suri A, et al. Dose-dependent facilitation of peripheral nerve regeneration by bone marrow-derived mononuclear cells: a randomized controlled study: laboratory investigation. J Neurosurg. 2012;117:1170–81.

    Article  PubMed  Google Scholar 

  53. Ramer LM, Richter MW, Roskams AJ, et al. Peripherally-derived olfactory ensheathing cells do not promote primary afferent regeneration following dorsal root injury. Glia. 2004;47:189–206.

    Article  PubMed  Google Scholar 

  54. Shen Y, Qian Y, Zhang H, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplant. 2010;19:147–57.

    Article  PubMed  Google Scholar 

  55. Sridharan R, Reilly RB, Buckley CT. Decellularized grafts with axially aligned channels for peripheral nerve regeneration. J Mech Behav Biomed Mater. 2015;41:124–35.

    Article  PubMed  Google Scholar 

  56. Sowa Y, Imura T, Numajiri T, et al. Adiposederived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cells Dev. 2012;21:1852–62.

    Article  CAS  PubMed  Google Scholar 

  57. Stratton Jo A, Shah PT, Kumar R, et al. The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy. Euro J Neurosci. 2015. doi:10.1111/ejn.13006.

    Google Scholar 

  58. Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132–41.

    Article  CAS  PubMed  Google Scholar 

  59. Tan CW, Ng MH, Ohnmar H, et al. Sciatic nerve repair with tissue engineered nerve: olfactory ensheathing cells seeded poly(lactic-co-glygolic acid) conduit in an animal model. Indian J Orthop. 2014;47:547–52.

    Google Scholar 

  60. Terzis JK. Clinical microsurgery of the peripheral nerve: the state of the art. Clin Plast Surg. 1979;6:247–67.

    CAS  PubMed  Google Scholar 

  61. Wang PJ, Zhang Zhao J, et al. Intramuscular injection of bone marrow mesenchymal stem cells with small gap neurorrhaphy for peripheral nerve repair. Neurosci Lett. 2015;585:119–25.

    Article  CAS  PubMed  Google Scholar 

  62. You H, Wei L, Liu Y, et al. Olfactory ensheathing cells enhance Schwann cell-mediated anatomical and functional repair after sciatic nerve injury in adult rats. Exp Neurol. 2011;229:158–67.

    Article  PubMed  Google Scholar 

  63. Young RC, Wiberg M, Terenghi G. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br J Plast Surg. 2002;55:235–40.

    Article  CAS  PubMed  Google Scholar 

  64. Yu H, Ye J, Li H, et al. Conditioned medium from neonatal rat olfactory ensheathing cells promotes the survival and proliferation of spiral ganglion cells. Acta Otolaryngol. 2010;130:351–7.

    Article  CAS  PubMed  Google Scholar 

  65. Yu H, Zhu L, Li C, et al. ERK1/2 and AKT are vital factors in regulation of the migration of rat Schwann cells. J Vet Med Sci. 2015;77(4):427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ziegler L, Grigoryan S, Yang IH, et al. Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev. 2011;7:394–403.

    Article  PubMed  Google Scholar 

  67. Zhu S, Ge J, Wang Y, et al. A synthetic oxygen carrier-olfactory ensheathing cell composition system for the promotion of sciatic nerve regeneration. Biomaterials. 2014;35:1450–61.

    Article  CAS  PubMed  Google Scholar 

  68. Zhu X, Yao L, Guo A, et al. CAP1 was associated with actin and involved in Schwann cell differentiation and motility after sciatic nerve injury. J Mol Hist. 2014;45:337–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by National Basic Reseach Program of China/973 (2012CB518106), Major Project of PLA Logistcs Research Program (AWS14C003-5) and Program of State Key Laboratory of Trauma, Burn and Combined Injury (SKLZZ201003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingcang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Li, B. (2017). Cells Transplantation for the Repair of Peripheral Nerve Injuries. In: Fu, X., Liu, L. (eds) Advanced Trauma and Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-2425-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2425-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2424-5

  • Online ISBN: 978-981-10-2425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics