Skip to main content

Informatics for Metabolomics

  • Chapter
  • First Online:
Translational Biomedical Informatics

Abstract

Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baier MC, Barsch A, Kuster H, Hohnjec N. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol. 2007;145(4):1600–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bais P, Moon-Quanbeck SM, Nikolau BJ, Dickerson JA. Plantmetabolomics.org: mass spectrometry-based Arabidopsis metabolomics-database and tools update. Nucleic Acids Res. 2012;40(Database issue):D1216–20.

    Article  CAS  PubMed  Google Scholar 

  3. Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari SL, Pinkerton KE, Fiehn O. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinf. 2012;13:99.

    Article  Google Scholar 

  4. Beckonert O, Monnerjahn J, Bonk U, Leibfritz D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003;16(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  5. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem. 2006;78(2):567–74.

    Article  CAS  PubMed  Google Scholar 

  6. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, Torti SV, Shulaev V. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7(3):329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, et al. The human urine metabolome. PLoS One. 2013;8(9):e73076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boudah S, Olivier MF, Aros-Calt S, Oliveira L, Fenaille F, Tabet JC, Junot C. Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;966:34–47.

    Article  CAS  PubMed  Google Scholar 

  9. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  10. Canelas AB, Harrison N, Fazio A, Zhang J, Pitkanen J-P, van den Brink J, Bakker BM, Bogner L, Bouwman J, Castrillo JI, et al. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun. 2010;1:145.

    Article  PubMed  Google Scholar 

  11. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44(D1):D471–80.

    Article  PubMed  Google Scholar 

  12. Chagoyen M, Pazos F. MBRole: enrichment analysis of metabolomic data. Bioinformatics. 2011;27(5):730–1.

    Article  CAS  PubMed  Google Scholar 

  13. Chagoyen M, Pazos F. Tools for the functional interpretation of metabolomic experiments. Brief Bioinform. 2013;14(6):737–44.

    Article  PubMed  Google Scholar 

  14. Charles EDJ. Optimal algorithm for metabolomics classification and feature selection varies by dataset. Int J Biol. 2015;7(1):100.

    Google Scholar 

  15. Chen T, Xie G, Wang X, Fan J, Qiu Y, Zheng X, Qi X, Cao Y, Su M, Wang X, et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol Cell Proteomics. 2011;10(7):M110 004945.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen WP, Yang XY, Harms GL, Gray WM, Hegeman AD, Cohen JD. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide – an in vivo labeling system for proteomics and metabolomics research. Proteome Sci. 2011;9(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen YZ, Pang QY, He Y, Zhu N, Branstrom I, Yan XF, Chen S. Proteomics and metabolomics of Arabidopsis responses to perturbation of glucosinolate biosynthesis. Mol Plant. 2012;5(5):1138–50.

    Article  CAS  PubMed  Google Scholar 

  18. Chen T, Cao Y, Zhang Y, Liu J, Bao Y, Wang C, Jia W, Zhao A. Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection. Evid Based Complement Alternat Med. 2013;2013:298183.

    PubMed  PubMed Central  Google Scholar 

  19. Chumnanpuen P, Zhang J, Nookaew I, Nielsen J. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast. Mol Genet Genomics. 2012;287(7):541–54.

    Article  CAS  PubMed  Google Scholar 

  20. Chumnanpuen P, Nookaew I, Nielsen J. Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol. 2013;7(3):1–14.

    Google Scholar 

  21. Chumnanpuen P, Hansen MAE, Smedsgaard J, Nielsen J. Dynamic metabolic footprinting reveals the key components of metabolic network in yeast Saccharomyces cerevisiae. Int J Genomics. 2014;2014:14.

    Article  Google Scholar 

  22. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691–7.

    Article  CAS  PubMed  Google Scholar 

  23. Cuperlovic-Culf M, Belacel N, Culf AS, Chute IC, Ouellette RJ, Burton IW, Karakach TK, Walter JA. NMR metabolic analysis of samples using fuzzy K-means clustering. Magn Reson Chem. 2009;47 Suppl 1:S96–104.

    Article  CAS  PubMed  Google Scholar 

  24. Daemen A, Peterson D, Sahu N, McCord R, Du X, Liu B, Kowanetz K, Hong R, Moffat J, Gao M, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci U S A. 2015;112(32):E4410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78(13):4281–90.

    Article  CAS  PubMed  Google Scholar 

  26. Ding J, Shi J, Wu FX. SVM-RFE based feature selection for tandem mass spectrum quality assessment. Int J Data Min Bioinform. 2011;5(1):73–88.

    Article  PubMed  Google Scholar 

  27. Edmands WM, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, Biessy C, Jenab M, Clavel-Chapelon F, Fagherazzi G, et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr. 2015;102(4):905–13.

    Article  CAS  PubMed  Google Scholar 

  28. Eknoyan G. Santorio Sanctorius (1561–1636) – Founding father of metabolic balance studies. Am J Nephrol. 1999;19(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  29. Enot DP, Beckmann M, Overy D, Draper J. Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc Natl Acad Sci U S A. 2006;103(40):14865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Farag MA, Huhman DV, Dixon RA, Sumner LW. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 2008;146(2):387–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A. Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics. 2011;27(1):137–9.

    Article  CAS  PubMed  Google Scholar 

  32. Giskeodegard GF, Davies SK, Revell VL, Keun H, Skene DJ. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep. 2015;5:14843.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guan W, Zhou M, Hampton CY, Benigno BB, Walker LD, Gray A, McDonald JF, Fernandez FM. Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinf. 2009;10:259.

    Article  Google Scholar 

  34. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389–422.

    Article  Google Scholar 

  35. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction, Springer series in statistics. New York: Springer; 2009.

    Book  Google Scholar 

  36. Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, Smilde AK. Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem. 2011;30(10):1685–98.

    Article  CAS  Google Scholar 

  37. Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974;252(5481):285–7.

    Article  CAS  PubMed  Google Scholar 

  38. Hu C, Xu G. Mass-spectrometry-based metabolomics analysis for foodomics. TrAC Trends Anal Chem. 2013;52:36–46.

    Article  CAS  Google Scholar 

  39. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, et al. SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 2014;42(Database issue):D478–84.

    Article  CAS  PubMed  Google Scholar 

  40. Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics. 2011;27(20):2917–8.

    Article  CAS  PubMed  Google Scholar 

  41. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kankainen M, Gopalacharyulu P, Holm L, Oresic M. MPEA-metabolite pathway enrichment analysis. Bioinformatics. 2011;27(13):1878–9.

    Article  CAS  PubMed  Google Scholar 

  43. Karnovsky A, Weymouth T, Hull T, Tarcea VG, Scardoni G, Laudanna C, Sartor MA, Stringer KA, Jagadish HV, Burant C, et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics. 2012;28(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  44. Kikuchi J, Shinozaki K, Hirayama T. Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol. 2004;45(8):1099–104.

    Article  CAS  PubMed  Google Scholar 

  45. Kohonen T, Schroeder MR, Huang TS. Self-organizing maps. New York: Springer; 2001.

    Book  Google Scholar 

  46. Krueger S, Steinhauser D, Lisec J, Giavalisco P. Analysis of subcellular metabolite distributions within Arabidopsis thaliana leaf tissue: a primer for subcellular metabolomics. Methods Mol Biol. 2014;1062:575–96.

    Article  PubMed  Google Scholar 

  47. Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, et al. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 2011;67(2):354–69.

    Article  CAS  PubMed  Google Scholar 

  48. Kusonmano K. Systematic investigation of supervised machine learning strategies and algorithms in biomedical research for functional genomic data. Doctor in Natural Science, Leopold-Franzens-University of Innsbruck. 2011.

    Google Scholar 

  49. Kutmon M, van Iersel MP, Bohler A, Kelder T, Nunes N, Pico AR, Evelo CT. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol. 2015;11(2):e1004085.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Leader DP, Burgess K, Creek D, Barrett MP. Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry. Rapid Commun Mass Spectrom. 2011;25(22):3422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu R, Li Q, Ma R, Lin X, Xu H, Bi K. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography-tandem mass spectrometry method: application to identify potential markers for human hepatic cancer. Anal Chim Acta. 2013;791:36–45.

    Article  CAS  PubMed  Google Scholar 

  52. Llorach-Asuncion R, Jauregui O, Urpi-Sarda M, Andres-Lacueva C. Methodological aspects for metabolome visualization and characterization: a metabolomic evaluation of the 24 h evolution of human urine after cocoa powder consumption. J Pharm Biomed Anal. 2010;51(2):373–81.

    Article  CAS  PubMed  Google Scholar 

  53. Loo RL, Coen M, Ebbels T, Cloarec O, Maibaum E, Bictash M, Yap I, Elliott P, Stamler J, Nicholson JK, et al. Metabolic profiling and population screening of analgesic usage in nuclear magnetic resonance spectroscopy-based large-scale epidemiologic studies. Anal Chem. 2009;81(13):5119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahadevan S, Shah SL, Marrie TJ, Slupsky CM. Analysis of metabolomic data using support vector machines. Anal Chem. 2008;80(19):7562–70.

    Article  CAS  PubMed  Google Scholar 

  55. Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18(1):50–60.

    Article  Google Scholar 

  56. Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P, et al. Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol. 2010;152(4):2258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakabayashi R, Kusano M, Kobayashi M, Tohge T, Yonekura-Sakakibara K, Kogure N, Yamazaki M, Kitajima M, Saito K, Takayama H. Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry. 2009;70(8):1017–29.

    Article  CAS  PubMed  Google Scholar 

  58. Nakamura Y, Kimura A, Saga H, Oikawa A, Shinbo Y, Kai K, Sakurai N, Suzuki H, Kitayama M, Shibata D, et al. Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Planta. 2007;227(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  59. Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Huser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A. Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst Biol. 2009;3:82.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):1054–6.

    Article  CAS  PubMed  Google Scholar 

  61. Nishiumi S, Shinohara M, Ikeda A, Yoshie T, Hatano N, Kakuyama S, Mizuno S, Sanuki T, Kutsumi H, Fukusaki E, et al. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics. 2010;6(4):518–28.

    Article  CAS  Google Scholar 

  62. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565–7.

    Article  CAS  PubMed  Google Scholar 

  63. Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer. 2005;113(5):782–8.

    Article  CAS  PubMed  Google Scholar 

  64. Oesterling JE. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol. 1991;145(5):907–23.

    CAS  PubMed  Google Scholar 

  65. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc Natl Acad Sci U S A. 1971;68(10):2374–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359:572–7.

    Article  CAS  PubMed  Google Scholar 

  67. Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag. 2006;6(3):21–45.

    Article  Google Scholar 

  68. Prados J, Kalousis A, Sanchez JC, Allard L, Carrette O, Hilario M. Mining mass spectra for diagnosis and biomarker discovery of cerebral accidents. Proteomics. 2004;4(8):2320–32.

    Article  CAS  PubMed  Google Scholar 

  69. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, et al. The human serum metabolome. PLoS One. 2011;6(2):e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Quanbeck SM, Brachova L, Campbell AA, Guan X, Perera A, He K, Rhee SY, Bais P, Dickerson JA, Dixon P, et al. Metabolomics as a hypothesis-generating functional genomics tool for the annotation of Arabidopsis thaliana genes of “Unknown Function”. Front Plant Sci. 2012;3:15.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ringnér M. What is principal component analysis? Nat Biotechnol. 2008;26:303–4.

    Article  PubMed  Google Scholar 

  72. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 2005;6(1):R2.

    Article  PubMed  Google Scholar 

  73. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–17.

    Article  CAS  PubMed  Google Scholar 

  74. Saito K. Plant metabolomics: a basis for plant functional genomics and biotechnology. New Biotechnol. 2009;25:S317–8.

    Article  Google Scholar 

  75. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smedsgaard J, Nielsen J. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot. 2005;56(410):273–86.

    Article  CAS  PubMed  Google Scholar 

  77. Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinf. 2008;9:319.

    Article  Google Scholar 

  78. Stringer KA, Younger JG, McHugh C, Yeomans L, Finkel MA, Puskarich MA, Jones AE, Trexel J, Karnovsky A. Whole blood reveals more metabolic detail of the human metabolome than serum as measured by 1H-NMR spectroscopy: implications for sepsis metabolomics. Shock. 2015;44(3):200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Student. Probable Error Mean Biometrika. 1908;5(6):1–25.

    Article  Google Scholar 

  80. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–39.

    Article  CAS  PubMed  Google Scholar 

  82. Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D. KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol. 2005;138(3):1289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trethewey RN, Krotzky AJ, Willmitzert L. Metabolic profiling: a rosetta stone for genomics? Curr Opin Plant Biol. 1999;2(2):83–5.

    Article  CAS  PubMed  Google Scholar 

  84. van der Greef J, Smilde AK. Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemom. 2005;19(5–7):376–86.

    Article  Google Scholar 

  85. Vapnik VN. Statistical learning theory. New York: Wiley; 1998.

    Google Scholar 

  86. Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman DV, Yang DS, Allen SN, Li W, Tang Y, Sumner LW. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol. 2015;167(4):1699–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weingart GJF, Lawo NC, Forneck A, Krska R, Schuhmacher R. Study of the volatile metabolome in plant–insect interactions. In: The handbook of plant metabolomics. Weinheim: Wiley; 2013. p. 125–53.

    Chapter  Google Scholar 

  88. Welch BL. The generalisation of student’s problems when several different population variances are involved. Biometrika. 1947;34(1–2):28–35.

    CAS  PubMed  Google Scholar 

  89. Wishart DS. Proteomics and the human metabolome project. Expert Rev Proteomics. 2007;4(3):333–5.

    Article  CAS  PubMed  Google Scholar 

  90. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, et al. The human cerebrospinal fluid metabolome. J Chromatogr B. 2008;871(2):164–73.

    Article  CAS  Google Scholar 

  92. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:D603–10.

    Article  CAS  PubMed  Google Scholar 

  93. Witten IH, Eibe F, Hall MA. Data mining: practical machine learning tools and techniques. Amsterdam/Boston: Morgan Kaufmann; 2011.

    Google Scholar 

  94. Wold H. Path models with latent variables: the NIPALS approach. New York: Acad Press; 1975.

    Google Scholar 

  95. Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics. 2003;19(13):1636–43.

    Article  CAS  PubMed  Google Scholar 

  96. Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010;26(18):2342–4.

    Article  CAS  PubMed  Google Scholar 

  97. Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010;38(Web Server issue):W71–7.

    Article  Google Scholar 

  98. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43(W1):W251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xu YJ, Luo F, Gao Q, Shang Y, Wang C. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal Bioanal Chem. 2015;407(16):4815–21.

    Article  CAS  PubMed  Google Scholar 

  100. Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 2011;39(Web Server issue):W412–5.

    Article  Google Scholar 

  101. Zhang X, Lu X, Shi Q, Xu XQ, Leung HC, Harris LN, Iglehart JD, Miron A, Liu JS, Wong WH. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinf. 2006;7:197.

    Article  Google Scholar 

  102. Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol. 2011;7:545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to thank the Preproposal Research Fund (grant nos.PRF4/2558 and PRF-PII/59), Faculty of Science, Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramote Chumnanpuen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kusonmano, K., Vongsangnak, W., Chumnanpuen, P. (2016). Informatics for Metabolomics. In: Shen, B., Tang, H., Jiang, X. (eds) Translational Biomedical Informatics. Advances in Experimental Medicine and Biology, vol 939. Springer, Singapore. https://doi.org/10.1007/978-981-10-1503-8_5

Download citation

Publish with us

Policies and ethics