Skip to main content

Manganese-Tolerant Bacteria from the Estuarine Environment and Their Importance in Bioremediation of Contaminated Estuarine Sites

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

Eco-sensitive environs such as coastal and marine ecosystems of the world are constantly facing the risk of destruction. Estuaries, mangroves and solar salterns being fragile econiches are very susceptible to disturbances, both natural and anthropogenic. Metal mining is currently one of the most polluting anthropogenic activities, projected to have a major impact on the ecosystem. Estuaries provide a major pathway for transferring pollutants such as metals into the oceans and back again from the oceans to the rivers which flow into the adjoining areas such as salt marshes, mangroves and salterns. The sediments of these econiches serve as an ecological sink, where the metals concentrate to several orders of magnitude above the normal background levels. Consequently, microorganisms inhabiting these sites are adapted to both the estuarine and their own unique environment. Several groups of multimetal-tolerant bacteria have been isolated from such environments. Manganese (Mn), though an indispensible metal for biological function, could result in toxicity at elevated concentrations. Consumption of solar salt contaminated with metals like manganese could be a major route for human exposure. The mitigation of manganese from such contaminated sites by Mn-tolerant bacteria provides a safe and environment-friendly alternate technology for the future. Manganese-tolerant bacteria are capable of scavenging not only Mn but also many other metal contaminants, viz. Co, Ni, Zn, Cu, Pb, Cd and Hg. Cumulative strategies by which these estuarine bacteria resist high concentrations of manganese include extracellular sequestration, biosorption, precipitation, oxidation and regulation of stress proteins. This article seeks to give an insight into some of the molecular mechanisms adopted by halotolerant bacteria from the estuarine environment for tolerating manganese, as they could be a key to effective minimization and mitigation of mining impacts in contaminated estuarine sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell LM, Schineller J, Keck PJ, Villafranca JJ (1995) Effect of metal-ligand mutations on phosphoryl transfer reactions catalyzed by Escherichia coli glutamine synthetase. Biochemistry 34:16695–16702

    Article  CAS  Google Scholar 

  • Adams LF, Ghiorse WC (1986) Physiology and ultrastructure of Leptothrix discophora SS-1. Arch Microbiol 145:126–135

    Article  CAS  Google Scholar 

  • Adams LF, Ghiorse WC (1987) Characterization of extracellular Mn-oxidizing activity and isolation of a Mn-oxidizing protein from Leptothrix discophora SS-1. J Bacteriol 169(3):1279–1285

    CAS  Google Scholar 

  • Adekunle AS, Oyekunle JAO, Baruwa SO, Ogunfowokan AO, Ebenso EE (2014) Speciation study of the heavy metals in commercially available recharge cards coatings in Nigeria and the health implication. Toxicol Rep 1:243–251

    Article  CAS  Google Scholar 

  • Alagarsamy R (2006) Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, West coast of India. Estuar Coast Shelf Sci 67:333–339

    Article  CAS  Google Scholar 

  • Alam MA, Gomes A, Sarkar SK, Shuvaeva OV, Vishnevetskaya NS, Gustaytis MA, Bhattacharya BD, Godhantaraman N (2010) Trace metal bioaccumulation by soft-bottom polychaetes (Annelida) of Sundarban Mangrove Wetland, India and their potential use as contamination indicator. Bull Environ Contam Toxicol 85(5):492–496. doi:10.1007/s00128-010-0110-1

    Article  CAS  Google Scholar 

  • Alessio L, Lucchini R (1996) Manganese and manganese compounds. In: Argentesi F, Roi R, Sevilla Marcos JM (eds) Data profiles for selected chemicals and pharmaceuticals 3, 4, 5. European Commission, Joint Research Centre, Ispra

    Google Scholar 

  • Al-Masri MS, Aba A, Khalil H, Al-Hares Z (2002) Sedimentation rates and pollution history of a dried lake: Al-Qteibeh Lake. Sci Total Environ 293(1–3):177–189. doi:10.1016/S0048-9697(02)00013-X

    Article  CAS  Google Scholar 

  • Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S (2005) Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming bacilli. World J Microbiol Biotechnol 21:1237–1243

    Article  CAS  Google Scholar 

  • Ansari ZA, Ingole BS, Parulekar AH (1986) Effect of high organic enrichment of benthic polychaete population in an estuary. Mar Pollut Bull 17:361–365

    Article  Google Scholar 

  • Antony R, Sujith PP, Fernandes SO, Verma P, Khedekar VD, Loka Bharathi PA (2010) Cobalt immobilization by manganese oxidizing bacteria from Indian Ridge System. Curr Microbiol 62:840–849

    Article  CAS  Google Scholar 

  • Appanna VD (1988) Alteration of exopolysaccharide composition in Rhizobium meliloti JJ-1 exposed to manganese. FEMS Microbiol Lett 50(2–3):141–144. doi:10.1111/j.1574-6968.1988.tb02927.x

    Article  CAS  Google Scholar 

  • Archibald F (1986) Manganese: its acquisition by and function in the lactic acid bacteria. Crit Rev Microbiol 13:63–109

    Article  CAS  Google Scholar 

  • Archibald FS, Fridovich I (1981) Manganese and defenses against oxygen-toxicity in Lactobacillus plantarum. J Bacteriol 145:442–451

    CAS  Google Scholar 

  • Atkinson CA, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69(9):1428–1437

    Article  CAS  Google Scholar 

  • ATSDR (2000) Toxicological profile for manganese (update). Draft for public comment. US. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Attri K, Kerkar S (2011) Seasonal assessment of heavy metal pollution in tropical mangrove sediments (Goa, India). J Ecobiotechnol 3(8):9–15

    CAS  Google Scholar 

  • Balzer W (1982) On the distribution of iron and manganese at the sediment/water interface: thermodynamic versus kinetic control. Geochim Cosmochim Acta 46:1153–1161

    Article  CAS  Google Scholar 

  • Barceloux DG (1999) Manganese. J Toxicol Clin Toxicol 37:293–307. doi:10.1081/CLT-100102427

    Article  CAS  Google Scholar 

  • Barik SK, Panda CR (2014) Distribution and seasonal variation of trace metal concentration in surface sediment of Dhamra Estuary, East coast of India. Int J Environ Sci 4(5):1015–1022. doi:10.6088/ijes.2014040404540

    CAS  Google Scholar 

  • Barkay T (1987) Adaptation of aquatic microbial communities to Hg stress. Appl Environ Microbiol 53(12):2725–2732

    CAS  Google Scholar 

  • Bartsevich VV, Pakrasi HB (1995) Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. EMBO J 14(9):1845–1853

    CAS  Google Scholar 

  • Beveridge TJ (2005) Bacterial cell wall structure and implications for interactions with metal ions and minerals. J Nucl Radiochem Sci 6:7–10

    Article  CAS  Google Scholar 

  • Blanck H, Wangberg SA, Molander S (1988) Pollution-induced community tolerance-A new ecotoxicological tool. In: Cairns J, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals. ASTM (American Society of Testing and Materials), Philadelphia, pp 219–230

    Chapter  Google Scholar 

  • Blindauer CA, Harisson MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45(5):1421–1432

    Article  CAS  Google Scholar 

  • Bonnevie NL, Huntley SL, Found BW, Wenning RJ (1994) Trace metal contamination in surface sediments from Newark Bay, New Jersey. Sci Total Environ 144(1):1–16. doi:10.1016/0048-9697(94)90423-5

    Article  CAS  Google Scholar 

  • Boogerd FC, de Vrind JPM (1987) Manganese oxidation by Leptothrix discophora SS-1. J Bacteriol 169(2):489–494

    CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London, p 333

    Google Scholar 

  • Bramhachari PV, Dubey SK (2006) Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23. Lett Appl Microbiol 43:571–577. doi:10.1111/j.1472-765X.2006.01967.x

    Article  CAS  Google Scholar 

  • Bratina BJ, Stevenson BS, Green WJ, Schmidt TM (1998) Manganese reduction by microbes from oxic regions of the Lake Vanda (Antarctica) water column. Appl Environ Microbiol 64(10):3791–3797

    CAS  Google Scholar 

  • Brouwers GJ, de Vrind JPM, Corstjens PLAM, Cornelis P, Baysse C, de Vrind-de Jong EW (1999) CumA, a gene encoding a multicopper oxidase, is involved in Mn2+-oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65(4):1762–1768

    CAS  Google Scholar 

  • Brouwers GJ, Corstjens PLAM, de Vrind JPM, Verkamman A, de Kuyper M, de Vrind-de Jong EW (2000) Stimulation of Mn2+ oxidation in Leptothrix discophora SS-1 by Cu2+ and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. Geomicrobiol J 17:25–33. doi:10.1080/014904500270468

    Article  CAS  Google Scholar 

  • Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. Econ Geol 91(1):36–47

    Article  CAS  Google Scholar 

  • Canli M, Atli G (2003) The relationships between heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121:129–136

    Article  CAS  Google Scholar 

  • Caspi R, Tebo BM, Haygood MG (1998) c-type cytochromes and manganese oxidation in Pseudomonas putida strain MnB1. Appl Environ Microbiol 64:3549–3555

    CAS  Google Scholar 

  • Cavat JS, Borrelly GP, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Ecol 122:165–181

    Article  CAS  Google Scholar 

  • Cerrato JM, Falkinham JO 3rd, Dietrich AM, Knocke WR, McKinney CW, Pruden A (2010) Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems. Water Res 44(13):3935–3945. doi:10.1016/j.watres.2010.04.037

    Article  CAS  Google Scholar 

  • Chander M, Setlow B, Setlow P (1998) The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn and is pH sensitive. Can J Microbiol 44:759–767

    Article  CAS  Google Scholar 

  • Chao YP, Patnaik R, Roof WD, Young RF, Liao JC (1993) Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol 175:6939–6944

    CAS  Google Scholar 

  • Chapman PM, Wang F, Janssen C, Persoone G, Allen HE (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55:2221–2243

    Article  CAS  Google Scholar 

  • Corstjens PLAM, de Vrind JPM, Goosen T, de Vrind-de Jong EW (1997) Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J 14:91–108. doi:10.1080/01490459709378037

    Article  CAS  Google Scholar 

  • da Costa ACA, de Mesquita LMS, Tornovsky J (1996) Batch and continuous metals biosorption by a brown seaweed from a zinc producing plant. Miner Eng 9:811–824

    Article  Google Scholar 

  • Daily GC, Alexander S, Ehrlich PR, Goulder L, Lubchenco J, Matson PA, Mooney HA, Postel S, Schneider SH, Tilman D, Woodwell GM (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues Ecol 2:1–16

    Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306(5698):1025–1028. doi:10.1126/science.1103185

    Article  CAS  Google Scholar 

  • De Souza SN (1999) Effect of mining rejects on the nutrient chemistry of Mandovi estuary, Goa. Indian J Mar Sci 28:198–210

    Google Scholar 

  • de Vrind JPM, de Vrind-de Jong EW, de Voogt JWH, Westbroek P, Boogerd FC, Rosson RA (1986) Manganese oxidation by spores and spore coats of a marine Bacillus species. Appl Environ Microbiol 52:1096–1100

    Google Scholar 

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534, doi:0.1128/AEM.01240-07

    Article  CAS  Google Scholar 

  • Doelman P, Jansen E, Michels M, Van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soil 17:177–184

    Article  CAS  Google Scholar 

  • Doyle RJ (1989) How cell walls of gram-positive bacteria interact with metal ions. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 275–293

    Google Scholar 

  • Duggan LA, Wildeman R, Tipping E (1992) The aerobic removal of manganese from mine drainage by an algal mixture containing Cladophora. Environ Pollut 57:251–274

    Google Scholar 

  • Edgar GJ, Barrett NS, Braddon DJ, Last PR (2000) The conservation significance of estuaries: a classification of Tasmanian estuaries using ecological, physical and demographic attributes as a case study. Biol Conserv 92:383–397. doi:10.1016/s0006-3207(99)00111-1

    Article  Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New York, p 719

    Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Marcel Dekker, New York, p 768

    Google Scholar 

  • Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate GABA interaction. Neurochem Int 43:475–480

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) (1983) Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fish Circ 464:5–100

    Google Scholar 

  • Fernandes MC, Nayak GN (2015) Speciation of metals and their distribution in tropical estuarine mudflat sediments, southwest coast of India. Ecotoxicol Environ Saf 122:68–75. doi:10.1016/j.ecoenv.2015.07.016

    Article  CAS  Google Scholar 

  • Fernandes SO, Krishnan KP, Khedekar VD, Loka Bharathi PA (2005) Manganese oxidation by bacterial isolates from the Indian Ridge System. Biometals 18:483–492

    Article  CAS  Google Scholar 

  • Filipek LH, Nordstrom DK, Ficklin WH (1987) Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California. Environ Sci Technol 21:388–396

    Article  CAS  Google Scholar 

  • Foster LJR, Moy YP, Rogers PL (2000) Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances. Biotechnol Lett 22:1757–1760

    Article  CAS  Google Scholar 

  • Francis CA, Tebo BM (1999) Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals. J Mol Microbiol Biotechnol 1(1):71–78

    CAS  Google Scholar 

  • Francis CA, Tebo BM (2002) Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. Appl Environ Microbiol 68:874–880

    Article  CAS  Google Scholar 

  • Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. The inorganic chemistry of life, 2nd edn. Clarendon, Oxford, p 600

    Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  Google Scholar 

  • Gadd GM (1990) Metal tolerance. In: Edwards C (ed) Microbiology of extreme environments. McGraw-Hill, New York, pp 178–210

    Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–203

    Article  CAS  Google Scholar 

  • Gawade L, Harikrishna CNV, Sarma VV, Ingole BS (2013) Variation in heavy metals concentration in the edible oyster Crassostrea madrasensis, clam Polymesoda erosa and grey mullet Liza aurata from coastline of India. Indian J Sci 2(4):59–63

    Google Scholar 

  • George MD, Kureishy TW (1979) Trace metals in zooplankton from the Bay of Bengal. Indian J Mar Sci 8:190–192

    CAS  Google Scholar 

  • Gerber GB, Leonard A, Hantson P (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42(1):25–34. doi:10.1016/S1040-8428(01)00178-0

    Article  CAS  Google Scholar 

  • Geszvain K, McCarthy JK, Tebo BM (2013) Elimination of manganese(II, III) oxidation in Pseudomonas putidaGB-1 by a double knockout of two putative multicopper oxidase genes. Appl Environ Microbiol 79:357–366. doi:10.1128/AEM.01850-12

    Article  CAS  Google Scholar 

  • Ghiorse WC, Hirsch P (1979) An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch Microbiol 123:213–226

    Article  CAS  Google Scholar 

  • Glasby GP (2006) Manganese: predominant role of nodules and crusts. In: Schulz HD, Zabel M (eds) Marine geochemistry, 2nd edn. Springer, Berlin/Heidelberg, pp 371–427

    Chapter  Google Scholar 

  • Gounot AM (1994) Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol Rev 14(4):339–349

    Article  CAS  Google Scholar 

  • Greger JL (1999) Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers. Neuro Toxicol 20:205–212

    CAS  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25(6):1185–1194. doi:10.1007/s10534-012-9581-3

    Article  CAS  Google Scholar 

  • Hallberg K, Johnson D (2005) Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Sci Total Environ 338:115–124

    Article  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951. doi:10.1146/annurev.bi.55.070186.004405014

    Article  CAS  Google Scholar 

  • Hansel CM, Francis CA (2006) Coupled photochemical and enzymatic Mn(II) oxidation pathways of a planktonic Roseobacter-like bacterium. Appl Environ Microbiol 72:3543–3549

    Article  CAS  Google Scholar 

  • Hao Z, Chen S, Wilson DB (1999) Cloning, expression and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum. Appl Environ Microbiol 65:4746–4752

    CAS  Google Scholar 

  • Haritha A, Korripally PS, Tiwari A, Kiranmayi P, Rodrigue A, Mohan PM, Singh SS (2009) MrdH, a novel metal resistance determinant of Pseudomonas putida KT2440, is flanked by metal-inducible mobile genetic elements. J Bacteriol 191(19):5976–5987

    Article  CAS  Google Scholar 

  • He JZ, Zhang LM, Jin SS, Zhu YG (2008) Bacterial communities inside and surrounding soil iron-manganese nodules. Geomicrobiol J 25:14–24

    Article  CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1984) Cadmium-resistant Pseudomonas putida synthesises novel cadmium proteins. Science 225:1043–1046

    Article  CAS  Google Scholar 

  • Hopkin SP (1993) In situ biological monitoring of pollutants in ecosystems. In: Calow P (ed) Handbook of ecotoxicology, vol 1. Blackwell, Oxford, UK, pp 397–427

    Google Scholar 

  • Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA (1999) Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at a basic sites and three-metal-ion catalysis. Cell 98:397–408

    Article  CAS  Google Scholar 

  • Howe PD, Malcolm HM, Dobson S (2004) Manganese and its compounds: environmental aspects. In: Sheffer M (ed) Concise international chemical assessment document, 63. Ottawa and printed by Wissenchaftliche Verlagsgesellschaft mbH, Stuttgart, p 15

    Google Scholar 

  • HSDB (2001) Manganese compounds. Bethesda, National Library of Medicine, Hazardous Substances Data Bank. Available at http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed on 29 Oct 2015

  • Huang PM (1991) Kinetics of redox reactions on manganese oxides and its impact on environmental quality. In: Sparks DL, Suarez DL (eds) Rates of soil chemical processes. Soil Science Society of America, Madison, pp 191–230

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metal toxicity. In: Hughes MN, Poole RK (eds) Metals and microorganisms. Chapman and Hall, New York, pp 252–302

    Google Scholar 

  • Huntsman SA, Sunda WG (1980) The role of trace metals in regulating phytoplankton. In: Morris I (ed) The physiological ecology of phytoplankton. University of California, Berkeley, pp 285–328

    Google Scholar 

  • Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC

    Google Scholar 

  • IOM (2002) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Institute of Medicine, Food and Nutrition Board. National Academy Press, Washington, DC, pp 10–1–10–22

    Google Scholar 

  • IPCS (1999) Manganese and its compounds. Geneva, World Health Organization. International programme on chemical safety (Concise International Chemical Assessment Document 12)

    Google Scholar 

  • Jakubovics NS, Valentine RA (2009) A new direction for manganese homeostasis in bacteria: identification of a novel efflux system in Streptococcus pneumoniae. Mol Microbiol 72:1–4. doi:10.1111/j.1365-2958.2009.06637.x

    Article  CAS  Google Scholar 

  • Javed M, Usmani N (2013). Assessment of heavy metal (Cu, Ni, Fe, Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus. SpringerPlus. 2:390.doi.org/10.1186/2193-1801-2-390

  • Jensen AN, Jensen LT (2014) Chapter 1: Manganese transport, trafficking and function in invertebrates. In: Aschner M, Costa LG (eds) Manganese in health and disease. Royal Society of Chemistry, UK. pp 1–27

    Google Scholar 

  • Ji GY, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    Article  CAS  Google Scholar 

  • Kagi JHR, Nordberg M (1979) Metallothionein. BirkhauserVerlag, Basel, Stuttgart, pp 1–378

    Book  Google Scholar 

  • Keen CL, Zidenberg-Cherr S (1996) Manganese. In: Ziegler EE, Filer LJ (eds) Present knowledge in nutrition. ILSI Press, Washington, DC, pp 334–343

    Google Scholar 

  • Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27(2–3):263–290

    Article  CAS  Google Scholar 

  • Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100

    Article  CAS  Google Scholar 

  • KesavaRao C, Indusekhar VK (1989) Seasonal variation in chemical constituents of certain brown sea weed and sea water from Saurashtra coast: manganese, zinc. copper, nickel, cobalt and molybdenum. Mahasagar 22(2):73–81

    Google Scholar 

  • Kim SI, Jang YS, Han SH, Choi MJ, Go EH, Cheon YP, Lee JS, Lee SH (2012) Effect of manganese exposure on the reproductive organs in immature female rats. Development and Reproduction 16(4):295–300

    Article  Google Scholar 

  • Kirchner WB, Grabowski S (1972) Manganese in lacustrine ecosystems: a review. Am Water Resour Assoc 8:1259–1264. doi:10.1111/j.1752-1688.1972.tb05270.x

    Article  CAS  Google Scholar 

  • Kolenbrander PE, Andersen RN, Baker RA, Jenkinson HF (1998) The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J Bacteriol 180:290–295

    CAS  Google Scholar 

  • Laha S, Luthy RG (1990) Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environ Sci Technol 24:363–373

    Article  CAS  Google Scholar 

  • Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171:257–264

    Article  CAS  Google Scholar 

  • Leach RM, Harris ED (1997) Manganese. In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential minerals. Marcel Dekker, New York, pp 335–355

    Google Scholar 

  • Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98

    Article  CAS  Google Scholar 

  • Lee JH, Kennedy DW, Dohnalkova A, Moore DA, Nachimuthu P, Reed SB, Fredrickson JK (2011) Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction. Environ Microbiol Microbiol 13(12):3275–3288. doi:10.1111/j.1462-2920.2011.02587.x

    Article  CAS  Google Scholar 

  • Lewis BL, Landing WM (1991) The biogeochemistry of Mn and Fe in the Black Sea. Deep-Sea Res 38(Suppl 2):773–803

    Article  Google Scholar 

  • Lewis BL, Landing WM (1992) The investigation of dissolved and suspended particulate trace metal fractionation in the Black Sea. Mar Chem 40(1–2):105–141

    Article  CAS  Google Scholar 

  • Li C, Tao J, Mao D, He C (2011) A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PLoS One 6(7):10.1371/journal.pone.0021983

    Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  • Lynam DR, Roos JW, Pfeifer GD, Fort BF, Pullin TG (1999) Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neuro Toxicol 20:145–150

    CAS  Google Scholar 

  • Mane PC, Kadam DD, Chaudhari RD, Bhosle AB (2013) Accumulation of manganese and selenium in water: a case study of Manjara dam, Maharashtra. Int J Curr Res 5(12):4142–4146

    Google Scholar 

  • Marbaniang DG (2012) Spectrophotometric determination of Manganese in ground water in Shillong City using bismuthate oxidation method. Int J Environ Prot 2(5):22–26

    Google Scholar 

  • Markus H, Mulack C, Pual A (2002) Manganese adsorption in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Environ Exp Bot 48:107–117

    Article  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils, 1st edn. Oxford University Press, New York, p 406

    Google Scholar 

  • Medicis ED, Paquette J, Gauthier JJ, Shapcott D (1986) Magnesium and manganese content of halophilic bacteria. Appl Environ Microbiol 52(3):567–573

    CAS  Google Scholar 

  • Merrifield MS, Hines E, Liu X, Beck MW (2011) Building regional threat-based networks for estuaries in the Western United States. PLoS One 6(2):1–10

    Article  CAS  Google Scholar 

  • Missiakas D, Raina S (1997) Signal transduction pathways in response to protein misfolding in the extracytoplasmic compartments of E. coli: role of two new phosphoprotein phosphatases PrpA and PrpB. EMBO J 16:1670–1685

    Article  CAS  Google Scholar 

  • Mohamed ZA (2001) Removal of cadmium and manganese by a non toxic strain of the fresh water cyanobacterium Gloeothece Magna. Wat Res 35:4405–4409

    Article  CAS  Google Scholar 

  • Mondal P, Majumber CB, Mohanty B (2008) Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J Hazard Mater 153:588–599

    Article  CAS  Google Scholar 

  • Morel FMM, Hudson RJM, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36:1742–1755

    Article  CAS  Google Scholar 

  • Morgan TR, Shand JA, Clarke SM, Eaton-Rye JJ (1998) Specific requirements for cytochrome c-550 and the manganese stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47. Biochemistry 37:14437–14449

    Article  CAS  Google Scholar 

  • Mukhopadhyay B, Stoddard SF, Wolfe RS (1998) Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain DH. J Biol Chem 273:5155–5166

    Article  CAS  Google Scholar 

  • Nairn B, Hedin RS (1993) Contaminant removal capabilities of wetlands constructed to treat coal mine drainage. In: Moshiri GA (ed) Constructed wetlands for water quality improvement, 7th edn. Lewis Publishers, Boca Raton, pp 187–195

    Google Scholar 

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72(1):6–13. doi:10.1016/j.marpolbul.2013.04.030

    Article  CAS  Google Scholar 

  • Nasir SM, Okbah MA, Kasen SM (2006) Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. Int J Oceans Oceanogr 1:99–109

    Google Scholar 

  • Nealson KH (1983) The microbial manganese cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publications, Oxford, pp 191–221

    Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443

    CAS  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318

    Article  CAS  Google Scholar 

  • Nielsen FH (1999) Ultratrace minerals. In: Shils M (ed) Nutrition in health and disease. Williams and Wilkins, Baltimore, pp 283–303

    Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Nieto JJ, Fernandez-Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    CAS  Google Scholar 

  • Niven DF, Ekins A, al-Samaurai AA (1999) Effects of iron and manganese availability on growth and production of superoxide dismutase by Streptococcus suis. Can J Microbiol 45:1027–1032

    Article  CAS  Google Scholar 

  • Ohtani N, Haruki M, Muroya A, Morikawa M, Kanaya S (2000) Characterization of ribonuclease HII from Escherichia coli overproduced in a soluble form. J Biochem 127:895–899

    Article  CAS  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228

    Article  CAS  Google Scholar 

  • Oyetibo GO, Ilori MO, Adebusoye SA, Obayori OS, Amund OO (2010) Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environ Monit Assess 168:305–314. doi:10.1007/s10661-009-1114-3

    Article  CAS  Google Scholar 

  • Parveen SR, Bhosle AB (2013) Heavy metal contamination in soils near Siddheshwar Dam Maharashtra. India Res J Chem 3(1):6–9

    Google Scholar 

  • Pearson GF, Greenway GM (2005) Recent developments in manganese speciation. Trends Anal Chem 24:803–809

    Article  CAS  Google Scholar 

  • Pereira F, Krishnan KP, Sinha RK, Kerkar S (2012) Insights on metal-microbe interactions in Bacillus sp. and Chromohalobacter sp. from a solar saltern. J Ecobiotechnol 4(1):14–24

    CAS  Google Scholar 

  • Pereira F, Kerkar S, Krishnan KP (2013) Bacterial response to dynamic metal concentrations in the surface sediments of a solar saltern (Goa, India). Environ Monit Assess 185(5):3625–3636

    Article  CAS  Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66(8):675–682

    Article  CAS  Google Scholar 

  • Poole RK, Gadd GM (1989) Metals: microbe interactions. IRL Press, Oxford, pp 1–37

    Google Scholar 

  • Pravinkumar M, Logesh AR, Viswanathan C, Elumalai V, Raffi SM, Kathiresan K (2014) Bioaccumulation of trace elements in fin and shell fishes of Uppanar and Vellar Estuaries at Southeast coast of India. Int J Mar Sci 4(41):1–7. doi:10.5376/ijms.2014.04.0041

    Google Scholar 

  • Pulsawat W, Leksawasdi N, Rogers PL, Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270

    Article  CAS  Google Scholar 

  • Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468

    Article  CAS  Google Scholar 

  • Ravelonabdra PH, Rajoelisoa A, Mong Y, Rajaonarivony M, Ravonizafy C, Niricalaina A (2010) Assessment of heavy metals concentrations in coastal sediments in north-western cities of Madagascar. Afr J Environ Sci Technol 4(2):051–060

    Google Scholar 

  • Reimer PS (1999) Environmental effects of manganese and proposed freshwater guidelines to protect aquatic life in British Columbia [MSc thesis]. University of British Columbia, Vancouver

    Google Scholar 

  • Richardson LL, Aguilar C, Nealson KH (1988) Manganese oxidation in pH and O2 microenvironments produced by Phytoplankton. Limnol Oceanogr 33:352–363

    Article  CAS  Google Scholar 

  • Ridge JP, Lin M, Larsen EI, Fegan M, McEwan AG, Sly LI (2007) A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. Environ Microbiol 9:944–953

    Article  CAS  Google Scholar 

  • Robbins EI, Corley TL (2005) Microdynamics and seasonal changes in manganese oxide epiprecipitation in Pinal Creek, Arizona. Hydrobiologia 534:165–180

    Article  CAS  Google Scholar 

  • Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 63–152

    Google Scholar 

  • Rosson RA, Nealson KH (1982) Manganese binding and oxidation by spores of a marine Bacillus. J Bacteriol 151:1027–1034

    CAS  Google Scholar 

  • Santamaria AB, Sulsky SI (2010) A risk assessment of an essential element: manganese. J Toxicol Environ Health A 73(2):128–155

    Article  CAS  Google Scholar 

  • Saratovsky I, Wightman PG, Paste PA, Gaillard JF, Poeppelmeier KR (2006) Manganese oxides: parallels between abiotic and biotic structures. J Am Chem Soc 128:11188–11198

    Article  CAS  Google Scholar 

  • Saratovsky I, Gurr SJ, Hayward MA (2009) The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 73:3291–3300

    Article  CAS  Google Scholar 

  • Sardessai S, Sundar D (2007) Variability of nitrate and phosphate. In: Shetye SR, Dileep Kumar M, Shankar D (eds) The Mandovi and Zuari Estuaries. National Institute of Oceanography, Dona Paula, pp 59–66

    Google Scholar 

  • Sasaki K, Matsuda M, Hirajima T, Takano K, Konno H (2006) Immobilization of Mn(II) ions by a Mn oxidizing fungus Paraconiothyrium sp. like strain at neutral pH. Mater Trans 47:2457–2461

    Article  CAS  Google Scholar 

  • Sekowska A, Danchin A, Risler JL (2000) Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology 146:1815–1828

    Google Scholar 

  • Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstrate W (2008) Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. J Microbial Biotechnol 1(6):446–462

    Article  CAS  Google Scholar 

  • Schweisfurth R, Eleftheriadis D, Gundlach H, Jacobs M, Jung W (1978) Microbiology of the precipitation of manganese. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology. Ann Arbor Science, Ann Arbor, pp 923–928

    Google Scholar 

  • Scott DT, McKnight DM, Voelker BM, Hrncir DC (2002) Redox processes controlling manganese fate and transport in a mountain stream. Environ Sci Technol 36(3):453–459

    Article  CAS  Google Scholar 

  • Shaw CF III, Stillman MJ, Suzuki KT (1992) Metallothioneins: an overview of metal-thiolate complex formation in metallothioneins. In: Stillman MJ, Shaw CF III, Suzuki KT (eds) Metallothioneins: synthesis, structure and properties of metallothioneins, phytochelatins and metal-thiolate complexes. VCH Publishers, New York

    Google Scholar 

  • Shi L (2004) Manganese-dependent protein o-phosphatases in prokaryotes and their biological functions. Front Biosci 9:1382–1397

    Article  CAS  Google Scholar 

  • Shi J, Lindsay WP, Huckle JW, Morby AP, Robinson NJ (1992) Cyanobacterial metallothionein gene expressed in Escherichia coli. Metal-binding properties of the expressed protein. FEBS Lett 303:159–163

    Article  CAS  Google Scholar 

  • Shi JX, Chen ZY, Hu XG (1999) A study on bacterial abundance and its mineralization in ferromanganese nodule area of the East Pacific Ocean. Donghai Mar Sci 17(3):46–64

    Google Scholar 

  • Shrivastava KBL, Mishra SP (2011) Studies of various heavy metal in surface and ground water of Birsinghpur Town and its surrounding rural area District Satna (M.P.). Curr World Environ 6(2):271–274

    CAS  Google Scholar 

  • Silver S, Lusk JE (1987) Bacterial magnesium, manganese and zinc transport. In: Rosen BP, Silver S (eds) Ion transport in prokaryotes. Academic, London, pp 165–180

    Chapter  Google Scholar 

  • Sly LI, Arunpairojana V, Dixon DR (1990) Binding of colloidal MnO2 by extracellular polysaccharides of Pedomicrobium manganicum. Appl Environ Microbiol 56:2791–2794

    CAS  Google Scholar 

  • Smith RG (1972) Vanadium. In: Lee DHK (ed) Metallic contaminants and human health. Academic Press, New York, pp 153–157

    Google Scholar 

  • Smith RA, Alexander RB, Wolman MG (1987) Water-quality trends in the nation’s rivers. Science 235:1607–1615

    Article  CAS  Google Scholar 

  • Sobota JM, Imlay JA (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci U S A 108:5402–5407

    Article  CAS  Google Scholar 

  • Spratt HG Jr, Hodson RE (1994) The effect of changing water chemistry on rates of manganese oxidation in surface sediments of a temperate saltmarsh and a tropical mangrove estuary. Estuar Coast Shelf Sci 38:119–135

    Article  CAS  Google Scholar 

  • Stokes JL, Powers MT (1967) Stimulation of polyhydroxybutyrate oxidation in Sphaerotilus discophorus by manganese and magnesium. Arch Microbiol 59:295–301

    CAS  Google Scholar 

  • Sujith PP, Khedekar VD, Girish AP, Loka Bharathi PA (2010) Immobilization of nickel by bacterial isolates from the Indian ridge system and the chemical nature of the accumulated metal. Geomicrobiol J 27:424–434

    Article  CAS  Google Scholar 

  • Sullivan L, Koppi A (1993) Manganese oxide accumulations associated with some soil structural pores. II. Composite coatings and translocation. Soil Res 31:227–233

    Article  CAS  Google Scholar 

  • Sun H, Xu G, Zhan H, Chen H, Sun Z, Tian B, Hua Y (2010) Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans. BMC Microbiol 10:319. doi:10.1186/1471-2180-10-319

    Article  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1990) Diel cycles in microbial manganese oxidation and manganese redox speciation in coastal waters of the Bahama Islands. Limnol Oceanogr 35:325–338

    Article  CAS  Google Scholar 

  • Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Sea Res 38(Suppl 2):S883–S905

    Article  Google Scholar 

  • Tebo BM, Ghiorse WC, vanWaasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. Geomicrobiol Interact Between Microbes Miner 35:225–266

    CAS  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328. doi:10.1146/annurev.earth.32.101802.120213

    Article  CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  CAS  Google Scholar 

  • Tekerlekopoulou AG, Vayenas DV (2008) Simultaneous biological removal of ammonia, iron and manganese from potable water using a trickling filter. Biochem Eng J 39:215–220

    Article  CAS  Google Scholar 

  • Temara A, Skei JM, Gillan D, Warnau M, Jangoux M, Dubois P (1998) Validation of the asteroid Asterias rubens (Echinodermata) as a bioindicator of spatial and temporal trends of Pb, Cd, and Zn contamination in the field. Mar Environ Res 45(4–5):341–356

    Article  CAS  Google Scholar 

  • Thompson J, Ruvinov SB, Freedberg DI, Hall BG (1999) Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases. J Bacteriol 181:7339–7345

    CAS  Google Scholar 

  • Timonin MI, Illman WI, Hartgerink T (1972) Oxidation of manganous salts of manganese by soil fungi. Can J Microbiol 18:793–799

    Article  CAS  Google Scholar 

  • Tseng HJ, Srikhanta Y, McEwan AG, Jennings MP (2001) Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol Microbiol 40(5):1175–1186

    Article  CAS  Google Scholar 

  • Turner JS, Morby AP, Whitton BA, Gupta A, Robinson NJ (1993) Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J Biol Chem 268:4494–4498

    CAS  Google Scholar 

  • US EPA (1984) Health assessment document for manganese. Final draft. Cincinnati, US Environmental Protection Agency, Office of Research and Development (Report No. EPA/600/8-83/013F). Assessed on 27 Oct 2015

    Google Scholar 

  • Van Waasbergen LG, Hildebrand M, Tebo BM (1996) Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1. J Bacteriol 178:3517–3530

    Google Scholar 

  • Varol M, Sen B (2012) Assessment of nutrient and heavy metal contamination in surface water and sediments of the Upper Tigris River, Turkey. Catena 92:1–10

    Article  CAS  Google Scholar 

  • Vartanian JP, Sata M, Henry M, Hobson SW, Meyerhans A (1999) Manganese cations increase the mutation rate of human immune deficiency virus type 1 ex vivo. J Gen Virol 80:1983–1986

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    Article  CAS  Google Scholar 

  • Vojak PWL, Edwards C, Jones MV (1985) Evidence for microbial manganese oxidation in the River Tamar estuary, South West England. Estuar Coast Shelf Sci 20:661–671

    Google Scholar 

  • Wakeman CA, Skaar EP (2012) Metalloregulation of gram-positive pathogen physiology. Curr Opin Microbiol 15:169–174

    Article  CAS  Google Scholar 

  • Wang W, Shao Z, Liu Y, Wang G (2009) Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium – Brachybacterium sp. strain Mn32. Microbiology 155:1989–1996. doi:10.1099/mic.0.024141-0

    Article  CAS  Google Scholar 

  • Wang L, Ma F, Feng SS, Sun DZ, Yu B, Xing J (2010) Biosorption characteristics of Extracellular Polymeric Substance (EPS) produced by Rhizobium radiobacter for removal of Cu(II) and Mn(II) Ions from aqueous solutions. Bioinforma Biomed Eng (iCBBE): 1–4. doi:10.1109/ICBBE.2010.5515723

  • Wasim AM, Paramasivam M, Ganguly M, Purkait S, Sengupta D (2010) Assessment and occurrence of various heavy metals in surface water of Ganga river around Kolkata: a study for toxicity and ecological impact. Environ Monit Assess 160(1–4):207–213

    Article  CAS  Google Scholar 

  • Wehrli B, Friedl G, Manceau A (1995) Reaction rates and products of manganese oxidation at the sediment-water interface. In: Huang CP, O’Melia CR, Morgan JJ (eds) Aquatic chemistry: interfacial and interspecies processes. Am Chem Soc, 244:111–134

    Google Scholar 

  • Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW (1999) The oxidized (3,3) state of manganese catalase. Comparison of enzymes from Thermus thermophilus and Lactobacillus plantarum. Biochemistry 38:9126–9136

    Article  CAS  Google Scholar 

  • WHO (1973) Trace elements in human nutrition: manganese. Report of a WHO expert committee, Technical report series no. 532. World Health Organization, Geneva, pp 34–36

    Google Scholar 

  • Yang W, Zhang Z, Zhang Z, Chen H, Liu J, Ali M, Liu F, Li L (2013) Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese–complex medium enrichment. PLoS One 8(9):e73778

    Article  CAS  Google Scholar 

  • Yang ZF, Sun T, Zhao R (2014) Environmental flow assessments in estuaries related to preference of phytoplankton. Hydrol Earth Syst Sci 18:1785–1791. doi:10.5194/hess-18-1785-2

  • Yocum CF, Pecoraro VL (1999) Recent advances in the understanding of the biological chemistry of manganese. Curr Opin Chem Biol 3:182–187

    Article  CAS  Google Scholar 

  • Zeri C, Voutsinou-Taliadouri F, Romanov AS, Ovsjany EI, Moriki A (2000) A comparative approach of dissolved trace element exchange in two interconnected basins: Black Sea and Aegean Sea. Mar Pollut Bull 40(8):666–673

    Article  CAS  Google Scholar 

  • Zhan S, Peng S, Liu C, Chang Q, Xu J (2010) Spatial and temporal variations of heavy metals in surface sediments in Bohai Bay, North China. Bull Environ Contam Toxicol 84:482–487

    Article  CAS  Google Scholar 

  • Zingde MD, Singbal SYS, Moraes CF, Reddy CVG (1976) Arsenic, copper, zinc and manganese in the marine flora and fauna of coastal and estuarine waters around Goa. Indian J Mar Sci 5:212–217

    CAS  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

Download references

Acknowledgement

I would like to express my gratitude to my Ph.D. guide and mentor Dr. Savita Kerkar for extending her constant support and guidance. I am also grateful to H. O. D. Department of Biotechnology, Goa University; to the ex-director of the National Centre for Antarctic and Ocean Research (NCAOR), Goa, Shri Rasik Ravindra; and to Dr. K. P. Krishnan, scientist at NCAOR for permitting use of the lab facilities and assistance. I would like to thank Dr. Thamban Meloth (programme director, laboratories at NCAOR) for his constant support. I would also like to place on record the assistance given by Mr. Rupesh Kumar Sinha in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flory Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pereira, F. (2017). Manganese-Tolerant Bacteria from the Estuarine Environment and Their Importance in Bioremediation of Contaminated Estuarine Sites. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_10

Download citation

Publish with us

Policies and ethics