Skip to main content

Theragnosis: Nanoparticles as a Tool for Simultaneous Therapy and Diagnosis

  • Chapter
  • First Online:
Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration

Abstract

Theragnostic NPs give new hope in simultaneous diagnosis and therapy of a disease at curable stage. Theragnosis is the fundamental requirement of personalized medicine. For successful theragnosis applications, the imaging agents and drugs should be efficiently delivered, resulting in adequate imaging signal or drug concentration in the targeted disease site. The selection of NPs for imaging, diagnosis and therapy was based on their biomimetic features with higher surface to volume ratio of the nanomaterials. The essential properties of nanomedicines involve early and precise diagnosis of clinical conditions providing an efficient treatment without secondary effects. Thus, nanotheragnostic probes are much better than conventional treatments where the diagnosis and therapy are way apart from each other. This chapter briefs about the recent advancement of nanotheragnosis research with future scope and associated hurdles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya A (2013) Luminescent magnetic quantum dots for in vitro/in vivo imaging and applications in therapeutics. J Nanosci Nanotechnol 13:3753–3768

    Article  CAS  PubMed  Google Scholar 

  • Acharya A, Rawat K, Bhat KA et al (2015) A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells. Mater Res Express 2:115401

    Article  CAS  Google Scholar 

  • Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17:928–934

    Article  CAS  PubMed  Google Scholar 

  • Akerman ME, Chan WC, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alharbi KK, Al-sheikh YA (2014) Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 21:109–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen PM, Bawendi MG (2008) Ternary I-III-VI quantum dots luminescent in the red to near-infrared. J Am Chem Soc 130:9240–9241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asín L, Goya GF, Tres A et al (2013) Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment. Cell Death Dis 4:e596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballou B, Ernst LA, Andreko S et al (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    Article  CAS  PubMed  Google Scholar 

  • Barentsz J, Takahashi S, Oyen W et al (2006) Commonly used imaging techniques for diagnosis and staging. J Clin Oncol 24:3234–3244

    Article  CAS  PubMed  Google Scholar 

  • Barnett SC, Riddell JS (2004) Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat 204:57–67

    Article  PubMed  PubMed Central  Google Scholar 

  • BBC Research. Nanotechnology in medical applications: the global market. Wellesley, MA, BBC Research, Jan 2010. http://www.bccresearch.com/market-research/healthcare/nanotechnology-medical-applications-hlc069a.html. Accessed 3 Jan 2015

  • Béalle G, Di Corato R, Kolosnjaj-Tabi J et al (2012) Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir 28:11834–11842

    Article  PubMed  CAS  Google Scholar 

  • Beer AJ, Schwaiger M (2008) Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 27:631–644

    Article  CAS  PubMed  Google Scholar 

  • Blomley MJ, Cooke JC, Unger EC et al (2001) Microbubble contrast agents: a new era in ultrasound. BMJ 322:1222–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner TL, Adams VR (1999) First MAb approved for treatment of metastatic breast cancer. J Am Pharm Assoc 39:236–238

    Article  CAS  Google Scholar 

  • Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68:112–128

    Article  CAS  PubMed  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  • Bulte JW, Douglas T, Witwer B et al (2002) Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol 2:S332–S335

    Article  Google Scholar 

  • Bunge SD, Boyle TJ, Headley TJ (2003) Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 3:901–905

    Article  CAS  Google Scholar 

  • Burns AA, Vider J, Ow H et al (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448

    Article  CAS  PubMed  Google Scholar 

  • Bwatanglang IB, Mohammad F, Yusof NA (2014) Role of multifunctional nanomaterials in disease diagnosis and therapy. J Chem Pharm Res 6:821–844

    Google Scholar 

  • Cai W, Shin DW, Chen K et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Chen K, Li ZB et al (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Cassidy PJ, Radda GK (2005) Molecular imaging perspectives. J R Soc Interface R Soc 2:133–144

    Article  CAS  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I et al (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha EJ, Jang ES, Sun IC et al (2011) Development of MRI/NIRF ‘activatable’ multimodal imaging probe based on iron oxide nanoparticles. J Control Release 155:152–158

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Nayak TR, Goel S et al (2014a) In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles. Mol Pharm 11:4007–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Shao C, Qu Y et al (2014b) Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. ACS Appl Mater Interfaces 6:19850–19857

    Article  CAS  PubMed  Google Scholar 

  • Cherry SR, Louie AY, Jacobs RE (2008) The integration of positron emission tomography with magnetic resonance imaging. Proc IEEE 96:416–438

    Article  CAS  Google Scholar 

  • Chiang WH, Ho VT, Chen HH et al (2013) Langmuir 29:6434–6443

    Article  CAS  PubMed  Google Scholar 

  • Chiaviello A, Postiglione I, Palumbo G (2011) Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers 3:1014–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9:291–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JS, Park JC, Nah H et al (2008) A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl 47:6259–6262

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Ipe BI, Misra P et al (2009) Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9:2354–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KY, Liu G, Lee S et al (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4:330–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  • Cormode DP, Skajaa T, Fayad ZA et al (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2: Mol Chem Phys 75:790–798

    Article  CAS  Google Scholar 

  • Crooks RM, Zhao M, Sun L et al (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 234:181–190

    Article  CAS  Google Scholar 

  • De Leo V, Catucci L, Falqui A et al (2014) Hybrid assemblies of fluorescent nanocrystals and membrane proteins in liposomes. Langmuir 30:1599–1608

    Article  PubMed  CAS  Google Scholar 

  • de Rosales RTM (2014) Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. J Labelled Comp Radiopharm 57:298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rosales RTM, Tavaré R, Glaria A et al (2011a) 99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjugate Chem 22:455–465

    Article  CAS  Google Scholar 

  • de Rosales RTM, Tavaré R, Paul RL et al (2011b) Synthesis of 64CuII–Bis(dithiocarbamatebisphosphonate) and its conjugation with superparamagnetic iron oxide nanoparticles: in vivo evaluation as dual-modality PET–MRI Agent. Angew Chem Int Ed Engl 50:5509–5513

    Article  CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  CAS  PubMed  Google Scholar 

  • Egusquiaguirre SP, Igartua M, Hernandez RM et al (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93

    Article  CAS  PubMed  Google Scholar 

  • Ell PJ (2006) The contribution of PET/CT to improved patient management. Br J Radiol 79:32–36

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  PubMed  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG et al (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9:1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Zhang M (2010) Nanoparticle-based theragnostics: integrating diagnostic and therapeutic potentials in nanomedicine. J Control Release 146:2–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantechi E, Innocenti C, Zanardelli M et al (2014) A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano 8:4705–4719

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo M, Esenaliev R (2012) PLGA nanoparticles for ultrasound-mediated gene delivery to solid tumors. J Drug Deliv 2012:1–20

    Article  CAS  Google Scholar 

  • Frangioni JV, Kim SW, Ohnishi S et al (2007) Sentinel lymph node mapping with type-II quantum dots methods. Mol Biol 374:147–159

    Article  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD et al (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves MS (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  PubMed  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Groneberg DA, Giersig M, Welte T et al (2006) Nanoparticle-based diagnosis and therapy. Curr Drug Targets 7:643–648

    Article  CAS  PubMed  Google Scholar 

  • Han M, Gao X, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  PubMed  Google Scholar 

  • Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opinion Drug Metab Toxicol 5:403–416

    Article  CAS  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Article  CAS  PubMed  Google Scholar 

  • Heidt T, Nahrendorf M (2012) Multimodal iron oxide nanoparticles for hybrid biomedical imaging. NMR Biomed 26:756–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herranz M, Ruibal A (2012) Optical imaging in breast cancer diagnosis: the next evolution J. Oncol 2012:8637–8647

    Google Scholar 

  • Hirsch LR, Gobin AM, Lowery AR et al (2006) Metal nanoshells. Ann Biomed Eng 34:15–22

    Article  PubMed  Google Scholar 

  • Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horimoto NN, Imura K, Okamoto H (2008) Dye fluorescence enhancement and quenching by gold nanoparticles: direct near-field microscopic observation of shape dependence. Chem Phys Lett 467:105–109

    Article  CAS  Google Scholar 

  • Hu CM, Zhang L, Aryal S et al (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci 108:10980–10985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu F, Li C, Zhang Y et al (2015) Real time in vivo visualization of tumor therapy by a near-infrared-II Ag2S Quantum dot-based theranostic nanoplatform. Nano Res 8:1637–1647

    Article  CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  PubMed  Google Scholar 

  • Hwang do W, Ko HY, Lee JH et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51:98–105

    Article  PubMed  CAS  Google Scholar 

  • Jang WD, Selim KMK, Lee CH et al (2009) Bioinspired application of dendrimers: from bio-mimicry to biomedical applications. Prog Polym Sci 34:1–23

    Article  CAS  Google Scholar 

  • Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett BR, Gustafsson B, Kukis DL et al (2008) Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem 19:1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings LE, Long NJ (2009) ‘Two is better than one’—probes for dual-modality molecular imaging. Chem Commun 28:3511–3524

    Article  CAS  Google Scholar 

  • Jeong H, Huh M, Lee SJ et al (2011) Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 1:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Johannsen M, Thiesen B, Wust P et al (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26:790–795

    Article  PubMed  Google Scholar 

  • Jordan A, Maier-Hauff K, Wust P et al (2006) Nanoparticles for thermotherapy. In: Kumar C (ed) Nanomaterials for cancer therapy. Wiley-VCH, Weinheim, pp 242–258

    Google Scholar 

  • Josephson L, Kircher MF, Mahmood U et al (2002) Near-infrared fluorescent nanoparticles as combined MR/Optical imaging probes. Bioconj Chem 13:554–560

    Article  CAS  Google Scholar 

  • Kelkar SS, Reineke TM (2011) Theragnostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  PubMed  Google Scholar 

  • Key J, Leary JF (2014) Nanoparticles for multimodal in vivo imaging in Nanomedicine. Int J Nanomedicine 9:711–726

    PubMed  PubMed Central  Google Scholar 

  • Khemtong C, Kessinger CW, Gao J (2009) Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem Commun 3497–3510

    Google Scholar 

  • Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23:H217–H247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Zimmer JP, Ohnishi S et al (2005) Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc 127:10526–10532

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim JW, Jeong YY et al (2009a) Antibiofouling polymer coated gold@ iron oxide nanoparticle as a dual contrast agent for CT and MRI. Bull Korean Chem Soc 30:1855–1857

    Article  CAS  Google Scholar 

  • Kim J, Piao Y, Hyeon T (2009b) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kim JH, Park H et al (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Yu MK, Lee TS et al (2011) Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 22:155101

    Article  PubMed  CAS  Google Scholar 

  • Knapp DW, Adams LG, Degrand AM et al (2007) Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol 52:1700–1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolosnjaj J, Szwarc H, Moussa F (2007) Toxicity studies of carbon nanotubes. Adv Exp Med Biol 620:181–204

    Article  PubMed  Google Scholar 

  • Krishanan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Article  CAS  Google Scholar 

  • Lammers T, Kiessling F, Hennink WE et al (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912

    Article  CAS  PubMed  Google Scholar 

  • Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    CAS  PubMed  Google Scholar 

  • Larina IV, Evers BM, Ashitkov TV et al (2005) Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technol Cancer Res Treat 4:217–226

    Article  PubMed  Google Scholar 

  • Lee IH, Bulte JW, Schweinhardt P et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516

    Article  PubMed  Google Scholar 

  • Lee SJ, Koo H, Jeong H et al (2011a) Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release 152:21–29

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Koo H, Lee DE et al (2011b) Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 32:4021–4029

    Article  CAS  PubMed  Google Scholar 

  • Lee DE, Koo H, Sun IC et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qian J, Jiang L et al (2009) Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett 94:063111–063113

    Article  CAS  Google Scholar 

  • Li L, Jiang W, Luo K et al (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang M, Liu X, Cheng D et al (2010) Multimodality nuclear and fluorescence tumor imaging in mice using a streptavidin nanoparticle. Bioconjug Chem 21:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Zhou Q, Wang M et al (2015) Water-soluble L-cysteine-coated Fe-Pt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomedicine 10:2325–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TY, Li YP, Zhang H et al (2013) Tumor-targeting multifunctional micelles for imaging and chemotherapy of advanced bladder cancer. Nanomedicine 8:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Choi HS, Zimmer JP et al (2007) Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J Am Chem Soc 129:14530–14531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yu M, Zhou C et al (2013) Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today 16:477–486

    Article  CAS  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110:146–3195

    Article  CAS  Google Scholar 

  • Lovrić J, Bazzi HS, Cuie Y et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  PubMed  Google Scholar 

  • Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113:1641–1666

    Article  CAS  PubMed  Google Scholar 

  • Mader H, Li X, Saleh S et al (2008) Fluorescent silica nanoparticles. Ann N Y Acad Sci 1130:218–223

    Article  CAS  PubMed  Google Scholar 

  • Maier-Hauff K, Rothe R, Scholz R et al (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60

    Article  CAS  PubMed  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  CAS  PubMed  Google Scholar 

  • Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Medina SH, El-Sayed ME (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109:3141–3157

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Stayton P (2014) Organic nanoparticles for drug delivery and imaging. MRS Bull 39:219–223

    Article  CAS  Google Scholar 

  • Movassaghian S, Merkel OM, Torchilin VP (2015) Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:691–707

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and Characterization of monodispersenanocrystals and close packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Muthu MS, Leong DT, Mei L et al (2014) Nanotheranostics ˗ Application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4:660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahrendorf M, Zhang H, Hembrador S et al (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  • Nie S, Xing Y, Kim GJ et al (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  • Nikalje AP (2015) Nanotechnology and its Applications in Medicine. Med Chem 5:81–89

    Article  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378

    Article  CAS  Google Scholar 

  • Ohnishi S, Lomnes SJ, Laurence RG et al (2005) Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping. Mol Imaging 4:172–181

    PubMed  Google Scholar 

  • Orendorff CJ, Gearheart L, Jana NR et al (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170

    Article  CAS  PubMed  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S et al (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–414

    Article  CAS  Google Scholar 

  • Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Park JH, von Maltzahn G, Ruoslahti E et al (2008) Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 47:7284–7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JC, Yu MK, An GI et al (2010a) Facile preparation of a hybrid nanoprobe for triple-modality optical/PET/MR imaging. Small 6:2863–2868

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Saravanakumar G, Kim K et al (2010b) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Baik HJ, Oh YT et al (2011) A smart polysaccharide/drug conjugate for photodynamic therapy. Angew Chem Int Ed Engl 50:1644–1647

    Article  CAS  PubMed  Google Scholar 

  • Parungo CP, Ohnishi S, Kim SW et al (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129:844–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Paull R, Wolfe J, Hébert P et al (2003) Investing in nanotechnology. Nat Biotechnol 21:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa P, Vinhas R, Fernandes A et al (2015) Gold Nanotheranostics: proof-of-concept or clinical tool? Nanomaterials 5:1853–1879

    Article  CAS  Google Scholar 

  • Pimlott SL, Sutherland A (2011) Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev 40:149–162

    Article  CAS  PubMed  Google Scholar 

  • Pison U, Welte T, Giersig M et al (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533:341–350

    Article  CAS  PubMed  Google Scholar 

  • Rajeeva BB, Menz R, Zheng Y (2014) Towards rational design of multifunctional theranostic nanoparticles: what barriers do we need to overcome? Nanomedicine 9:1767–1770

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Koo H, Sun IC et al (2012) Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 64:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Salvador-Morales C, Gao W, Ghatalia P et al (2009) Multifunctional nanoparticles for prostate cancer therapy. Expert Rev Anticancer Ther 9:211–221

    Article  CAS  PubMed  Google Scholar 

  • Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4:297–305

    Article  CAS  PubMed  Google Scholar 

  • Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433

    Article  CAS  PubMed  Google Scholar 

  • Sarparanta M, Bimbo LM, Rytkönen J et al (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9:654–663

    Article  CAS  PubMed  Google Scholar 

  • Scherzinger AL, Hendee WR (1986) Basic principles of magnetic resonance imaging- An update. Western J Med 143:782–792

    Google Scholar 

  • Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22

    Article  CAS  PubMed  Google Scholar 

  • Shapira A, Livney YD, Broxterman HJ et al (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14:150–163

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Lee I, Baker JR (2008) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 18:586–593

    Article  CAS  Google Scholar 

  • Singh S (2013) Nanostructures: enhancing potential applications in biomedicals. J Biomater Nanobiotechnol 4:12–16

    Article  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80:377–385

    Article  CAS  PubMed  Google Scholar 

  • Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115:2076–2086

    Article  PubMed  Google Scholar 

  • Tada H, Higuchi H, Wanatabe TM et al (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Tasis D, Tagmatarchis N, Georgakilas V et al (2003) Soluble carbon nanotubes. Chemistry 9:4000–4008

    Article  CAS  PubMed  Google Scholar 

  • Taton TA (2002) Nanostructures as tailored biological probes. Trends Biotechnol 20:277–279

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Park I-K, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  • Tunici P, Bulte JW, Bruzzone MG et al (2006) Brain engraftment and therapeutic potential of stem/progenitor cells derived from mouse skin. J Gene Med 8:506–513

    Article  CAS  PubMed  Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  PubMed  Google Scholar 

  • van Nostrum CF (2004) Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev 56:9–16

    Article  PubMed  CAS  Google Scholar 

  • Walia S, Acharya A (2015) Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy Beilstein J Nanotechnol 6:546–558

    CAS  PubMed  Google Scholar 

  • Walia S, Sharma S, Kulurkar PM et al (2016) A bimodal molecular imaging probe based on chitosan encapsulated magneto-fluorescent nanocomposite offers biocompatibility, visualization of specific cancer cells in vitro and lung tissues in vivo. Int J Pharma 498:110–118

    Article  CAS  Google Scholar 

  • Wang L-S, Chuang M-C, Ho JA (2012) Nanotheranostics–a review of recent publications. Int J Nanomedicine 7:4679–4695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmann JK, van Bruggen N, Dinkelborg LM et al (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  PubMed  Google Scholar 

  • Wu H-C, Chang X, Liu L et al (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20:1036–1052

    Article  CAS  Google Scholar 

  • Xia B, Zhang W, Shi J et al (2013) Engineered stealth porous silicon nanoparticles via surface encapsulation of bovine serum albumin for prolonging blood circulation in vivo. ACS Appl Mater Interfaces 5:11718–11724

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Han MK, Viennois E et al (2015) Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7:17745–17755

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Chen K, Huang J et al (2010a) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31:3016–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Lee S, Chen X (2010b) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H, Bu W, Zhang S et al (2012) Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Zhao J, Conti PS et al (2014) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4:290–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Hong H, Grailer JJ et al (2011) cRGD-functionalized, DOX-conjugated, and64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Sun S, Zhou C et al (2015) Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjugate Chem 26:511–519

    Article  CAS  Google Scholar 

  • Yezhelyev MV, Gao X, Xing Y et al (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–667

    Article  CAS  PubMed  Google Scholar 

  • Yi DK, Sun IC, Ryu JH et al (2010) Matrix metalloproteinase sensitive gold nanorod for simultaneous bioimaging and photothermal therapy of cancer. Bioconjug Chem 21:2173–2177

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen W, Zhang J et al (2007) In vitro and in vivo toxicity of CdTe nanoparticles. J Nanosci Nanotechnol 7:497–503

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Lu W, Wen X et al (2011) Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis. J Nucl Med 52:958–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xiao L, Popovic K et al (2013) Novel cancer-targeting SPECT/NIRF dual-modality imaging probe 99mTc-PC-1007: synthesis and biological evaluation. Bioorg Med Chem Lett 23:6350–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Liu J, Dunne M et al (2007) In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications. Pharmaceut Res 24:1193–1201

    Article  CAS  Google Scholar 

  • Zhou C, Long M, Qin Y et al (2011) Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed 50:3168–3172

    Article  CAS  Google Scholar 

  • Zhou J, Yang Y, Zhang CY (2015a) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Mu K, Jiang L et al (2015b) Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging. Int J Nanomedicine 10:1805–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu HW, Xu CL, Wu DH et al (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886

    Article  CAS  PubMed  Google Scholar 

  • Zimmer JP, Kim SW, Ohnishi S (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128:2526–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-IHBT for his constant support and encouragement. The authors are also thankful to Dr. Sudesh Kumar Yadav for his valuable comments and suggestions during the preparation of book chapter. AA acknowledges the financial support from CSIR, GOI in the form of BSC0213 and MLP0068. SW acknowledges CSIR for project fellowship in the form of BSC0213. The CSIR-IHBT Communication Number of this manuscript is 3969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Walia, S., Acharya, A. (2016). Theragnosis: Nanoparticles as a Tool for Simultaneous Therapy and Diagnosis. In: Yadav, S. (eds) Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-10-0818-4_6

Download citation

Publish with us

Policies and ethics