Skip to main content

Molecular Electronics: A Brief Overview of the Status of the Field

  • Chapter
  • First Online:
Single-Molecule Electronics

Abstract

The developments in the field of molecular electronics have seen many successes and many setbacks, but the field continues to inspire scientists around the world, now more than ever. The interest is, certainly, for a large part in the fundamental issues: molecules as conducting elements bring together questions from various fields of study and lead to profound new questions. However, this interest alone would not suffice to explain the large efforts in research. Indeed, the prospects of developing electronics with better performance, higher density, and new functionality are what motivates most of the research. In this introductory chapter, I will attempt to take stock of the field, to evaluate what has been achieved, and to identify the interesting challenges that lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Marcel Dekker, New York/Basel

    Google Scholar 

  2. So F (ed) (2010) Organic electronics, materials, processing, devices and applications. CRC Press, Boca Raton

    Google Scholar 

  3. Cuevas JC, Scheer E (2010) Molecular electronics, an introduction to theory and experiment. World Scientific, Hackensack

    Book  Google Scholar 

  4. Gooding JJ, Ciampi S (2011) The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem Soc Rev 40:2704–2718

    Article  CAS  Google Scholar 

  5. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  6. Langmuir I (1920) The mechanism of the surface phenomena of flotation. Trans Faraday Soc 15:62

    Article  CAS  Google Scholar 

  7. Blodgett KB (1934) Monomolecular films of fatty acids on glass. J Am Chem Soc 56:495–495

    Article  CAS  Google Scholar 

  8. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022

    Article  CAS  Google Scholar 

  9. Mann B, Kuhn H (1971) Tunneling through fatty acid salt monolayers. J Appl Phys 42:4398

    Article  CAS  Google Scholar 

  10. Geddes NJ, Sambles JR, Jarvis DJ, Parker WG (1990) Fabrication and investigation of asymmetric current-voltage characteristics of a metal/Langmuir-Blodgett monolayer/metal structure. Appl Phys Lett 56:1916

    Article  CAS  Google Scholar 

  11. Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T et al (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119:10455–10466

    Article  CAS  Google Scholar 

  12. Metzger RM (1999) Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res 32:950–957

    Article  CAS  Google Scholar 

  13. Lau CN, Stewart DR, Williams RS, Bockrath M (2004) Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett 4:569–572

    Article  CAS  Google Scholar 

  14. Metzger RM, Xu T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B 105:7280–7290

    Article  CAS  Google Scholar 

  15. Rampi MA, Whitesides GM (2002) A versatile experimental approach for understanding electron transport through organic materials. Chem Phys 281:373–391

    Article  CAS  Google Scholar 

  16. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2007) Eutectic Gallium-Indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chemie 120:148–150

    Article  Google Scholar 

  17. Akkerman HB, Blom PWM, de Leeuw DM, de Boer B (2006) Towards molecular electronics with large-area molecular junctions. Nature 441:69–72

    Article  CAS  Google Scholar 

  18. Yan H, Bergren AJ, McCreery R, Della Rocca ML, Martin P, Lafarge P, Lacroix JC (2013) Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions. Proc Natl Acad Sci 110:5326

    Google Scholar 

  19. Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Electronically configurable molecular-based logic gates. Science 285:391–394

    Article  CAS  Google Scholar 

  20. Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, Jeppesen JO, Nielsen KA, Stoddart JF (2004) Molecule-independent electrical switching in Pt/Organic Monolayer/Ti devices. Nano Lett 4:133–136

    Article  CAS  Google Scholar 

  21. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483

    Article  CAS  Google Scholar 

  22. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  23. Boulas C, Davidovits JV, Rondelez F, Vuillaume D (1996) Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys Rev Lett 76:4797

    Article  CAS  Google Scholar 

  24. Wold DC, Frisbie CD (2001) Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. J Am Chem Soc 123:5549–5556

    Article  CAS  Google Scholar 

  25. Cui XD, Zarate X, Tomfohr J, Sankey OF, Primak A, Moore AL, Moore TA, Gust D, Harrias G, Lindsay SM (2002) Making electrical contacts to molecular monolayers. Nanotechnology 13:5

    Article  CAS  Google Scholar 

  26. Binnig G, Rohrer H, Gerber Ch, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57

    Article  Google Scholar 

  27. Joachim C, Gimzewski JK, Schlittler RR, Chavy C (1995) Electronic transparence of a single C60 molecule. Phys Rev Lett 74:2102

    Article  CAS  Google Scholar 

  28. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS (1996) Are single molecular wires conducting? Science 271:1705–1707

    Article  CAS  Google Scholar 

  29. Datta S, Tian W, Hong S, Reifenberger R, Henderson JI, Kubiak CP (1997) Current-Voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys Rev Lett 79:2530–2533

    Article  CAS  Google Scholar 

  30. Han W, Durantini EN, Moore TA, Moore AL, Gust D, Rez P, Leatherman G, Seely GR, Tao N, Lindsay SM (1997) STM contrast, electron-transfer chemistry, and conduction in molecules. J Phys Chem B 101:10719

    Article  CAS  Google Scholar 

  31. Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW Jr, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Conductance switching in single molecules through conformational changes. Science 292:2303

    Article  CAS  Google Scholar 

  32. Leatherman G, Durantini EN, Gust D, Moore TA, Moore AL, Stone S, Zhou Z, Rez P, Liu YZ, Lindsay SM (1999) Carotene as a molecular wire- conducting atomic force microscopy. J Phys Chem B 103:4006–4010

    Article  CAS  Google Scholar 

  33. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294:571

    Article  CAS  Google Scholar 

  34. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys Rev Lett 69:140–143

    Article  CAS  Google Scholar 

  35. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Experimental observation of the transition from weak link to tunnel junction. Physica C 191:484–504

    Google Scholar 

  36. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254

    Article  CAS  Google Scholar 

  37. van Ruitenbeek JM, Alvarez A, Piñeyro I, Grahmann C, Joyez P, Devoret MH, Esteve D, Urbina C (1996) Adjustable nanofabricated atomic size contacts. Rev Sci Instrum 67 108–111

    Article  Google Scholar 

  38. Kergueris C, Bourgoin J-P, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C (1999) Electronic transport through a metal-molecule-metal junction. Phys Rev B 59:12505–12513

    Article  CAS  Google Scholar 

  39. Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nanomechanical oscillations in e single C60 transistor. Nature 407:57–60

    Article  Google Scholar 

  40. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph D (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725

    Article  CAS  Google Scholar 

  41. Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Kondo resonance in a single-molecule transistor. Nature 417:725–729

    Article  CAS  Google Scholar 

  42. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Measurement of the conductance of a hydrogen molecule. Nature 419:906

    Article  CAS  Google Scholar 

  43. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    Article  CAS  Google Scholar 

  44. Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Single-molecule circuits with well-defined molecular conductance. Nano Lett 6:458–462

    Article  CAS  Google Scholar 

  45. Haiss W, Martin S, Scullion LE, Bouffier L, Higgins SJ, Nichols RJ (2009) Anomalous length and voltage dependence of single molecule conductance. Phys Chem Chem Phys 11:10831–10838

    Article  CAS  Google Scholar 

  46. Picaud F, Smogunov A, Dal Corso A, Tosatti E (2003) Complex band structures and decay length in polyethylene chains. J Phys Cond Mat 15:3731

    Article  CAS  Google Scholar 

  47. Choi SH, Kim B, Frisbie CD (2008) Electrical resistance of long conjugated molecular wires. Science 320:1482–1486

    Article  CAS  Google Scholar 

  48. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904

    Article  CAS  Google Scholar 

  49. Michenko A, Vonlanthen D, Meded V, Bürkle M, Li C, Pobelov IV, Bagrets A, Viljas JK, Pauly F, Evers F, Mayor M, Wandlowski T (2010) Influence of conformation on conductance of Biphenyl-Dithiol single-molecule contacts. Nano Lett 10:156–164

    Article  CAS  Google Scholar 

  50. Reichert J, Weber HB, Mayor M, Löhneysen Hv (2003) Low-temperature conductance measurements on single molecules. Appl Phys Lett 82:4137

    Article  CAS  Google Scholar 

  51. Dulić D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402

    Article  CAS  Google Scholar 

  52. Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Simultaneous measurements of electronic conduction and raman response in molecular junctions. Nano Lett 8:919–925

    Article  CAS  Google Scholar 

  53. Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K (2013) Single molecule dynamics at a mechanically controllable break junction in solution at room temperature. J Am Chem Soc 135:1009–1014

    Article  CAS  Google Scholar 

  54. Osorio EA, O’Neill K, Stuhr-Hansen N, Nielsen OF, Bj ornholm T, van der Zant HSJ (2007) Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative. AdV Mater 19:281–285

    Google Scholar 

  55. Tal O, Krieger M, Leerink B, van Ruitenbeek JM (2008) Electron-vibration interaction in single-molecule junctions: from contact to tunneling regimes. Phys Rev Lett 100:196804

    Article  CAS  Google Scholar 

  56. Kim Y, Pietsch T, Erbe A, Belzig W, Scheer E (2011) Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett 11:3734–3738

    Article  CAS  Google Scholar 

  57. Djukic D, van Ruitenbeek JM (2006) Shot noise measurements on a single molecule. Nano Lett 6:789–793

    Article  CAS  Google Scholar 

  58. Djukic D, Thygesen KS, Untiedt C, Smit RHM, Jacobsen KW, van Ruitenbeek JM (2005) Stretching dependence of the vibration modes of a single-molecule Pt-H2-Pt junction. Phys Rev B 71:161402

    Article  CAS  Google Scholar 

  59. Aradhya SV, Frei M, Hybertsen MS, Venkataraman L (2012) Van derWaals interactions at metal/organic interfaces at the single-molecule level. Nat Mater 11:872–876

    Article  CAS  Google Scholar 

  60. Reddy P, Jang, S-Y, Segalman RA, Majumdar A (2007) Thermoelectricity in molecular junctions. Science 315:1568–1571

    Article  CAS  Google Scholar 

  61. Perrin ML, Verzijl CJO, Martin CA, Shaikh AJ, Eelkema R, van Esch JH, van Ruitenbeek JM, Thijssen JM, van der Zant HSJ, Dulić D (2013) Large tunable image charge effects in single-molecule junctions. Nat Nanotechnol 8:282–287

    Article  CAS  Google Scholar 

  62. Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D (2013) Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett 13:2809–28113

    Article  CAS  Google Scholar 

  63. Li Y, Baghernejad M, Qusiy, Al-G, Zsolt Manrique D, Zhang G, Hamill J, Fu Y, Broekmann P, Hong W, Wandlowski T, Zhang D, Lambert C (2015) Three-state single-molecule naphthalenediimide switch: integration of a pendant redox unit for conductance tuning. Angew Chem Int Ed. 54:1–5

    Article  Google Scholar 

  64. Osorio HM, Catarelli S, Cea P, Gluyas JBG, Hartl F, Higgins SJ, Leary E, Low PJ, Martin S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Zeng Q, Costa Milan D (2015) Electrochemical single-molecule transistors with optimized gate coupling. J Am Chem Soc 137:14319–14328

    Article  CAS  Google Scholar 

  65. Lee W, Kim K, Jeong W, Zotti LA, Pauly F, Cuevas JC, Reddy P (2013) Heat dissipation in atomic-scale junctions. Nature 498:209–213

    Article  CAS  Google Scholar 

  66. Temirov R, Lassise A, Anders FB, Tautz FS (2008) Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19:065401

    Article  CAS  Google Scholar 

  67. Schull G, Dappe YJ, González C, Bulou H, Berndt R (2011) Charge injection through single and double carbon bonds. Nano Lett 11:3142–3146

    Article  CAS  Google Scholar 

  68. Schmaus S, Bagrets A, Nahas Y, Yamada TK, Bork A, Bowen M, Beaurepaire E, Evers F, Wulfhekel W (2011) Giant magnetoresistance through a single molecule. Nature Nanotechnol 6:185–189

    Article  CAS  Google Scholar 

  69. Kitaguchi Y, Habuka S, Okuyama H, Hatta S, Aruga T, Frederiksen T, Paulsson M, Ueba H (2015) Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring. Beilstein J Nanotechnol 6:2088

    Article  CAS  Google Scholar 

  70. Lang ND (1995) Resistance of atomic wires. Phys Rev B 52:5335–5342

    Article  CAS  Google Scholar 

  71. Galperin M, Ratner MA, Nitzan A, Troisi A (2008) Nuclear coupling and polarization in molecular transport junctions: beyond tunneling to function. Science 319:1056–1060

    Article  CAS  Google Scholar 

  72. Emberly E, Kirczenow G (1998) State orthogonalization by building a Hilbert space: a new approach to electronic quantum transport in molecular wires. Phys Rev Lett 81:5205–5209

    Article  CAS  Google Scholar 

  73. Tröster P, Schmitteckert P, Evers F (2012) Transport calculations based on density functional theory, Friedel’s sum rule, and the Kondo effect. Phys Rev B 85:115409

    Article  CAS  Google Scholar 

  74. Thygesen KS, Rubio A (2007) Non-equilibrium GW approach to quantum transport in nano-scale contacts. J Chem Phys 126:091101

    Article  CAS  Google Scholar 

  75. Koch J, von Oppen F (2005) Franck-Condon Blockade and Giant Fano Factors in Transport through Single Molecules. Phys Rev Lett 94:206804

    Article  CAS  Google Scholar 

  76. Burzurí E, Yamamoto Y, Warnock M, Zhong X, Park K, Cornia A, van der Zant HSJ (2014) Franck–Condon blockade in a single-molecule transistor. Nano Lett 14:3191–3196

    Article  CAS  Google Scholar 

  77. Perrin ML, Frisenda R, Koole M, Seldenthuis JS, Celis Gil JA, Valkenier H, Hummelen JC, Renaud N, Grozema FC, Thijssen JM, Dulić D, van der Zant HSJ (2014) Large negative differential conductance in single-molecule break junctions. Nat Nanotechnol 9:830–834

    Article  CAS  Google Scholar 

  78. Lee H-W (1999) Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport. Phys Rev Lett 82:2358–2361

    Article  CAS  Google Scholar 

  79. Solomon GC, Andrews DQ, Goldsmith RH, Hansen T, Wasielewski MR, Van Duyne RP, Ratner MA (2008) Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J Am Chem Soc 130:17301

    Article  CAS  Google Scholar 

  80. Guedon CM, Valkenier H, Markussen T, Thygesen KS, Hummelen JC, van der Molen SJ (2012) Observation of quantum interference in molecular charge transport. Nat Nanotechnol 7:305–309

    Article  CAS  Google Scholar 

  81. Ballmann S, Härtle R, Coto PB, Elbing M, Mayor M, Bryce MR, Thoss M, Weber HB (2012) Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions. Phys Rev Lett 109:05680

    Article  CAS  Google Scholar 

  82. Guha S (2015) Moore’s Law turns 50, but will it soon cease to exist? Fortune 19 Apr 2015 http://for.tn/1PYZsVa

  83. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408:541–548

    Article  CAS  Google Scholar 

  84. Webb RA, Washburn S, Umbach CP, Laibowitz RB (1985) Observation of h∕e Aharonov-Bohm oscillations in normal-metal rings. Phys Rev Lett 54:2696

    Article  CAS  Google Scholar 

  85. van der Molen SJ, Liljeroth P (2010) Charge transport through molecular switches. J Phys Condens Matter 22:133001–133001

    Article  CAS  Google Scholar 

  86. Capozzi B, Xia J, Adak O, Dell EJ, Liu Z-F, Taylor JC, Neaton JB, Campos LM, Venkataraman L (2015) Single-molecule diodes with high rectification ratios through environmental control. Nat Nanotechnol 10:522–528

    Article  CAS  Google Scholar 

  87. Dundas D, McEniry EJ, Todorov TN (2009) Current-driven atomic waterwheels. Nat Nanotechnol 4:99–102

    Article  CAS  Google Scholar 

  88. Lü J-T, Brandbyge M, Hedegård P (2010) Blowing the fuse: Berry’s phase and runaway vibrations in molecular conductors. Nano Lett 10:1657–1663

    Article  CAS  Google Scholar 

  89. Kaliginedi V, Rudnev AV, Moreno-García P, Baghernejad M, Huang C, Hong W, Wandlowski T (2014) Promising anchoring groups for single-molecule conductance measurements. Phys Chem Chem Phys 16:23529–23539

    Article  CAS  Google Scholar 

  90. Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15:271–277

    Article  CAS  Google Scholar 

  91. http://www.chem.ualberta.ca/~mccreery/media.html

  92. Ho PKH, Kim J-S, Burroughes JH, Becker H, Li SFY, Brown TM, Cacialli F, Friend RH (2000) Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404:481–484

    Article  CAS  Google Scholar 

  93. Busche C et al (2014) Design and fabrication of memory devices based on nanoscale polyoxometalate clusters. Nature 515:545–549

    Article  CAS  Google Scholar 

  94. Zhu H et al (2015) Redox-active molecular nanowire flash memory for high-performance and high-density non-volatile memory applications. ACS Appl Mater Interfaces 7:27306–27313

    Article  CAS  Google Scholar 

  95. Heath JR, Kuekes PJ, Snider GS, Williams RS (1998) A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280:1716–1721

    Article  CAS  Google Scholar 

  96. Green JE et al (2007) A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445:414–417

    Article  CAS  Google Scholar 

  97. Parkin SSP et al (1999) Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J Appl Phys 85:5828–5833

    Article  CAS  Google Scholar 

  98. Perrin ML, Galan E, Eelkema R, Grozema F, Thijssen JM, van der Zant HSJ (2015) Single-molecule resonant tunneling diode. J Phys Chem C 119:5697–5702

    Article  CAS  Google Scholar 

  99. Li Q, Mathur G, Gowda S, Surthi S, Zhao Q, Yu L, Lindsey JS, Bocian DF, Misra V (2004) Multibit memory using self-assembly of mixed ferrocene/porphyrin monolayers on silicon. Adv Mater 16:133–137

    Article  CAS  Google Scholar 

  100. Zhao Q, Luo Y, Surthi S, Li Q, Mathur G, Gowda S, Larson PR, Johnson MB, Misra V (2005) Redox-active monolayers on nano-scale silicon electrodes. Nanotechnology 16:257–261

    Article  CAS  Google Scholar 

  101. Ullmann K, Coto PB, Leitherer S, Molina-Ontoria A, Martín N, Thoss M, Weber HB (2015) Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett 15:3512–3518

    Article  CAS  Google Scholar 

  102. Jia C, Ma B, Xin N, Guo X (2015) Carbon Electrode–Molecule junctions: a reliable platform for molecular electronics. Acc Chem Res 48:2565–2575

    Article  CAS  Google Scholar 

  103. Cui A, Dong H, Hu W (2015) Nanogap electrodes towards solid state single-molecule transistors. Small 11:6115–6141

    Article  CAS  Google Scholar 

  104. Xiao X, Xu B, Tao N (2004) Conductance titration of single-peptide molecules. J Am Chem Soc 126:5370–5371

    Article  CAS  Google Scholar 

  105. Ohshiro T, Matsubara K, Tsutsui M, Furuhashi M, Taniguchi M, Kawai T (2012) Single-molecule electrical random resequencing of DNA and RNA. Sci Rep 2:501

    Article  CAS  Google Scholar 

  106. Ohshiro T, Tsutsui M, Yokota K, Furuhashi M, Taniguchi M, Kawai T (2014) Detection of post-translational modifications in single peptides using electron tunnelling currents. Nat Nanotechnol 9:835–840

    Article  CAS  Google Scholar 

  107. Livshits GI et al (2014) Long-range charge transport in single G-quadruplex DNA molecules. Nat Nanotechnol 9:1040–1046

    Article  CAS  Google Scholar 

  108. Zhao Y et al (2014) Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat Nanotechnol 9:466–473

    Article  CAS  Google Scholar 

  109. Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas J-L, Stuhr-Hansen N, Hedegård P, Bjørnholm T (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425:698–701

    Article  CAS  Google Scholar 

  110. Kaasbjerg K, Flensberg K (2008) Strong polarization-induced reduction of addition energies in single-molecule nanojunctions. Nano Lett 8:3809

    Article  CAS  Google Scholar 

  111. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnár S, von Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  CAS  Google Scholar 

  112. Vardimon R, Klionsky M, Tal O (2015) Indication of complete spin filtering in atomic-scale nickel oxide. Nano Lett 15:3894–3898

    Article  CAS  Google Scholar 

  113. Murphy P, Mukerjee S, Moore J (2008) Optimal thermoelectric figure of merit of a molecular junction. Phys Rev B 78:161406

    Article  CAS  Google Scholar 

  114. Yuan L, Nerngchamnong N, Cao L, Hamoudi H, del Barco E, Roemer M, Sriramula RK, Thompson D, Nijhuis CA (2015) Controlling the direction of rectification in a molecular diode. Nat Commun 6:6324

    Article  CAS  Google Scholar 

  115. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  Google Scholar 

  116. Tuccitto N, Ferri V, Cavazzini M, Quici S, Zhavnerko G, Licciardello A, Rampi MA (2009) Highly conductive \(\sim \) 40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nat Mater 8:41–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I have profited from many discussions with Sense Jan van der Molen, Herre van der Zant, Ferdinant Evers, Mehdi Tahoori, Alfredo Levy Yeyati, Dago de Leeuw, Juan Carlos Cuevas, Duncan Stewart, and Manabu Kiguchi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. van Ruitenbeek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

van Ruitenbeek, J.M. (2016). Molecular Electronics: A Brief Overview of the Status of the Field. In: Kiguchi, M. (eds) Single-Molecule Electronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0724-8_1

Download citation

Publish with us

Policies and ethics