Skip to main content

Perspectives of Plant Growth-Promoting Actinomycetes in Heavy Metal Phytoremediation

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water, and air. In recent years, heavy metal phytoremediation assisted by plant beneficial actinomycetes has been highly used for cleaning up metal-polluted soils since these bacteria play an essential role in plant growth, metal/nutrient acquisition, metal detoxification, and alleviation of biotic/abiotic stress in plants. Direct plant growth promotion by actinomycetes is based on hormonal stimulation and improved nutrient acquisition by plants. Similarly, diverse mechanisms, viz., soil acidification and production of metal mobilizing/immobilizing substances by actinomycetes, are involved in heavy metal uptake by plants, which is often directly connected with the efficiency of phytoremediation process. Based on these beneficial plant-actinomycetes interactions, it is possible to develop microbial inoculants as environmentally friendly bio-tool for use in heavy metal phytoremediation. In this study, we highlight the diversity and plant growth beneficial features of actinomycetes and discuss their potential role on plant growth and phytoremediation process in metal-polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth-promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Albarracin VH, Amoroso MJ, Abate CM (2005) Isolation and characterization of indigenous copper resistant actinomycete strains. Chem Erde 65:145–156

    Article  CAS  Google Scholar 

  • Albarracın VH, Winik B, Kothe E, Amoroso MJ, Abate CM (2008) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. ABO. J Basic Microbiol 48:323–330

    Article  PubMed  CAS  Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Amoroso MA, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301

    Article  CAS  PubMed  Google Scholar 

  • Andrades-Moreno L, Del Castillo I, Parra R, Doukkali B, Redondo-Gómez S, Pérez-Palacios P (2014) Prospecting metal-resistant plant growth-promoting rhizobacteria for rhizo-remediation of metal contaminated estuaries using Spartina densiflora. Environ Sci Pollut Res 21:3713–3721

    Article  CAS  Google Scholar 

  • Bach TJ, Rohmer M (2012) Isoprenoid synthesis in plants and microorganisms. New concepts and experimental approaches. Springer, New York

    Google Scholar 

  • Ball AS, Betts WB, McCarthy AJ (1989) Degradation of lignin-related compounds by actinomycetes. Appl Environ Microbiol 55:1642–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Dietz KJ (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155:113–121

    Article  CAS  PubMed  Google Scholar 

  • Bèrdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? In: Debabov VG, Dudnik YV, Danilenko VN (eds) Proceedings of the 9th international symposium on the biology of actinomycetes. Russia Scientific Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, pp 13–24

    Google Scholar 

  • Borges-Walmsley MI, Mckeegan KS, Walmsley AR (2003) Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376:313–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Review: microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JE, Marsh PB, Kla JM (eds) Land treatment of hazardous waste. Noyes Data Corp, Park Ridge II, pp 50–76

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth-promotion by hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Chowdhury ASMHK, Das P, Sarkar I, Islam R, Aksharin L, Parvin F, Islam Z, Faris M, Shaekh MPE (2015) Phytoremediation of heavy metals (Ar, Cd, Pb) using transgenic rice plants – an overview. Int J Sci Eng Res 6:878

    Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Delfin EF, Paterno ES (2015) Promotion of upland rice growth by actinomycetes under growth room condition. Asian Int J Life Sci 24:87–94

    Google Scholar 

  • Daboor SM, Haroon AM, Esmael NAE, Hanona SI (2014) Heavy metal adsorption of Streptomyces chromofuscus K101. J Coast Life Med 2:431–437

    CAS  Google Scholar 

  • Dalal JM, Kulkarni NS (2014) Antagonistic and plant growth-promoting potentials of indigenous endophytic actinomycetes of soybean (Glycine max (l) merril). CIBTech J Microbiol 3:1–12

    Google Scholar 

  • Damle NR, Kulkarni SW (2014) Screening of rhizomicroflora from the rhizosphere of Pongamia glabra for their plant growth-promoting and anti-microbial activities. J Environ Res Develop 9:318

    Google Scholar 

  • De Carvalho Costa FE, Soares De Melo I (2012) Endophytic and rhizospheric bacteria from Opuntia ficusindica mill and their ability to promote plant growth in cowpea, Vigna unguiculata (L.) walp. Afr J Microbiol Res 6:1345–1353

    Google Scholar 

  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Res 2013:0–9

    Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Bu¨chel G, Kothe E (2009a) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009b) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009c) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier, Butterworth-Heinemann, Oxford

    Google Scholar 

  • Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2011) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • El Baz S, Baz M, Barakate M, Hassani L, El Gharmali A, Imziln B (2015) Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Sci World J 2015:1–14

    Article  Google Scholar 

  • El Sayed HE, Othaimen HS, Aburas MMA, Jastaniah SD (2015) Efficiency of an Cd-Tolerant actinomycete isolate obtained from wastewater in removal of heavy metals and enhancing plant growth of Zea mays L. plant. Int J Curr Microbiol Appl Sci 4:553–565

    Google Scholar 

  • Elekes CC (2014) Eco-technological solutions for the remediation of polluted soil and heavy metal recovery. In: Hernández-Soriano MC (ed) Environmental risk assessment of soil contamination. In Tech, Rijeka, pp 309–335

    Google Scholar 

  • Elsgaard L, Petersen SO, Debosz K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. Short-term effects on soil microbiology. Environ Toxicol Chem 20:1656–1663

    Article  CAS  PubMed  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase–producing Streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Hardy GEST, Sivasithamparam K, Hussein AM, Kurtboke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythium chloratum, by streptomycete and non-streptomycete actinomycetes. New Phytol 137:495–507

    Article  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GEST (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • El-Tarabily KA, Hardy GEST, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth-promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

    Article  CAS  Google Scholar 

  • Erikson D (1949) The morphology, cytology and taxonomy of the actinomycetes. Annu Rev Microbiol 3:23–54

    Article  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88:689–712

    Article  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth-promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Gadkari D, Morsdorf G, Meyer O (1992) Chemolithoautotrophic assimilation of dinitrogen by Streptomyces thermoautotrophicus UBT1: identification of an unusual N2-fixing system. J Bacteriol 174:6840–6843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Min Process Environ Prot 3:58–66

    Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Chouaia B, Jaouani A, Daffonchio D, Boudabous A, Gtari M (2010) Isolation and characterization of non- Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Apparla S, Bandikinda P, Vijayabharathi R, Bhimineni RK, Rupela O (2013) Evaluation of Streptomyces spp. for their plant growth-promotion traits in rice. Can J Microbiol 59:534–539

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169:40–48

    Article  CAS  PubMed  Google Scholar 

  • Goudjal Y, Zamoum M, Meklat A, Sabaou N, Mathieu F, Zitouni A (2015) Plant growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles (Terfezia leonis Tul.) of the Algerian Sahara. Ann Microbiol. doi:10.1007/s13213-015-1085-2

    Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  PubMed  Google Scholar 

  • Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, Sen K, Shibai H (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485–492

    Article  CAS  PubMed  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamdali H, di Hafi M, Virolle MJ, Ouhdouch Y (2008b) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hamedi J, Dehhaghi M, Mohammdipanah F (2015) Isolation of extremely heavy metal resistant strains of rare actinomycetes from high metal content soils in Iran. Int J Environ Res 9:475–480

    CAS  Google Scholar 

  • Harikrishnan H, Shanmugaiah V, Balasubramanian N (2014a) Optimization for production of indole acetic acid (IAA) by plant growth-promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int J Curr Microbiol Appl Sci 3:158–171

    CAS  Google Scholar 

  • Harikrishnan H, Shanmugaiah V, Balasubramanian N, Sharma MP, Kotchoni SO (2014b) Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against Sheath Blight of rice disease. World J Microbiol Biotechnol 30:3149–3161

    Article  CAS  PubMed  Google Scholar 

  • He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM, Valdes M (2010) Micromonospora – an important microbe for biomedicine and potentially for biocontrol and bio-fuels. Soil Biol Biochem 42:536–542

    Article  CAS  Google Scholar 

  • Imada C (2005) Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek 87:59–63

    Article  CAS  PubMed  Google Scholar 

  • Javaid M, Sultan S (2012) Plant growth-promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. J Basic Microbiol 53:420–428

    Article  PubMed  CAS  Google Scholar 

  • Ji C, Juarez-Hernandez RE, Miller MJ (2012) Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem 4:297–313

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth-promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Kamran MA, Mufti R, Mubariz N, Syed JH, Bano A, Javed MT, Chaudhary HJ (2014) The potential of the flora from different regions of Pakistan in phytoremediation: a review. Environ Sci Pollut Res 21:801–812

    Article  Google Scholar 

  • Karelova E, Harichova J, Stojnev T, Pangallo D, Ferianc P (2011) The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal contaminated site. Biologia 1:18–26

    Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan QM, Afzal M (2015) Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci 5:755–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. O J Ecol 5:375–388

    Google Scholar 

  • Lazzaro A, Widmer F, Sperisen C, Frey B (2008) Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiol Ecol 63:143–155

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Postmaster A, Peng Soon H, Keast D, Carson KC (2012) Siderophore production by actinomycetes isolated from two soil sites in Western Australia. Biometals 25:285–296

    Article  CAS  PubMed  Google Scholar 

  • Lin YB, Wang XY, Li HF, Wang NN, Wang HX, Tang M, Wei GH (2011) Streptomyces zinciresistens sp. nov., a zinc-resistant actinomycete isolated from soil from a copper and zinc mine. Int J Syst Evol Microbiol 61:616–620

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Wang HB, Liu M (2009) Streptomyces alni sp. Nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 59:254–258

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC, Sundaram S (2010) Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 60:1322–1327

    Article  CAS  PubMed  Google Scholar 

  • Masarovičová E, Kráľová K (2012) Plant-heavy metal interaction: phytoremediation, biofortification and nanoparticles. In: Advances in selected plant physiology aspects. In Tech, Rijeka, p. 75─102

    Google Scholar 

  • Mason MG, Ball AS, Reeder BJ, Silkstone G, Nicholls P, Wilson MT (2001) Extracellular heme peroxidases in actinomycetes: a case of mistaken identity. Appl Environ Microbiol 67:4512–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:44–50

    Article  CAS  Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. BioControl 56:811–822

    Article  Google Scholar 

  • Mohandas S, Poovarasan S, Panneerselvam P, Saritha B, Upreti KK, Kamal R, Sita T (2013) Guava (Psidium guajava L.) rhizosphere Glomus mosseae spores harbour actinomycetes with growth-promoting and antifungal attributes. Sci Hortic 150:371–376

    Article  CAS  Google Scholar 

  • Mrinalini JS, Padmavathy S (2014) Isolation, screening and characterization of uranium microremediable actinomycetes from fallen leaves of Azadirachta indica in Western Ghats. J Radioanal Nucl Chem 302:1303–1307

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth-promoters production. World J Microbiol Biotechnol 26:193–203

    Article  CAS  Google Scholar 

  • Panday B, Ghimire P, Agrawal VP (2004) Studies on the antibacterial activities of the actinomycetes isolated from the Khumbu region of Nepal. J Biol Sci 23:44–53

    Google Scholar 

  • Park JO, El-Tarabily KA, Ghisalberti EL, Sivasithamparam K (2002) Pathogenesis of Streptoverticillium albireticuli on Caenorhabditis elegans and its antagonism to soil-borne fungal pathogens. Lett Appl Microbiol 35:361–365

    Article  PubMed  Google Scholar 

  • Pasti MB, Pometto AL, Nuti MP, Crawford DL (1990) Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol 56:2213–2218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel HA, Patel RK, Khristi SM, Parikh K, Rajendran G (2012) Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth-promoting characteristics. Nepal J Biotechnol 2:37–52

    Article  Google Scholar 

  • Pavel VL, Sobariu DL, Tudorache Fertu ID, Statescu F, Gaverilescu M (2013) Symbiosis in the environment biomanagement of soils contaminated with heavy metals. Eur J Sci Theol 9:211–224

    Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Mendez A, Gasco G (2014) Use of phytoremediation and Biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Rafik E, Rahal E, Ahmed L (2014) Isolation and screening of actinomycetes strains producing substances plant growth-promoting. Indo-Am J Agric Vet Sci 2:1–12

    Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rashad FM, Fathya HM, El-Zayata AS, Elghonaimy AM (2015) Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol Res 175:34–47

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Schrempf H, Hill RT (1998) Mercury resistance is encoded by transferable giant linear plasmids in two Chesapeake bay Streptomyces strains. Appl Environ Microbiol 64:3383–3388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinicke M, Schindler F, Roth M, Kothe E (2013) Multi-metal bioremediation by microbial assisted phytoremediation. In: Amoroso MJ, Benimeli CS, Cuozzo SA (eds) Actinobacteria: application in bioremediation and production of industrial enzymes. CRC Press, Boca Raton, pp 87–105

    Chapter  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth-promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rouch DA, Lee BTD, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism choice in bacterial metal resistance. J Ind Microbiol 14:132–141

    Article  CAS  PubMed  Google Scholar 

  • Ruanpanum P, Tangchitsomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 26:1569–1578

    Article  CAS  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Antonie Van Leeuwenhoek 102:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y (2012) Plant growth-promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzo M, Nierhaus KH, Yokoyama S, Fucini P (2006) The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13:871–886

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde 65:131–144

    Article  CAS  Google Scholar 

  • Schutze E, Weist A, Klose M, Wach T, Schumann M, Nietzsche S, Merten D, Baumert J, Majzlan J, Kothe E (2013) Taking nature into lab: biomineralization by heavy metal resistant Streptomycetes in soil. Biogeosciences 10:2345–2375

    Article  Google Scholar 

  • Selvakumar G, Bhatt RM, Upreti KK, Bindu GH, Shweta K (2015) Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth-promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress condition. World J Microbiol Biotechnol 31:833–839

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N (2015) Biocontrol mechanisms of siderophores against bacterial plant pathogens. In: Kannan VR, Bastas KK (eds) Sustainable approaches to controlling plant pathogenic bacteria. CRC Press, Boca Raton, pp 167–190

    Chapter  Google Scholar 

  • Shatheesh Kumar M (2011) Biotechnological potentials of indigenous cyanobacteria in crop improvement and bioremediation. Ph.D thesis, Bharathidasan University, Tamil Nadu

    Google Scholar 

  • Sheng XF, He LY, Zhou L, Shen YY (2009) Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can J Microbiol 55:529–535

    Article  CAS  PubMed  Google Scholar 

  • Shutsrirung A, Chromkaew Y, Pathom-Aree W, Choonluchanon S, Boonkerd N (2013) Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth-promoting activity. Soil Sci Plant Nutr 59:322–330

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth-promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Pandey S, Chaudhary HS (2014) Actinomycetes: tolerance against heavy metals and antibiotics. Int J Bioassays 3:3376–3383

    Google Scholar 

  • Solans M, Vobis G, Cassan F, Luna V, Wall LG (2011) Production of phytohormones by root- associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    Article  CAS  Google Scholar 

  • Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144:461–571

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal-ions. Free Rad Biol Med 18:321–336

    Article  CAS  PubMed  Google Scholar 

  • Summers AO (1985) Bacterial resistance to toxic elements. Trends Biotechnol 3:122–125

    Article  CAS  Google Scholar 

  • Sunil KCR, Swati K, Bhavya G, Nandhini M, Veedashree M, Prakash HS, Kini KR, Geetha N (2015) Streptomyces flavomacrosporus, a multi-metal tolerant potential bioremediation candidate isolated from paddy field irrigated with industrial effluents. Int J Life Sci 3:9–15

    Google Scholar 

  • Tipayno S, Chang-Gi K, Sa T (2012) T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl Soil Ecol 61:137–146

    Article  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth-promoting activities of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74:55–62

    Article  CAS  PubMed  Google Scholar 

  • Valdés M, Perez NO, Santos PEL, Caballero-Mellado J, Pena- Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valencia-Cantero E, Hernandez-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273

    Article  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals in plants and the chemical elements. In: Farago ME (ed) Biochemistry, uptake, tolerance and toxicity. Verlagsgesellschaft, Weinheim, pp 150–177

    Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth-promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556

    Article  CAS  PubMed  Google Scholar 

  • Vinod K, Jaiprakash C, Thamizhmani R, Vimal Raj R, Lall C, Muruganandam N, Arun Govind G, Anwesh M, Reesu R, Chander MP (2014) High metal resistance and metal removal properties of antibiotics producing Actinobacteria isolated from rhizosphere region of Casuarina equisetifolia. Int J Curr Microbiol Appl Sci 3:803–811

    Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 2:11–14

    Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effect of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) Gaertn. Plant Soil 231:81–90

    Article  CAS  Google Scholar 

  • Xing K, Bian GK, Qin S, Klenk HP, Yuan B, Zhang YJ, Li WJ, Jiang JH (2012) Kibdelosporangium phytohabitans sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. containing 1-aminocyclopropane- 1-carboxylic acid deaminase. Antonie Van Leeuwenhoek 101:433–441

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of rhizobacteria isolated from sweet potato rhizosphere. J Biotechnol 6:49–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rajkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Taj, Z.Z., Rajkumar, M. (2016). Perspectives of Plant Growth-Promoting Actinomycetes in Heavy Metal Phytoremediation. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_14

Download citation

Publish with us

Policies and ethics