Skip to main content

Manipulation of Reactive Oxygen Species, Redox and Nitric Oxide Signaling Systems to Activate Plant Innate Immunity for Crop Disease Management

  • Chapter
  • First Online:
Plant Innate Immunity Signals and Signaling Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 441 Accesses

Abstract

Reactive oxygen species (ROS) signaling system involves complex redox processes that require participation by specific signal molecules, such as H2O2 and nitric oxide (NO), and antioxidants, such as tocopherols and riboflavin. ROS signaling network plays a central role in launching the defense. ROS mediates a reiterative signal network underlying systemic induced resistance. ROS appears to interact with various defense signaling systems. ROS induces NO signaling system, salicylic acid (SA) signaling system, ethylene (ET)-mediated signaling system, and jasmonic acid (JA)-dependent signaling system. ROS activates the mitogen-activated protein kinase (MAPK) system. BTH (benzo[1,2,3]thiadiazole-7-carbothioc acid S-methyl ester) is the most successfully developed commercial compound to manipulate ROS signaling system for management of viral, bacterial, and phytoplasma diseases and parasitic plants, which are difficult to be controlled by traditional chemical control methods. BTH has been shown to induce several genes with potential roles in establishing reducing conditions following the oxidative burst induced by it. Thiol-based redox signaling has been suggested to contribute to the activation of a primed state in BTH-treated plants. BTH treatment, which induces redox conditions, activates NPR1 (for non-expresser of PR gene 1) and induces resistance against pathogens. It induced NPR1 mRNA accumulation by several-fold. NPR1 gene is a master regulator of the systemic acquired resistance (SAR) in plants. NPR1 enhances the binding of transcription factors to the promoters of pathogenesis-related (PR) defense genes for activation. Riboflavin is another compound which can be used to manipulate ROS and redox signaling system. It induces H2O2 production. Riboflavin induces priming of defense responses and triggers systemic resistance against pathogens. Vitamin B1 (thiamine) treatment induces systemic acquired resistance in susceptible plants through priming. It is a potential tool to manage pathogens through its action on ROS signaling system. Menadione sodium sulphite (MSB) is a water-soluble addition compound of vitamin K3. It is an effective ROS generator producing superoxide radicals (\( {{\text{O}}_{ 2}}^{ - } \)) and H2O2. MSB treatment induces systemic resistance by activating redox signaling systems. Some herbicides have been shown to act as plant innate immunity system activators. The herbicide lactofen targets protoporphyrinogen oxidase, which in turn causes singlet oxygen generation. Singlet oxygen is involved in triggering ROS-mediated signaling system. Lactofen application provides significant control of fungal and oomycete diseases. Trifluralin, a dinitroaniline herbicide, induces disease resistance against several pathogens by manipulating redox signaling system. Glufosinate ammonium is a nonselective herbicide. It activates ROS-dependent SA signaling system and induces resistance against pathogens. Milsana (Reynoutria sachalinensis formulation) activates ROS-mediated signaling system and is highly effective in controlling powdery mildew diseases in crop plants. β-Aminobutyric Acid (BABA) has been shown to induce disease resistance against various pathogens by triggering ROS production. BABA-induced resistance is mostly based on priming of defense responses rather than on the direct activation of these defense responses. BABA has been shown to prime RbohD gene, which encodes a NADPH oxidase potentially involved in ROS production. Potassium dihydrogen phosphate induces systemic resistance by inducing a rapid generation of superoxide and hydrogen peroxide. Potassium phosphonate triggers ROS signaling system-mediated plant defense responses by rapidly releasing superoxide around the point of infection. Oxycom is a commercially available chemical containing reactive oxygen species. It acts as a plant innate immunity activator. Applications of Oxycom triggers plant immune system downstream of ROS. Several bacterial and fungal biocontrol agents have been shown to induce systemic resistance (ISR) against several plant pathogens in various crop plants. Some of the rhizobacteria activate the plant innate immune system by triggering the ROS signaling system. Pseudomonas fluorescens WCS374 is a potential tool to trigger ROS signaling system and confer resistance against pathogens. Serratia plymuthica ICI270, primes leaves for enhanced attacker-induced accumulation of ROS. It induces accumulation of ROS in leaves and induces systemic resistance. Bacillus mycoides elicits ISR by triggering ROS production. Silicon is another potential tool to enhance defense responses by activating ROS signaling system. Silicon treatment significantly alters the activity of lipoxygenase (LOX), which catalyzes the direct oxygenation of polyunsaturated fatty acids and produces \( {{\text{O}}_{ 2}}^{ - } \). Several silicon-based formulations are available for management of crop diseases. Cysteine-rich receptor-like kinases (CRKs) are connected to redox and ROS signaling. Transgenic plants overexpressing CRK genes show enhanced disease resistance by triggering enhanced ROS production. L-type lectin receptor kinases (LecRKs) have been exploited to develop transgenic disease-resistant plants. These transgenic plants show enhanced production of ROS and trigger defense responses against pathogens. Peroxidases in the cell wall can generate apoplastic H2O2 at neutral to basic pH in the presence of reductants in plant cells. It is possible to generate transgenic plants overexpressing peroxidase gene to overproduce peroxidase resulting in enhanced ROS accumulation. These transgenic plants show enhanced disease resistance. Super oxide dismutase gene has been engineered to activate ROS-mediated immune signaling for disease management. Fungal glucose oxidase gene has been engineered to develop disease-resistant plants. Expression of the fungal glucose oxidase gene leads to elevated production of H2O2 in the transgenic plants resulting in increased resistance. Sodium nitroprusside (SNP) is a NO generator and it effectively controls diseases. NO signaling system can be manipulated by using antisense technology for plant disease management. GSNOR (S-nitroso glutathione reductase) has been exploited using antisense strategy to develop transgenic plants expressing resistance against oomycete and bacterial pathogens. NOS (nitric oxide synthase) has been used to develop transgenic plants. The mammalian NOS isolated from rat brain has been shown to be a potential tool to develop transgenic plants expressing resistance against a wide range of pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi PA, Lazarovits G (2005) Effects of AG3 phosphonate formulations on incidence and severity of Pythium damping-off of cucumber seedlings under growth room, microplot, and field conditions. Can J Plant Pathol 27:420–429

    Article  CAS  Google Scholar 

  • Abbasi PA, Lazarovits G (2006) Seed treatment with phosphonate (AG3) suppresses Pythium damping-off of cucumber seedlings. Plant Dis 90:459–464

    Article  CAS  PubMed  Google Scholar 

  • Abbasi PA, Soltani N, Cuppels D, Lazarovits G (2001) Reduction of bacterial spot of tomato with foliar applications of ammonium lignosulfonate and potassium phosphate. Phytopathology 91:S1

    Article  Google Scholar 

  • Abo-Elyousr KAM, Ibrahim YE, Balabel NM (2012) Induction of disease defensive enzymes with acibenzolar-S-methyl (BTH) and Pseudomonas fluorescens Pf2 and inoculation with Ralstonia solanacearum race 3, biovar 2 (phylotype II). J Phytopathol 160:382–389

    Article  CAS  Google Scholar 

  • Abu-Jawdah Y, Kummert J (2008) Effect of Aliette on AMV infection of bean leaves and on the resultant alterations patterns of proteins and peroxidases. J Phytopathol 108:294–303

    Article  Google Scholar 

  • Acharya BR, Raina S, Maqboo SB, Jagadeeswaran G, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R (2007) Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J 50:488–499

    Article  CAS  PubMed  Google Scholar 

  • Ahn I-P (2008) Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiol 46:213–227

    Article  CAS  Google Scholar 

  • Ahn I-P, Kim S, Lee Y-H (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138:1505–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn I-P, Kim S, Lee Y-H, Suh S-C (2007) Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol 143:838–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajay D, Baby UI (2010) Induction of systemic resistance to Exobasidium vexans in tea through SAR elicitors. Phytoparasitica 8:53–60

    Article  CAS  Google Scholar 

  • Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, Ros Barcelό A, Pedreǹo MA (2009) Class III peroxidases in plant defence reactions. J Expt Bot 60:377–390

    Article  CAS  Google Scholar 

  • Alscher RG, JL Donahue, Cramer CL (1997) Reactive oxygen species and antioxidants: relationship in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Altamiranda EAG, Andreu AB, Daleo GR, Olivieri FP (2008) Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Aust Plant Pathol 37:421–427

    Article  CAS  Google Scholar 

  • Andrews JH, O’Mara JK, McManus PS (2001) Methionine-riboflavin and potassium bicarbonate-polymer sprays control apple flyspeck and sooty blotch. Plant Health Prog. 10.1094/PHP-2001-0706-01-RS

    Google Scholar 

  • Anfoka GH (2000) Benzo-(1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum Mill. cv. volledung) to cucumber mosaic virus. Crop Prot 19:401–405

    Article  CAS  Google Scholar 

  • Anil Kumar R, Vasu K, Velayudhan KT, Ramachandran V, Suseela Bhai R, Unnikrishnan G (2009) Translocation and distribution of 32P labelled potassium phosphonate in black pepper (Piper nigrum L). Crop Prot 28:878–881

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species, metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnaud D, Desclos-Theveniau M, Zimmerli L (2012) Disease resistance to Pectobacterium carotovorum is negatively modulated by the Arabidopsis lectin receptor kinase LecRK-V.5. Plant Signal Behav 7:1070–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Inter 15:1147–1156

    Article  CAS  Google Scholar 

  • Aver’yanov AA, Lapikova VP, Nikolaev ON, Stepanov AI (2000) Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biochemistry (Mosc) 65:1292–1298

    Google Scholar 

  • Asai S, Yoshioka H (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant-Microbe Inter 22:619–629

    Article  CAS  Google Scholar 

  • Babu RM, Sajeena A, Vijayasamundeeswari A, Sreedhar A, Vidhyasekaran P, Reddy MS (2003a) Induction of bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice by treatment with acibenzolar-S-methyl. Ann Appl Biol 143:333–340

    Article  CAS  Google Scholar 

  • Babu RM, Velazhahan R, Vidhyasekaran P, Seetharaman K, Sajeena A (2003b) Induction of resistance to Xanthomonas oryzae pv. oryzae by benzothiadiazole (BTH). Acta Phytopathol Entomol Hung 38:73–78

    Article  CAS  Google Scholar 

  • Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 394:178–183

    Article  CAS  PubMed  Google Scholar 

  • Banerjee J, Das N, Dey P, Maiti MK (2010) Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402:637–643

    Article  CAS  PubMed  Google Scholar 

  • Bargabus RL, Zidack NK, Jacobsen BJ, Sherwood JE (2001) Elicitation of ISR by a nonpathogenic phyllosphere-inhabiting bacterium. Phytopathology 91:S5

    Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Oxidative burst elicited by Bacillus mycoides isolate Bac J, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Mol Plant-Microbe Inter 16:1145–1153

    Article  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Barilli E, Sillero JC, Rubiales D (2010) Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. Eur J Plant Pathol 128:483–493

    Article  CAS  Google Scholar 

  • Barilli E, Rubiales D, Amalfitano C, Evidente A (2015) BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta. 10.1007/s00425-015-2339-8 (in press)

    Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáǹez JA, del Rio LA (1999) Localization of nitric oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Scandalios JG (1979) Developmental expression and intracellular localization of superoxide dismutase in maize. Differentiation 13:133–140

    Article  CAS  Google Scholar 

  • Baysal Ö, Zeller W (2004) Extract of Hedera helix induces resistance on apple rootstock M26 similar to Acibenzolar-S-methyl against fire blight (Erwinia amylovora). Physiol Mol Plant Pathol 65:305–315

    Article  CAS  Google Scholar 

  • Baysal Ö, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52:747–753

    Article  CAS  Google Scholar 

  • Baysal Ö, Gürsoy YZ, Ornek H, Cetinel B, da Silva JAT (2006) Enhanced systemic resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato by dl-β-aminobutyric acid under salt stress. Physiol Plant 129:493–506

    Article  CAS  Google Scholar 

  • Bean TG, Graham TL (2001) A summary of 1999 growth chamber and field trial laboratory assays and 1998 and 1999 field trial disease control results after lactofen application to soybean. Phytopathology 91:S175

    Article  Google Scholar 

  • Becot S, Pajot E, Corre D, Monot C, Silue D (2000) Phytogard® (K2HPO3) induces localized resistance in cauliflower to downy mildew of crucifers. Crop Prot 19:417–425

    Article  CAS  Google Scholar 

  • Bengtsson T, Holefors A, Witzell J, Andreasson E, Liljeroth E (2014a) Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathol 63:193–202

    Article  CAS  Google Scholar 

  • Bengtsson T, Weighill D, Proux-Wera E, Levander F, Resjo S, Burra DD, Moushib LI, Hedley PE, Liljeroth E, Jacobson D, Alexandersson E, Andreasson E (2014b) Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15:315. https://doi.org/10.1186/1471-2164-15-315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Bélanger RR (1998) Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiol 118:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Grenier J, Asselin A (1991) Immunogold localization of pathogenesis-related protein P14 in tomato root cells infected by Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Pathol 38:237–253

    Article  CAS  Google Scholar 

  • Bertona A, Liguori R, Bassi R, Fili V, Filippi G, Saporiti M, Casola F (2000) Activation of natural defense with CGA 245704: a tool for self-defense of plants against pathogens. In: Atti, Giornate fitopatologiche, Perugia, vol 2, 16–20 aprile 2000, Bologna, Italy, pp 27–32

    Google Scholar 

  • Bertoni G (2012) Oxylipins and plant palability. Plant Cell 24:1305

    Article  CAS  PubMed Central  Google Scholar 

  • Besser K, Jarosch B, Langen G, Kogel KH (2000) Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Mol Plant Pathol 1:277–286

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Tian SP, Guo YR, Ge YH, Qin GZ (2006) Sodium silicate reduces postharvest decay on Hami melons: induced resistance and fungistatic effects. Plant Dis 90:279–283

    Article  CAS  PubMed  Google Scholar 

  • Bigirimana J, Höfte M (2002) Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30:159–168

    Article  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Paul Bolwell G (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blee KA, Yang KY, Anderson AJ (2004) Activation of defense pathways: synergism between reactive oxygen species and salicylic acid and consideration of field applicability. Eur J Plant Pathol 110:203–212

    Article  CAS  Google Scholar 

  • Bokshi AI, Morris SC, Deverall BJ (2003) Effects of benzothiadiazole and acetylsalicylic acid on ß-1,3 glucanase activity and disease resistance in potato. Plant Pathol 52:22–27

    Article  CAS  Google Scholar 

  • Bolter C, Brammall RA, Cohen R, Lazarovits G (1993) Glutathione alterations in melon and tomato roots following treatment with chemicals which induce disease resistance to Fusarium wilt. Physiol Mol Plant Pathol 42:321–336

    Article  CAS  Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh C-K, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a tree component system. J Exp Bot 53:1367–1376

    CAS  PubMed  Google Scholar 

  • Borges AA, Cools HJ, Lucas JA (2003) Menadione sodium bisulphate: a novel plant defense activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol 52:429–436

    Article  CAS  Google Scholar 

  • Borges-Pérez A, Fernandez-Falcon MJ (1996) Utilization of compositions which contain menadione for the stimulation of plant metabolism in order to induce their resistance to pathogen and pest and/or accelerate their blooming, Patent WO 96/28026

    Google Scholar 

  • Boshoff M, Kotze JM, Korsten L (1998) Control of bacterial black spot in mango. Yearbook-South Africa Mango growers Association 18:36–39

    Google Scholar 

  • Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweck-Guyot R, Steyer D, Marcic C, Mliki A, Soustre-Gacougnolle I (2012) Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol 13:31. https://doi.org/10.1186/1471-2229-13-31

    Article  CAS  Google Scholar 

  • Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojȁrvi J, Rayapuram C, Idȁnheimo N, Hunter K, Kimura S, Merilo E, Vaattovaara A, Oracz K, Kaufholdt D, Pallon A, Anggoro DT, Glὁw D, Lowe J, Zhou J, Mohammadi O, Puukko T, Albert A, Lang H, Ernst D, Kollist H, Brosche M, Durner J, Borst W, Collinge DB, Karpiński S, Lyngkjær MF, Robatzek S, Wrzaczek M, Kangasjarvi J (2015) Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet. https://doi.org/10.1371/journal.pgen.1005373

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester K, Govers F (2009) Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J Exp Bot 60:4383–4396

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester K, De Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F (2011) The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog 7:e1001327. https://doi.org/10.1371/journal.ppat.1001327

  • Bouwmeester K, Han M, Blanco-Portales R, Song W, Weide R, Guo LY, van der Vossen EA, Govers F (2014) The Arabidopsis lectin receptor kinase LecRK-1.9 enhances resistance to Phytophthora infestans in solanaceous plants. Plant Biotechnol 12:10–16

    Article  CAS  Google Scholar 

  • Bressan A, Purcell AH (2005) Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis 89:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Brisset MN, Cesbron S, Paulin JP (2000) Acibenzolar-S-methyl induces the accumulation of defense-related enzymes in apple and protects from fire blight. Eur J Plant Pathol 106:529–536

    Article  CAS  Google Scholar 

  • Brisson LF, Tenhagen R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaurio R, Scarponi L, Ferrara M, Sidoti P, Bertona A (2002) Induction of systemic acquired resistance in pepper plants by acibenzolar-S-methyl against bacterial disease. Eur J Plant Pathol 108:41–49

    Article  CAS  Google Scholar 

  • Burketová L, Sindelarova M, Sindelar L (1999) Benzothiadiazole as an inducer of & β-1,3-glucanase and chitinase isozymes in sugar beet. Biol Plant 42:279–287

    Article  Google Scholar 

  • Burketová L, Sindelarova M, Sindelar L (2000) Induced resistance to potato virus Y by benzothiadiazole. In: New aspects of resistance research on cultivated plants: virus diseases. Proceedings 7th Aschersleben symposium, Aschersleben, Germany, 17–18 Nov 1999. Beitrage zur Zuchtungsforschung – Bundesanstalt fur Zuchtungsforschung an Kulturpflanzen 6(3):1–3

    Google Scholar 

  • Burketová L, Stillerova K, Feltlova M (2003) Immunohistological localization of chitinase and β-1,3-glucanase in rhizomania-diseased and benzothiadiazole treated sugar beet roots. Physiol Mol Plant Pathol 63:47–54

    Article  CAS  Google Scholar 

  • Buschmann H, Gonsior G, Sauerborn J (2005) Pathogenicity of branched broomrape (Orobanche ramosa) populations on tobacco cultivars. Plant Pathol 54:650–656

    Article  Google Scholar 

  • Cai KZ, Gao D, Luo SM, Zeng RS, Yang JY, Zhu XY (2008) Physiological and cytological mechanisms of silicon induced resistance in rice against blast disease. Physiol Plant 134:324–333

    Article  CAS  PubMed  Google Scholar 

  • Camañes G, Pastor V, Cerezo M, Garcia-Andrade J, Vicedo B, Garcia-Agustin P, Flors V (2012) A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defenses. Plant Physiol 158:1054–1066

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke J, Volko S, Dong X (1997) The Arabidopsis npr1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll JE, Wilcox WF (2001) Physical mode of action of monopotassium phosphate against infections on grape leaves. Phytopathology 91:S193

    Article  Google Scholar 

  • Cavalcanti FR, Resende MLV, Santos Lima JPM, Silveira AG, Oliveira JTA (2006) Activities of antioxidant enzymes and photosynthetic responses in tomato pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Physiol Mol Plant Pathol 68:198–208

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Resende MLV, Silveira AG, Oliveira JTA (2007) An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defence responses against Xanthomonas vesicatoria. Crop Prot 26:729–738

    Article  Google Scholar 

  • Cavalcanti FR, Resende MLV, Ribeiro Junior PM, Pereira RB, Oliveira JTA (2008) Induction of resistance against Verticillium dahliae in cacao by a Crinipellis perniciosa suspension. J Plant Pathol 90:273–280

    CAS  Google Scholar 

  • Chen ZX (2001) A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol 126:473–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang W, Song F, Zheng Z (2006) Phospholipase C/diacylglycerol kinase-mediated signaling is required for benzothiadiazole-induced oxidative burst and hypersensitive cell death in rice suspension-cultured cells. Protoplasma 230:13–21

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang W, Song F, Zheng Z (2007) Phospholipase C/diacylglycerol kinase-mediated signalling is required for benzothiadiazole-induced oxidative burst and hypersensitive cell death in rice suspension-cultured cells. Protoplasma 230:13–21

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ling J, Wu F, Zhang L, Sun Z, Yang H (2013) Effect of hypobaric storage on flesh lignification, active oxygen metabolism and related enzyme activities in bamboo shoots. LWT Food Sci Technol 51:190–195

    Article  CAS  Google Scholar 

  • Chern M-S, Fitzgerald H, Yadav RC, Canlas PE, Dong X, Ronald PC (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101–113

    Article  CAS  PubMed  Google Scholar 

  • Chern M, Canlas PE, Ronald PC (2008) Strong suppression of systemic acquired resistance in Arabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repressive domain. Mol Plant 1:552–559

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen AB, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjær MF, Dudler R, Schweizer P (2004) The germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant-Microbe Inter 17:109–117

    Article  CAS  Google Scholar 

  • Chun HJ, Park HC, Koo SC, Lee JH, Park CY, Choi MS, Kang CH, Baek D, Cheong YH, Yun DJ, Chung WS, Cho MJ, Kim MC (2012) Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol Cells 34:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen R, Riov J, Lisker N, Katan J (1986) Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. sp. melonis. Phytopathology 76:1281–1285

    Article  CAS  Google Scholar 

  • Cohen Y, Reuveni M, Baider A (1999) Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. Eur J Plant Pathol 105:351–361

    Article  CAS  Google Scholar 

  • Cohen Y, Rubin AE, Kilfin G (2010) Mechanisms of induced resistance against Bremia lactucae by DL-β-amino-butyric acid (BABA). Eur J Plant Pathol 126:553–573

    Article  CAS  Google Scholar 

  • Cohen Y, Rubin AE, Vaknin M (2011) Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. Eur J Plant Pathol 130:13–27

    Article  CAS  Google Scholar 

  • Cole DL (1999) The efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance, against bacterial and fungal diseases of tobacco. Crop Prot 18:267–273

    Article  CAS  Google Scholar 

  • Colson-Hanks ES, Deverall BJ (2000) Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to Alternaria leaf spot in cotton. Plant Pathol 49:171–178

    Article  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Inter 19:1062–1071

    Article  CAS  Google Scholar 

  • Cook PJ, Landschoot PJ, Schlossberg MJ (2009) Inhibition of Pythium spp. and suppression of Pythium blight of turfgrasses with phosphonate fungicides. Phytopathology 93:809–814

    CAS  Google Scholar 

  • Cooke LR, Little G (2001) The effect of foliar application of phosphonate formulations on the susceptibility of potato tubers to late blight. Pest Manage Sci 58:17–25

    Article  CAS  Google Scholar 

  • Cools HJ, Ishii H (2002) Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL) for enhanced expression upon fungal pathogen attack. Physiol Mol Plant Pathol 61:273–280

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Rio LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526–527

    Google Scholar 

  • Croft KPC, Voisey CR, Slusarenko AJ (1990) Mechanism of hypersensitive cell collapse: correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L.) leaves-inoculated with an avirulent race of Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 36:49–62

    Article  CAS  Google Scholar 

  • Csinos AS, Pappu HR, McPherson RM, Stephenson MG (2001) Management of Tomato spotted wilt virus in flue-cured tobacco with acibenzolar-S-methyl and imidacloprid. Plant Dis 85:292–296

    Article  CAS  PubMed  Google Scholar 

  • D’Amelio R, Marzachi C, Bosco D (2010) Activity of benzothiadiazole on chrysanthemum yellows phytoplasma (‘Candidatus Phytoplasma asteris’) infection in daisy plants. Crop Prot 29:1094–1099

    Article  CAS  Google Scholar 

  • Da Rocha AB, Velasquez L, Hammerschmidt R (2001) Comparison of two cucumber cultivars to chemical and biological inducers of systemic acquired resistance against Didymella bryoniae. Phytopathology 91:S20

    Article  Google Scholar 

  • Daayf F, Schmidtt A, Bélanger R (1995) The effects of plant extracts of Reynoutria sachalinensis on powdery mildew development and leaf physiology of long English cucumber. Plant Dis 79:577–580

    Article  Google Scholar 

  • Daayf F, Schmidtt A, Bélanger R (1997) Evidence of phytoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis. Plant Physiol 113:719–727

    Article  PubMed  PubMed Central  Google Scholar 

  • Daayf F, Ongena M, El Hadrami I, Bélanger RR (2000) Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew-infected plants with extracts of Reynoutria sachalinensis. J Chem Ecol 26:1579–1593

    Article  CAS  Google Scholar 

  • Daniel R, Guest D (2006) Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol Mol Plant Pathol 67:194–201

    Article  CAS  Google Scholar 

  • Daniel R, Wilson BA, Cahill D (2005) The effect of potassium phosphonate on the response of Xanthorrhoea australis to infection by Phytophthora cinnamomi. Australas Plant Pathol 34:541–548

    Article  CAS  Google Scholar 

  • Dann EK, Muir S (2002) Peas grown in media with elevated plant-available silicon levels have higher activities of chitinase and β-1,3-glucanase, are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australas Plant Pathol 31:9–13

    Article  Google Scholar 

  • Dann E, Diers B, Hammerschmidt R (1999) Suppression of Sclerotinia stem rot of soybean by lactofen herbicide treatment. Phytopathology 89:598–602

    Article  CAS  PubMed  Google Scholar 

  • Dannon EA, Wydra K (2004) Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol Mol Plant Pathol 64:233–243

    Article  CAS  Google Scholar 

  • Datnoff LE, Snyder GH, Deren CW (1992) Influence of silicon fertilizer grades on blast and brown spot development and on rice yields. Plant Dis 76:1011–1013

    Article  CAS  Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • De Meyer G, Audenaert K, Höfte M (1999a) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a gene-expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux JP, Hofte M (1999b) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant-Microbe Inter 12:450–458

    Article  Google Scholar 

  • de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Voss U, Jürgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 11:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant-Microbe Inter 19:1406–1419

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Vleesschauwer D, Chernin L, Höfte MM (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol 9:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deepak SA, Ishii H, Park P (2006) Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiol Mol Plant Pathol 69:52–61

    Article  CAS  Google Scholar 

  • Deepak SA, Shibato J, Ishii H, Ogawa Y, Yoshida Y, Iwahashi H, Masuo Y, Agrawal GK, Rakwal R (2008) Proteomics approach for investigating the disease resistance using cucumber as model plant. Am J Biochem Biotechnol 4:231–238

    Article  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJ, Chen WY, Lin YC, Zimmerli L (2012) The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 8:e1002513

    Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005) A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol 137:831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801–811

    Article  CAS  PubMed  Google Scholar 

  • Druka A, Kudrna D, Kannangara CG, von Wettstein D, Kleinhofs A (2002) Physical and genetic mapping of barley (Hordeum vulgare) germin-like cDNAs. Proc Natl Acad Sci USA 99:850–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil-Maurizi C, Trouvelot S, Frettinger P, Pugin A, Wendehenne D, Poinssot B (2010) β-Aminobutyric acid primes an NADPH oxidase-dependent reactive oxygen species production during grapevine-triggered immunity. Mol Plant-Microbe Inter 23:1012–1021

    Article  CAS  Google Scholar 

  • Dumas B, Sailland A, Cheviet JP, Freyssinet G, Pallett K (1993) Identification of barley oxalate oxidase as a germin-like protein. Comptes Rendus de l’Acadѐmie des Sciences Sѐrie III 316:793–798

    CAS  Google Scholar 

  • Duran A, Nombela C (2004) Fungal cell wall biogenesis: building a dynamic interface with the environment. Microbiology 150:3099–3103

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369–374

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger E, D’Arcangelo MEM (2000) Control trials against grape powdery mildew using monopotassium phosphate (mkp). In: Atti, Giornate fitopatologiche, Perugia, vol 2, 16–20 aprile 2000, Bologna, Italy, pp 221–226

    Google Scholar 

  • Ehsani-Moghaddam B, Charles MT, Carisse O, Khanizadeh S (2008) Regulation of superoxide dismutase isoforms in resistant and susceptible strawberry cultivars subjected to leaf spot disease. Arch Phytopathol Plant Prot 41:492–500

    Article  CAS  Google Scholar 

  • Elam PM, Holmes K (1991) The use of temperature threshold treatments in the control of fireblight on Pyrus kawakami. J Arboric 17:291–293

    Google Scholar 

  • Espunya MC, De Michele R, Gὁmez-Cardenas A, Carmen Martinez M (2012) S-Nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis thaliana. J Exp Bot 63:3219–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faize M, Faize L, Koike N, Ishizaka M, Ishii H (2004) Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associated with potentiation of defense responses. Phytopathology 94:604–612

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z-W, Buschmann H, Sauerborn J (2003) The efficacy of resistance inducing agents for the control of sunflower broomrape (Orobanche cumana Wallr.). Deutscher Tropentag. Technological and Institutional Innovations for Sustainable Rural Development Georg-August-University Gottingen, 8–10 Oct 2003, p 6

    Google Scholar 

  • Fanigliulo A, Comes S, Pacella R, Crescenzi A, Momol MT, Olson SM, Reitz S (2009) Integrated management of viral diseases in field-grown tomatoes in Southern Italy. Acta Hortic (ISHS) 808:387–392

    Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–401

    Article  CAS  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Belanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396–401

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N (2006) Redox regulatory mechanisms in cellular stress responses. Ann Bot (Lond.) 98:289–300

    Article  CAS  Google Scholar 

  • Feechan A, Kwon E, Yun B, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 192:8054–8059

    Article  CAS  Google Scholar 

  • Felcher KJ, Douches DS, Kirk WW, Hammerschmidt R, Li W (2003) Expression of a fungal glucose oxidase gene in three potato cultivars with different susceptibility to late blight (Phytophthora infestans Mont. deBary). J Am Soc Hortc Sci 128:238–245

    Article  CAS  Google Scholar 

  • Fitzgerald HA, Chern M-S, Navarre R, Ronald PC (2004) Overexpression of (At) NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant-Microbe Inter 17:140–151

    Article  CAS  Google Scholar 

  • Fofana B, McNally DJ, Labbé C. Boulanger R, Benhamou N, Séguin A, Bélanger RR (2002) Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant Pathol 61:121–132

    Google Scholar 

  • Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    Article  CAS  PubMed  Google Scholar 

  • Frederick KR, Tung J, Emerick RS, Masiarz FR, Chamberlain SH, Vasavada AM, Rosenberg S, Chakraborty S, Schopter LM, Massey V (1990) Glucose oxidase from Aspergillus niger: sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. Biol Chem 265:3793–3802

    CAS  Google Scholar 

  • Friedrich L, Lawton K, Reuss W, Masner P, Specker N, Gut Rella M, Meier B, Dincher S, Staub T, Uknes S, Metraux JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willitis M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant-Microbe Inter 14:1114–1124

    Article  CAS  Google Scholar 

  • Garbelotto M, Schmidt DJ (2009) Phosphonate controls sudden oak death pathogen for up to 2 years. Calif Agric 63:10–17

    Article  Google Scholar 

  • Gaston B (1999) Nitric oxide and thiol groups. Biochim Biophys Acta 1411:323–333

    Article  CAS  PubMed  Google Scholar 

  • Ge XC, Song FM, Chen YY, Zheng Z (2001) Activities of defense-related enzymes induced by benzothiadiazole in rice to blast fungus. Chin Rice Res Newsl 9:10–11

    Google Scholar 

  • Ge Y-h, Bi Y, Li X, Li M (2008) Induces resistance against Fusarium and pink roots by acibenzolar-S-methyl in harvested muskmelon (cv. Yindi). Agric Sci China 7:58–64

    Article  CAS  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gent DH, Schwartz HF, Khosla R (2004a) Distribution and incidence of Iris yellow spot virus in Colorado and its relation to onion plant population and yield. Plant Dis 88:446–452

    Article  PubMed  Google Scholar 

  • Gent DH, Schwartz HF, Khosla R (2004b) Managing Iris yellow spot virus of onion with cultural practices, host genotype, and novel chemical treatments. Phytopathology 94:S34

    Article  Google Scholar 

  • Gent DH, Krishnamohan S, du Toit LJ, Pappu HR, Fichtner SF, Schwartz HF (2006) Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Dis 90:1468–1480

    Article  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Glazek M, Krzyzinska B (1999) Using of plant resistance activator in protection of winter wheat against fungal diseases. Prog Plant Prot 39:818–822

    Google Scholar 

  • Gómez-Gómez L, Rubio-Moraga A, Ahrazem O (2011) Molecular cloning and characterization of a pathogenesis-related protein CsPR10 from Crocus sativus. Plant Biol 13:297–303

    Article  PubMed  CAS  Google Scholar 

  • Gonsior G, Buschmann H, Szinicz G, Spring O, Sauerborn J (2004) Induced resistance-an innovative approach to manage branched broomrape (Orobanche ramosa) in hemp and tobacco. Weed Sci 52:1050–1053

    Article  CAS  Google Scholar 

  • Gorlach J, Volrath S, Knauf-Beiter G, Hengry G, Beckhove U, Kogel K-H, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen. Curr Biol 10:751–757

    Google Scholar 

  • Govrin EM, Rachmilevitch S, Tiwari BS, Solomon M, Levine A (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96:299–307

    Article  CAS  PubMed  Google Scholar 

  • Graham MY (2005) The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol 139:1784–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham TL, Graham MY (1999) Role of hypersensitive cell death in conditioning elicitation competency and defense potentiation. Physiol Mol Plant Pathol 55:13–20

    Article  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant BR, Dunstan RH, Griffith JM, Niere JO, Smillie RH (1990) The mechanism of phosphonic (phosphorous) acid action in Phytophthora. Australas Plant Pathol 19:115–121

    Article  Google Scholar 

  • Grant JJ, Yun B-W, Loake GJ (2000) Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA, and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582

    Article  CAS  PubMed  Google Scholar 

  • Grennan AK (2007) Protein S-nitrosylation: protein targets and roles in signal transduction. Plant Physiol 144:1237–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinstein A, Lisker N, Katan J, Eshel Y (1984) Herbicide-induced resistance to plant wilt diseases. Physiol Mol Plant Pathol 24:347–356

    Article  CAS  Google Scholar 

  • Gucciardo S, Wisniewski J-P, Brewin NJ, Bornemann S (2007) A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. J Expt Bot 58:1161–1171

    Article  CAS  Google Scholar 

  • Guest D, Grant B (1991) The complex action of phosphanates as antifungal agents. Biol Rev 66:159–187

    Article  Google Scholar 

  • Guevara-Olvera L, Ruiz-Nito ML, Rangel-Cano RM, Torres-Pacheco I, Rivera-Bustamante RF, Muňoz-Sánchez CI, González-Chavira MM, Cruz-Hernandez A, Guevara-González RG (2012) Expression of a germin-like protein gene (CchGLP) from a geminivirus-resistant pepper(Capsicum chinense Jacq.) enhances tolerance to geminivirus infection in transgenic tobacco. Physiol Mol Plant Pathol 78:45–50

    Article  CAS  Google Scholar 

  • Guo F-Q, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol 132:1149–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacisalihoglu G, Ji P, Longo LM, Olson S, Momol TM (2006) Bacterial wilt induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on bacterial wilt in tomato. Crop Prot 26:978–982

    Article  CAS  Google Scholar 

  • Haga M, Kohno Y, Iwata M, Sekizawa Y (1995) Superoxide anion generation in rice blade protoplasts with the blast fungus proteoglucomannan elicitor as determined by CLA-phenyl luminescence and in suppression by treating the elicitor with α-d-mannosidase. Biosci Biotechnol Biochem 59:969–973

    Article  CAS  Google Scholar 

  • Halliwell B (1978) Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett 92:321–326

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology as a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendron Press, Oxford, p 346

    Google Scholar 

  • Hamiduzzaman MM, Jakeb G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant-Microbe Inter 18:819–829

    Article  CAS  Google Scholar 

  • Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Expt Bot 57:1711–1718

    Article  CAS  Google Scholar 

  • Hassan MAE, Buchenauer H (2007) Induction of resistance to fire blight in apple by acibenzolar-S-methyl and dl-3-aminobutyric acid. J Plant Dis Prot 114:151–158

    Article  CAS  Google Scholar 

  • Hassan HM, Fridovich I (1979) Intracellular production of superoxide radical and hydrogen peroxide by redox active compounds. Arch Biochem Biophys 196:385–395

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related cell death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Herman MAB, Davidson JK, Smart CD (2008) Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology 98:1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Higgins J, Wang Y, Browning M, Ruemmele BA, Chandlee JM, Kausch AP, Jackson N (2003) Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp.). Weed Sci 1:130–137

    Google Scholar 

  • Hill SA, Torrance L (1989) Rhizomania disease of sugar beet in England. Plant Pathol 38:114–122

    Article  Google Scholar 

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320

    Article  CAS  Google Scholar 

  • Huang PY, Yeh YA, Liu AC, Cheng CP, Zimmerli L (2014) The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J 79:243–255

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kárenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Inbar M, Doostdar H, Sonoda RM, Leibee GL, Mayer RT (1998) Elicitors of plant defensive systems reduce insect densities and disease incidence. J Chem Ecol 24:135–149

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2003) Benzothiadiazole (BTH) induces cell death independent resistance in Phaseolus vulgaris against Uromyces appendiculatus. J Phytopathol 151:171–180

    Article  CAS  Google Scholar 

  • Iriti M, Rossoni M, Borgo M, Faoro F (2004) Benzothiadiazole enhances resveratrol and anthocyanin biosynthesis in grapevine, meanwhile improving resistance to Botrytis cinerea. J Agric Food Chem 52:4406–4413

    Article  CAS  PubMed  Google Scholar 

  • Isebaert S, Verhoeven R, Haesert G (2002) Disease control by means of induced resistance. Med Fac Landbouuwwet Rijksuniv Gent 67:159–164

    CAS  Google Scholar 

  • Ishida AKN, Souza RM, Resende MLV, Cavalcanti FR, Oliveira DL, Pozza EA (2008) Rhizobactetium and acibenzolar-S-methyl (ASM) in resistance induction against bacterial blight and expression of defense responses in cotton. Trop Plant Pathol 33:27–34

    Article  Google Scholar 

  • Ishii H, Tomita Y, Horio T, Narusaka Y, Nishimura K, Iwamoto S (1999) Induced resistance of acibenzolar-S-methyl (CGA-245704) to cucumber and Japanese pear diseases. Eur J Plant Pathol 105:77–85

    Article  CAS  Google Scholar 

  • Jackson TJ, Burgess T, Colquhoun I, Hardy GEStJ (2000) Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathol 49:147–154

    Google Scholar 

  • Jain SK, Lim G (2001) Pyridoxine and pyridoxamine inhibit superoxide radicals and prevent lipid peroxidation, protein glycosylation and (NaCCKC)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radical Biol Mol Med 30:232–237

    Article  CAS  Google Scholar 

  • Jensen BD, Latunde-Dada AO, Hudson D, Lucas JA (1998) Protection of Brassica seedlings against downy mildew and damping-off by seed treatment with CGA 245704, an activator of systemic acquired resistance. Pestic Sci 52:63–69

    Article  CAS  Google Scholar 

  • Jiang S, Park P, Ishii H (2008) Ultrastructural study on acibenzolar-S-methyl-induced scab resistance in epidermal pectin layers of Japanese pear leaves. Phytopathology 98:585–591

    Article  CAS  PubMed  Google Scholar 

  • Johnson CS, Peek DR, Wright L (2004) Use of burley tobacco cultivars and fungicides to control blue mold in Virginia-2001 to 2003. Phytopathology 94:S47

    Google Scholar 

  • Johnson C, Mhatre A, Arias J (2008) NPR1 preferentially binds to the DNA-inactive form of Arabidopsis TGA2. Biochim Biophys Acta 1779(10):583–589

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, He Z, Patkar R, Zhu Q, Zhong J, Li D, Ronald P, Lamb C, Chattoo BB (2003) Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res 12:577–586

    Article  CAS  PubMed  Google Scholar 

  • Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54:43–55

    Article  CAS  PubMed  Google Scholar 

  • Kamble A, Bhargava S (2007) β-Aminobutyric acid-induced resistance against the necrotrophic pathogen Alternaria brassicae. J Phytopathol 155:152–158

    Article  CAS  Google Scholar 

  • Karjalainen R, Lehtinen A, Hietaniemi V, Pihlava JM, Tilikkala K, Keinanen M, Julkunen-Tiitto R, Jokinen K (2002) Benzothiadiazole and glycine betaine treatments enhance phenolic compound production in strawberry. Acta Hortic 567(I):353–356

    Google Scholar 

  • Kauss H, Jeblick W (1995) Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol 108:1171–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesarwani M, Joo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiang JG, Fukumoto R, Gorbunov NV (2012) Lipid peroxidation after ionizing irradiation leads to apoptosis and autophagy. In: Catala A (ed) Lipid peroxidation. InTech. https://doi.org/10.5772/48189

  • Kilic-Ekici O, Yuen GY (2004) Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol Control 30:446–455

    Article  CAS  Google Scholar 

  • Kim YC, Blee KA, Robins J, Anderson AJ (2001) OxycomTM under field and laboratory conditions increases resistance responses in plants. Eur J Plant Pathol 107:129–136

    Article  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant-Microbe Inter 23:446–457

    Article  CAS  Google Scholar 

  • Kobeasy MI, El-Beltagi HS, El-Shazly MA, Khattab EAH (2011) Induction of resistance in Arachis hypogaea L. against Peanut mottle virus by nitric oxide and salicylic acid. Physiol Mol Plant Pathol 76:112–118

    Article  CAS  Google Scholar 

  • Kohler A, Schwindling S, Conrath U (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol 128:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinidou-Doltsinis S, Schmidtt A (1998) Impact of treatment with plant extracts from Reynoutria sachalinensis (F. Schmidt) Nakai on intensity of powdery mildew severity and yield in cucumber under high disease pressure. Crop Prot 17:649–656

    Article  Google Scholar 

  • Konstantinidou-Doltsinis S, Markellou E, Kasselaki A-M, Fanouraki MN, Koumaki CM, Schmitt A, Liopa-Tsakalidis A, Malathrakis NE (2006) Efficacy of Milsana®, a formulated plant extract from Reynoutria sachalinensis, against powdery mildew of tomato (Leveillula taurica). Biocontrol 51:375–392

    Article  Google Scholar 

  • Kusumoto D, Goldwasser Y, Xie X, Yoneyama K, Takeuchi Y, Yoneyama K (2007) Resistance of red clover to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann Bot 100:537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuźniak E, Sklodowska M (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci 160:723–731

    Article  PubMed  Google Scholar 

  • Kuźniak E, Glowacki R, Chwatko G, Kopczewski T, Wielanek M, Gajewska, Sklodowska M (2014) Involvement of ascorbate, glutathione, protein S-thiolation and salicylic acid in benzothiadiazole-inducible defence response of cucumber against Pseudomonas syringae pv. lachrymans. Physiol Mol Plant Pathol 86:89–97

    Google Scholar 

  • Lamb CJ, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Google Scholar 

  • LaMondia JA (2008) Actigard increases fungicide efficacy against tobacco blue mold. Plant Dis 92:1463–1467

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Google Scholar 

  • Landini S, Graham MY, Graham TL (2002) Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean. Phytochemistry 62:865–874

    Article  Google Scholar 

  • Lane BG, Cuming AC, Frѐgeau j, Carpita NC, Hurkman WJ, Bernier F, Dratewka-Kos E, Kennedy TD (1992) Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur J Biochem 209:961–969

    Google Scholar 

  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242

    CAS  PubMed  Google Scholar 

  • Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91:871–878

    Article  CAS  PubMed  Google Scholar 

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latunde-Dada AO, Lucas JA (2001) The plant defense activator acibenzolar-S-methyl primes cowpea [Vigna anguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiol Mol Plant Pathol 58:199–208

    Article  CAS  Google Scholar 

  • Lawton KA, Friedrich I, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    Article  CAS  PubMed  Google Scholar 

  • Laxalt AM, Raho N, ten Have A, Lamattina L (2007) Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited cells. J Biol Chem 282:21160–21168

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Hwang BK (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790–800

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim JC, Lee MS, Heo WD, Seo HY, Yoon HW, Hong JC, Lee SY, Bahk JD, Hwang I, Cho MJ (1995) Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem 270:21806–21812

    Google Scholar 

  • Lee Y, Yoon I, Suh S, Kim H (2002) Enhanced disease resistance in transgenic cabbage and tobacco expressing a glucose oxidase gene from Aspergillus niger. Plant Cell Rep 20:857–863

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B (1995b) Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301–1305

    Article  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Cornellissen A, Matamala-Garros PAHM, Bakker PAHM, Schippers B (1996) Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur J Plant Pathol 102:21–31

    Article  Google Scholar 

  • Lehtonen NT, Akita M, Frank W, Reski R, Valkonen JPT (2012) Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor. Mol Plant-Microbe Inter 25:363–371

    Article  CAS  Google Scholar 

  • León J, Yalpani N, Raskin I, Lawton MA (1993) Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103:323–328

    Article  PubMed  PubMed Central  Google Scholar 

  • León J, Shulav V, Yalpani N, Lawton MA, Raskin J (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci USA 92:10413–10417

    Article  PubMed  PubMed Central  Google Scholar 

  • Leὁn-Galván F, Joaquin-Ramos AJ, Torres-Pacheco I, Barba de la Rosa AP, Guevara-Olvera L, González-Chavira MM, Ocampo-Velazquez RV, Rico-Garcia E, Guevara-González RG (2011) A germin-like protein gene (GchGLP) of Capsicum chinense Jacq. is induced during incompatible interactions and displays Mn-superoxide dismutase activity. Int J Mol Sci 12:7301–7313

    Google Scholar 

  • Lequeu J, Simon-Plas F, Fromentin J, Etienne P, Petitot A-S, Blein J-P, Suty L (2005) Proteasome comprising a β1 inducible subunit acts as a negative regulator of NADPH oxidase during elicitation of plant defense reactions. FEBS Lett 579:4879–4886

    Article  CAS  PubMed  Google Scholar 

  • Leskovar DI, Kolenda K (2002) Strobilurin + acibenzolar-S-methyl controls white rust without inducing leaf chlorosis in spinach. Ann Appl Biol 140:171–175

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Leὁn J, Lamotte O, Mѐtraux JP (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liljeroth E, Bengtsson T, Wiik L, Andreasson E (2010) Induced resistance in potato to Phytophthora infestans-effects of BABA in greenhouse and field tests with different potato varieties. Eur J Plant Pathol 127:171–183

    Article  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, Stamler J (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116:617–628

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ruan Y, Lin Z, Wei R, Peng Q, Guan C, Ishii H (2008) Antagonism between acibenzolar-S-methyl-induced systemic acquired resistance and jasmonic acid-induced systemic acquired susceptibility to Colletotrichum orbiculare infection in cucumber. Physiol Mol Plant Pathol 72:141–145

    Article  CAS  Google Scholar 

  • Lotan-Pompan M, Cohen R, Yarden O, Portnov V, Burger Y, Katzir N (2007) Trifluralin herbicide-induced resistance of melon to Fusarium wilt involves expression of stress- and defence-related genes. Mol Plant Pathol 8:9–22

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol 140:1126–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love AJ, Yun B-W, Laval V, Loake GJ, Milner JL (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139:935–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch DV, Thompson JE (1984) Lipoxygenase-mediated production of superoxide anion in senescing plant tissue. FEBS Lett 173:251–254

    Article  CAS  Google Scholar 

  • Ma W, Berkowitz GA (2007) The grateful dead: calcium and cell death in plant innate immunity. Cell Microbiol 9:2571–2585

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148:818–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffi D, Iriti M, Pigni M, Vannini C, Faoro F (2011) Uromyces appendiculatus infection in BTH-treated bean plants: ultrastructural details of a lost fight. Mycopathologia 171:209–221

    Article  PubMed  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HJ, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Inter 19:123–129

    Article  CAS  Google Scholar 

  • Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ (2011) GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 181:540–544

    Article  CAS  PubMed  Google Scholar 

  • Malolepsza U (2006) Induction of disease resistance by acibenzolar-S-methyl and o-hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Prot 25:956–962

    Article  CAS  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in flue-cured tobacco against Tomato spotted wilt virus. Phytopathology 98:196–204

    Article  CAS  PubMed  Google Scholar 

  • Manning VA, Chu AL, Steeves JE, Wolpert TJ, Ciuffetti LM (2009) A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol Plant-Microbe Inter 22:665–676

    Article  CAS  Google Scholar 

  • Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci E, Aleandri MP, Chilosi G, Magro P (2010) Induced resistance by β-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. J Phytopathol 158:659–667

    Article  CAS  Google Scholar 

  • Maruthasalam S, Liu YL, Sun CM, Chen PY, Yu CW, Lee PF, Lin CH (2010) Constitutive expression of a fungal glucose oxidase gene in transgenic tobacco confers chilling tolerance through the activation of antioxidative defence. Plant Cell Rep 29:1035–1048

    Article  CAS  PubMed  Google Scholar 

  • Matheron ME, Porchas M (2003) Evaluation of potential chemical management tools for powdery mildew on lettuce. Phytopathology 93:S58

    Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxson KL, Jones AL (2002) Management of fire blight with gibberellin inhibitors and SAR inducers. Acta Hortc 590:217–223

    Article  CAS  Google Scholar 

  • Maxon-Stein K, He SY, Hammerschmidt R, Jones AL (2002) Effect of treating apple trees with acibenzolar-S-methyl on fire blight and expression of pathogenesis-related protein genes. Plant Dis 86:785–790

    Article  Google Scholar 

  • McPherson RM, Stephenson MG, Lahue SS, Mullis SW (2005) Impact of early season thrips management on reducing the risks of spotted wilt virus and suppressing aphid populations in flue-cured tobacco. J Econ Entomol 98:124–134

    Article  Google Scholar 

  • Medeiros FCL, Resende MLV, Medeiros FHV, Zhang HM, Paré PW (2009) Defense gene expression induced by a coffee-leaf extract formulation in tomato. Physiol Mol Plant Pathol 74:175–183

    Article  CAS  Google Scholar 

  • Mersha Z, Zhang S, Fu Y, Mo X, Raid RN, Hau B (2013) Efficacy of acibenzolar-S-methyl and β-aminobutyric acid for control of downy mildew in greenhouse grown basil and peroxidase activity in response to treatment with these compounds. J Phytopathol 161:154–164

    Article  CAS  Google Scholar 

  • Meur G, Budatha M, Gupta AD, Prakash S, Kirti PB (2006) Differential induction of NPR1 during defense responses in acibenzolar. Physiol Mol Plant Pathol 68:128–137

    Article  CAS  Google Scholar 

  • Milosevic N, Slusarenko AJ (1996) Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiol Mol Plant Pathol 49:143–158

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vanderpoele K, Gollery M, Shuloev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–308

    Article  CAS  PubMed  Google Scholar 

  • Momol MT, Olson SM, Funderburk JE, Stavisky J, Marois JJ (2004) Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Dis 88:882–890

    Google Scholar 

  • Montesinos E, Vilardell P (2001) Effect of bactericides, phosphonates and nutrient amendmends on blast of dormant flower buds of pear: field evaluation for disease control. Eur J Plant Pathol 107:787–794

    Article  CAS  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S (1998) Induced resistance responses in maize. Mol Plant-Microbe Inter 11:543–658

    Article  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mouhanna AM (2000) Rizomania: Untersuchungen zur epidemiologie und systemisch aktivierten resistenz (SAR) bei der Zuckerrübe. Justus-Liebig-Universität Geissen, Germany, p 239

    Google Scholar 

  • Mouhanna A, Schlösser E (1998) Effect of BION on the viruses and their vector in rizomania of sugar beets. Med Fac Landbouww Univ Gent 63(3b):977–982

    CAS  Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in Arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mol Plant-Microbe Inter 23:340–351

    Article  CAS  Google Scholar 

  • Mur LAJ, Santosa IE, Laarhoven LJJ, Holton NJ, Harren FJM, Smith AR (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215

    PubMed  PubMed Central  Google Scholar 

  • Murray F, Llewellyn D, McFadden H, Last D, Dennis ES, Peacock WJ (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breeding 5:219–232

    Article  CAS  Google Scholar 

  • Nandeeshkumar P, Sarosh BR, Ramachandra KK, Prakash HS, Shekar Shetty H (2009) Elicitation of resistance and defense related proteins by β-amino butyric acid in sunflower against downy mildew pathogen Plasmopara halstedii. Arch Phytopathol Plant Prot 42:1020–1032

    Article  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Horio T, Ishii H (1999) Comparison of local and systemic induction of acquired disease resistance in cucumber plants treated with benzothiadiazoles or salicylic acid. Plant Cell Physiol 40:388–395

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    Article  CAS  PubMed  Google Scholar 

  • Nelson KA, Renner KA, Hammerschmidt R (2002) Effects of protoporphyrinogen oxidase inhibitors on soybean (Glycine max L) response, Sclerotinia sclerotiorum disease development and phytoalexin production by soybean. Weed Technol 16:353–359

    Article  CAS  Google Scholar 

  • Neuhaus JM (1999) Plant chitinases. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 77–105

    Google Scholar 

  • Nischwitz C, Csinos AS, Mullis SW, Hickman LL, Stevenson KL, Gitaitis RD (2008) Effect of transplant age, tobacco cultivar, acibenzolar-S-methyl, and imidacloprid on tomato spotted wilt infection in flue-cured tobacco. Plant Dis 92:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Nombela G, Pascual S, Aviles M, Guillard E (2005) Benzothiadiazole induces local resistance to Bemisia tabaci (Hemiptera: Aleyrodidae) in tomato plants. J Econ Entomol 98:2266–2271

    Article  CAS  PubMed  Google Scholar 

  • O’Brein JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel FM, Bolwell GP (2012) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158:2013–2027

    Article  CAS  Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, Guven K, Iriarte FB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AAR, Nishijima W (2014) Induction of resistance to papaya black spot elicited by Acibenzolar-S-methyl. Plant Pathol J 13:120–124

    Article  CAS  Google Scholar 

  • Olivieri FP, Lobato MC, Altamiranda EG, Daleo GR, Huarte M, Guevara MG, Andreu AB (2009) BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. Eur J Plant Pathol 123:47–56

    Article  CAS  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Oosthuyse SA (1998) Cost reduction of powdery mildew control in mango with mono potassium phosphate. Yearbook-South African Mango Growers’ Association 18:40–42

    Google Scholar 

  • Orober M, Siegrist J, Buchenaur H (2002) Mechanisms of phosphate-induced disease resistance in cucumber. Eur J Plant Pathol 108:345–353

    Article  CAS  Google Scholar 

  • Osswald WF, Stangarlin JR, Nicholson RL, Brummer M, Wulff NA, Di Piero RM, Piccinin E, Di Ciero L, Hoto FV, Pascholati SF (2004) The effect of acibenzolar-S-methyl on phytoalexin and PR-protein induction on sorghum mesocotyls and on Colletotrichum sublineolum. Summa Phytopathol 30:415–420

    CAS  Google Scholar 

  • Otte O, Barz W (1996) The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200:238–246

    Article  CAS  Google Scholar 

  • Pajot E, Silué D (2005) Evidence that dl-3-aminobutyric acid and acibenzolar-S-methyl induce resistance against head rot disease of broccoli. Pest Manage Sci 61:1110–1114

    Article  CAS  Google Scholar 

  • Pajot E, Le Corre D, Silué D (2001) Phytogard® and DL-β-aminobutyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L.). Eur J Plant Pathol 107:861–869

    Google Scholar 

  • Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC (2001) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem 276:3090–3097

    Article  CAS  PubMed  Google Scholar 

  • Pappu HR, Csinos AS, McPherson RM, Jones DC, Stephenson MG (2000) Effect of acibenzolar-S-methyl and imidacloprid on suppression of tomato spotted wilt Tospovirus in flue-cured tobacco. Crop Prot 19:349–354

    Article  CAS  Google Scholar 

  • Park J, Gu Y, Lee Y, Yang Z, Lee Y (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol 134:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkunan V, Johnson CS, Xu L, Peng Y, Tolin SA, Eisenback JD (2013) Induction and maintenance of systemic acquired resistance by acibenzolar-S-methyl in three cultivated tobacco types. Plant Dis 97:1221–1226

    Article  CAS  PubMed  Google Scholar 

  • Pasini C, D’Aquila F, Curir P, Gullino ML (1996) Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Prot 16:251–256

    Article  Google Scholar 

  • Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Perazzoli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol Control 58:74–82

    Article  Google Scholar 

  • Pérez-de-Luque A, Eizenberg H, Grenz JH, Sillero JC, Avila C, Sauerborn J, Rubiales D (2010) Broomrape management in faba bean. Field Crops Res 115:319–328

    Article  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants plsO14. https://doi.org/10.1093/aobpla/pls014

  • Petsikos-Panayotarou N, Schmitt A, Markellou E, Kalamarakis AE, Tzempelikou K, Siranidou E, Konstantinidou-Doltsinis S (2002) Management of cucumber powdery mildew by new formulations of Reynoutria sachalinensis (F. Schmidt) Nakai extract. Z Pflanzenkrankh Pflanzenschutz 109:478–490

    Google Scholar 

  • Pieterse CMJ, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456–464

    Article  CAS  PubMed  Google Scholar 

  • Pospieszny H, Folkman W (2000) Protection of plants against viruses by benzothiadiazole. J Plant Prot Res 40:26–29

    Google Scholar 

  • Potlakayala SD, Reed DW, Covello PS, Fobert PR (2007) Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic acid. Phytopathology 97:794–802

    Article  CAS  PubMed  Google Scholar 

  • Prats E, Rubiales D, Jorrin J (2002) Acibenzolar-S-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiol Mol Plant Pathol 60:155–162

    Article  CAS  Google Scholar 

  • Pushpalatha HG, Mythrashree SR, Shetty R, Geetha NP, Sharathchandra RG, Amruthesh KN, Shetty HS (2007) Ability of vitamins to induce downy mildew resistance and growth promotion in pearl millet. Crop Prot 26:1674–1681

    Article  CAS  Google Scholar 

  • Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    Article  CAS  PubMed  Google Scholar 

  • Qin GZ, Tian SP (2005) Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95:69–75

    Article  PubMed  Google Scholar 

  • Qiu X, Guan P, Wang M-L, Moore PH, Zhu YJ, Hu J, Borth W, Albert HH (2004) Identification and expression analysis of BTH induced genes in papaya. Physiol Mol Plant Pathol 65:21–30

    Article  CAS  Google Scholar 

  • Rabinowitch HD, Privalle CT, Fridovich I (1987) Effects of paraquat on the green alga Dunaliella salina: protection by the mimic of superoxide dismutase, desferal-Mn(IV). Free Radical Biol Med 3:125–131

    Article  CAS  Google Scholar 

  • Räisänen SR, Lehenkari P, Tasanen M, Rahkila P, Härkönen PL, Väänänen HK (1999) Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J 13:513–522

    Article  PubMed  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, Schatz PF, Grabber JH, Steinhart F (2004) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96

    Article  CAS  Google Scholar 

  • Ramesh Sundar A, Velazhahan R, Viswanathan R, Padmanabhan P, Vidhyasekaran P (2001) Induction of systemic resistance to Colletotrichum falcatum in sugarcane by a synthetic signal molecule, Acibenzolar-S-methyl (CGA-245704). Phytoparasitica 29:231–242

    Article  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    Article  CAS  Google Scholar 

  • Randoux B, Renard D, Nowak E, Sanssené J, Courtois J, Durand R, Reignault P (2006) Inhibition of Blumeria graminis f. sp. tritici germination and partial enhancement of wheat defenses by Milsana. Phytopathology 96:1278–1286

    Article  CAS  PubMed  Google Scholar 

  • Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66:108–115

    Article  CAS  Google Scholar 

  • Resende MLV, Nojosa GBA, Cavalcanti LS, Aquilar MAG, Silva LHCP, Perez JO, Andrade GCG, Carvalho GA, Castro RM (2002) Induction of resistance in cocoa against Crinipellis perniciosa and Verticillium dahliae by acibenzolar-S-methyl (ASM). Plant Pathol 51:621–628

    Article  CAS  Google Scholar 

  • Reuveni R, Dor G, Raviv M, Reuveni M, Tuzun S (2000) Systemic resistance against Sphaerotheca fuliginea in cucumber plants exposed to phosphate in hydroponics system, and its control by foliar spray of monopotassium phosphate. Crop Prot 19:355–361

    Article  CAS  Google Scholar 

  • Reuveni M, Zahavi T, Cohen Y (2001) Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA). Phytoparasitica 29:125–133

    Article  CAS  Google Scholar 

  • Rietz S, Bernsdorff FEM, Cai D (2012) Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. J Expt Bot 63:5507–5519

    Article  CAS  Google Scholar 

  • Rochon A, Boyle P, Wignes T, Fobert PR, Després C (2006) The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines. Plant Cell 18:3670–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues FA, Vale FXR, Datnoff LE, Prabhu AS, Korndörfer GH (2003) Effect of rice growth stages and silicon on sheath blight development. Phytopathology 93:256–261

    Article  PubMed  Google Scholar 

  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Bélanger C (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177–183

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Jurick WM II, Datnoff LE, Jones JB, Rollins JA (2005) Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiol Mol Plant Pathol 66:144–159

    Article  CAS  Google Scholar 

  • Romanazzi G, Musetti R, Marzachi C, Casati P (2009) Induction of resistance in the control of phytoplasma diseases. Petria 19:113–129

    Google Scholar 

  • Romanazzi G, Murolo S, Feliziani E (2013) Effects of an innovative strategy to contain grapevine Bois noir: field treatment with resistance inducers. Phytopathology 103:785–791

    Article  CAS  PubMed  Google Scholar 

  • Rustérucci C, Espunya MC, Diaz M Chabannes M, Martinez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Google Scholar 

  • Ryals JA, Neuenschwander KH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 336–340

    Google Scholar 

  • Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK (2006) Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. Plant Pathol J 22:339–347

    Article  Google Scholar 

  • Sakomoto A, Ueda M, Morikawa H (2002) Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett 515:20–24

    Article  Google Scholar 

  • Sale P (1999) Phosphonate fungicide injections work wonders with avocado root rot. Orchardist 72:50–55

    Google Scholar 

  • Sang Y, Cui D, Wang X (2001) Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol 126:1449–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saniewski M (1979) Questions about occurrence and possible roles of prostaglandins in the plant kingdom. Acta Hortic 91:73–81

    Article  Google Scholar 

  • Santén K, Martilla S, Liljeroth E, Bryngelsson T (2005) Immunocytochemical localization of the pathogenesis-related PR-1 protein in barley leaves after infection by Bipolaris sorokiniana. Physiol Mol Plant Pathol 66:45–54

    Article  CAS  Google Scholar 

  • Sauerborn J, Buschmann H, Ghiasvand Ghiasi K, Kogel K-H (2002) Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche cumana. Phytopathology 92:59–64

    Article  CAS  PubMed  Google Scholar 

  • Schaffrath U, Freydl E, Dudler R (1997) Evidence for different signaling pathways activated by inducers of acquired resistance in wheat. Mol Plant-Microbe Inter 10:779–783

    Article  CAS  Google Scholar 

  • Schneider S, Ullrich WR (1994) Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol Mol Plant Pathol 45:291–304

    Article  CAS  Google Scholar 

  • Schreiber K, Desveaux D (2008) Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol J 24:245–268

    Article  CAS  Google Scholar 

  • Schweizer P, Christoffel A, Dudler R (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20:541–552

    Article  CAS  PubMed  Google Scholar 

  • Seebold KW, Kucharek TA, Datnoff LE, Correa-Victoria FJ, Marchetti MA (2001) The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology 91:63–69

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar P, Arvinth S, Maruthasalam S, Lin CH (2013) Disease resistance conferred by constitutive expression of a fungal glucose oxidase gene in transgenic tobacco plants. Asian J Plant Sci 1. 10.3923/ajps.2013.128.136

    Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  • Silue D, Pajot E, Cohen Y (2002) Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by dl-β-amino-n-butanoic acid (BABA). Plant Pathol 51:97–102

    Article  CAS  Google Scholar 

  • Singh P, Chien CC, Mishra S, Tsai CH, Zimmerli L (2012a) The Arabidopsis lectin receptor kinase-VI.2 is a functional protein kinase and is dispensable for basal resistance to Botrytis cinerea. Plant Signal Behav 8:e22611

    Google Scholar 

  • Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Front Plant Sci 7:124

    Google Scholar 

  • Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW (2012b) The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24:1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sklodowska M, Gajewski E, Kuzniak E, Mikiciński A, Sobiczewski P (2010) BTH-mediated antioxidant system responses in apple leaf tissues. Sci Hortic 125:34–40

    Article  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein-3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 99:11640–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobiczewski P, Krupiński G, Berczyński S, Basak A (2001) The effect of resistance inducers on the suppression of fire blight (Erwinia amylovora) on apple shoots and pear fruitlets. Phytopathol Pol 22:171–182

    Google Scholar 

  • Soylu EM, Soylu S, Baysal Ö (2003) Induction of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. J Plant Pathol 85:175–181

    CAS  Google Scholar 

  • Stadnik MJ, Buchenauer H (2000) Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f sp tritici. Physiol Mol Plant Pathol 57:25–34

    Article  CAS  Google Scholar 

  • Sun W, Zhang J, Fan Q, Xue G, Li Z, Liang Y (2010) Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Eur J Plant Pathol 128:39–49

    Article  CAS  Google Scholar 

  • Suo Y, Leung DWM (2002) BTH-induced accumulation of extracellular proteins and blackspot disease in rose. Biol Plant 45:273–279

    Article  CAS  Google Scholar 

  • Tada T, Kanzaki H, Norita E, Uchiyama H, Nakamura I (1996) Decreased symptoms of rice blast disease on leaves of bar-expressing transgenic rice plants following treatment with bialaphos. Mol Plant-Microbe Inter 9:762–764

    Article  CAS  Google Scholar 

  • Taheri P, Höfte M (2006) Riboflavin induces resistance in rice against Rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier. Commun Appl Biol Sci Ghent Univ 71:255–258

    CAS  Google Scholar 

  • Taheri P, Höfte M (2007a) Induction of systemic defense responses in rice against the sheath blight pathogen Rhizoctonia solani, by means of riboflavin. Commun Agric Appl Biol Sci 72:983–987

    CAS  PubMed  Google Scholar 

  • Taheri P, Höfte M (2007b) Riboflavin-induced resistance against rice sheath blight functions through the potentiation of lignin formation and jasmonic acid signaling pathway. Commun Agric Appl Biol Sci 72:309–313

    CAS  PubMed  Google Scholar 

  • Tally A, Oostendorp M, Lawton K, Staub T, Bassi B (1999) Commercial development of elicitors of induced resistance to pathogens. In: Inducible Plant Defenses against Pathogens and Herbivores, (AA Agrawal, S Tuzun, E Bent, eds), APS Press, St Paul, pp357–369

    Google Scholar 

  • Terry LA, Joyce DC (2000) Suppression of grey mould on strawberry fruit with the chemical plant activator acibenzolar. Pest Manage Sci 56:989–992

    Article  CAS  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13:225–233

    Article  CAS  PubMed  Google Scholar 

  • Thao HTB, Yamakawa T (2009) Phosphite (phosphorous acid): Fungicide, fertilizer or bio-stimulator. Soi Sci Plant Nutr 55:228–234

    Article  CAS  Google Scholar 

  • Thompson JE, Legge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344

    Article  CAS  PubMed  Google Scholar 

  • Thomson SV, Brisset MN, Chartier R, Paulin JP (1999a) Induced resistance in apple and pear seedlings to fire blight by Bion and correlation with some defense related enzymes. Acta Hortic 489:583–588

    Article  CAS  Google Scholar 

  • Thomson SV, Gouk SC, Paulin JP (1999b) Efficacy of Bion® (Actigard®) to control fire blight in pear and apple orchards in USA, New Zealand, and France. Acta Hortic 489:589–595

    Article  CAS  Google Scholar 

  • Thuong VT, Jitareerat P, Uthairatanakij A (2015) Eliciting plant defense on anthracnose disease in chili (Capsicum annuum Linn.) by sodium nitroprusside solution. J Food Nutr Sci 3:20–27. https://doi.org/10.11648/jfns.s.2015030102.14

    Article  CAS  Google Scholar 

  • Ton J, Jakab G, Toquin V, Iavicoli A, Flors V, Maeder MN, Métraux J-P, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid-induced priming pathways in Arabidopsis. Plant Cell 17:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi L, Zazzerini A (2000) Interactions between Plasmopara helianthi, Glomus mosseae, and two plant activators in sunflower plants. Eur J Plant Pathol 106:735–744

    Article  CAS  Google Scholar 

  • Tran H, Ficke A, Aslimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  CAS  PubMed  Google Scholar 

  • Uchimiya H, Iwata M, Nojiri C, Samarajeewa PK, Takamatsu S, Ooba S, Anzai H, Christensen AH, Quail PH, Toki S (1993) Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Nat Biotechnol 11:835–836

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inzé D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vawdrey LL, Grice KE, Peterson RA, De Faveri J (2004) The use of metalaxyl and potassium phosphonate, mounds, and/or Phytophthora root rot of papaya in far northern Queensland. Australas Plant Pathol 33:103–107

    Article  CAS  Google Scholar 

  • Vĕchet L, Martinkova L, Sindelarova M, Burketova L (2005) Compounds of natural origins inducing winter wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici. Plant Soil Environ 51:469–475

    Google Scholar 

  • Vĕchet L, Burketova L, Sindelarova M (2009) A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp. tritici) in wheat under field conditions. Crop Prot 28:151–154

    Article  Google Scholar 

  • Venkatesan S, Radjacommare R, Nakkeeran S, Chandrasekaran A (2010) Effect of biocontrol agent, plant extracts and safe chemicals in suppression of Mungbean Yellow Mosaic Virus (MYMV) in blackgram (Vigna mungo). Arch Phytopathol Plant Prot 43:59–72

    Article  CAS  Google Scholar 

  • Verhagen B, Trotel-Aziz P, Jeandet P, Baillieul F, Aziz A (2011) Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production. Phytopathology 101:768–777

    Google Scholar 

  • Véronési C, Delavault P, Simier P (2008) Acibenzolar-S-methyl induces resistance in oilseed rape (Brassica napus L) against branched broomrape (Orobanche ramosa L). Crop Prot 28:104–108

    Article  CAS  Google Scholar 

  • Vidhyasekaran P (2002) Bacterial disease resistance in plants: molecular biology and biotechnological applications. Haworth Press, Binghamton, p 452

    Google Scholar 

  • Vidhyasekaran P (2004) Concise encyclopedia of plant pathology. Haworth Press, Binghamton, p 619

    Book  Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, 2nd edn. CRC Press, Taylor Francis Group, Boca Raton, p 510

    Book  Google Scholar 

  • Vidhyasekaran P (2014) PAMP signals in plant innate immunity: signal perception and transduction. Springer, Dordrecht, p 442

    Book  Google Scholar 

  • Vidhyasekaran P (2015) Plant hormone signaling systems in plant innate immunity. Springer, Dordrecht, p 458

    Google Scholar 

  • Vidhyasekaran P (2016) Switching on plant innate immunity signaling systems: bioengineering and molecular manipulation of PAMP-PIMP-PRR signaling complex. Springer, Dordrecht, p 358

    Book  Google Scholar 

  • Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, Fritig B (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci 83:155–161

    Article  CAS  Google Scholar 

  • Vranová E, Inzé D, Van Brueusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Fiers M, Ellendorff U, Wang Z, deWit PJGM, Angenent GC, Thomma BPHJ (2010) The diverse roles of extracellular leucine-rich repeat-containing receptor-like proteins in plants. Critic Rev Plant Sci 29:285–299

    Article  CAS  Google Scholar 

  • Wegmann K, von Elert E, Harlof H-J, Stadler M (1991) Tolerance and resistance to Orobanche. In: Wegmann K, Musselman L (eds) Progress in Orobanche research. Proceedings of the international workshop Orobanche research, Tübingen, Germany, pp 318–321

    Google Scholar 

  • Wendehenne D, Durner J, Chen Z, Klessig D (1998) Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidases. Phytochemistry 47:651–657

    Article  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  PubMed  Google Scholar 

  • Whittaker MM, Whittaker JW (2002) Characterization of recombinant barley oxalate oxidase expressed by Pichia pastoris. J Biol Inorg Chem 7:136–145

    Article  CAS  PubMed  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell & Environ 31:622–631

    Google Scholar 

  • Wisler GC, Liu H-Y, Duffus JE (1994) Beet necrotic yellow vein virus and its relationship to eight sugar beet furo-like viruses from the United States. Plant Dis 78:995–1001

    Google Scholar 

  • Wisler GC, Lewellen RT, Sears JL, Liu HY, Duffus JE (1999) Specificity of TAS-ELISA for beet necrotic yellow vein virus and its application for determining rhizomania resistance in field-grown sugar beets. Plant Dis 83:864–870

    Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, Van den Elzen PJM, Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3:619–528

    Google Scholar 

  • Wrzaczek M, Broschѐ M, Salojȁrvi J, Kangasjȁrvi S, Idȁnheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjarvi J (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10:95. https://doi.org/10.1186/1471-2229-10-95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wünsche H, Baldwin IT, Wu J (2011) S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62:4605–4616

    Google Scholar 

  • Wurms K, Labbé C, Benhamou N, Bélanger RR (1999) Effects of Milsana and benzothiadiazole on the ultrastructure of powdery mildew haustoria on cucumber. Phytopathology 89:728–736

    Article  CAS  PubMed  Google Scholar 

  • Yalpani N, Altier DJ, Barbour E, Cigan AL, Scelonge CJ (1993) Production of 6-methylsalicylic acid by expression of a fungal polyketide synthase activates disease resistance in tobacco. Plant Cell 13:1401–1409

    Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  CAS  PubMed  Google Scholar 

  • Yang K-Y, Blee KA, Zhang S, Anderson AJ (2002) OxycomTM treatment suppresses Pseudomonas syringae infection and activates a mitogen-activated protein kinase pathway in tobacco. Physiol Mol Plant Pathol 61:249–256

    Google Scholar 

  • Yang K, Rong W, Qi L, Li J, Wei X, Zhang Z (2013) Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Sci Rep 3:3021. https://doi.org/10.1038/srep03021

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh Y-H, Chang Y-H, Huang P-Y, Huang J-B, Zimmerli L (2015) Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci 6:322. https://doi.org/10.3389/fpls.2015.00322

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanism and analysis. Chem Rev 111: 5944–5972

    Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase NOS and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003a) A gain of function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Google Scholar 

  • Zhang C, Czymmek KJ, Shapiro AD (2003b) Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant-Microbe Inter 16:962–972

    Article  CAS  Google Scholar 

  • Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51:167–174

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Klassen W, Mo X, Pingsheng Jr, Gevens AJ (2011) Evaluation of acibenzolar-S-methyl and silicic acid for control of Phytophthora blight caused by Phytophthora capsici in squash. Proc Fla State Hort Sci 124:154–161

    Google Scholar 

  • Zhao XM, She XP, Yu W, Liang XM, Du YG (2007) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in resistance of tobacco to Tobacco mosaic virus. J Plant Pathol 89:55–65

    CAS  Google Scholar 

  • Zhen W, Chen X, Liang H, Hu Y, Gao Y, Lin Z (2000) Enhanced late blight resistance of transgenic potato expressing glucose oxidase under the control of pathogen-inducible promoter. Chin Sci Bull 45:1982–1986

    Article  CAS  Google Scholar 

  • Zhu YJ, Qiu X, Moore PH, Borth W, Hu J, Ferreira S, Albert HH (2003) Systemic acquired resistance induced by BTH in papaya. Physiol Mol Plant Pathol 63:237–248

    Article  CAS  Google Scholar 

  • Ziadi S, Barbedette S, Godard JF, Monot C, Le Corre D, Silue D (2001a) Production of pathogenesis-related proteins in the cauliflower (Brassica oleracea var. botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl. Plant Pathol 50:579–586

    Article  CAS  Google Scholar 

  • Ziadi S, Poupard P, Brisset MN, Paulin JP, Simoneau P (2001b) Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid. Physiol Mol Plant Pathol 59:33–43

    Article  CAS  Google Scholar 

  • Ziadi S, Barbedette S, Godard JF, Monot C, Le Corre D, Silue D (2008) Production of pathogenesis-related proteins in the cauliflower (Brassica oleracea var. botrytis)-downy mildew (Peronospora parasitica) pathosystem treated with acibenzolar-S-methyl. Plant Pathol 50:579–586

    Google Scholar 

  • Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci USA 97:12920–12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerli L, Metraux J-P, Mauch-Mani B (2001) β-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann G, Bȁumlein H, Mock HP, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zottini M, Costa A, De Michele R, Ruzzene M, Carimi F, Lo Schiavo F (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vidhyasekaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidhyasekaran, P. (2020). Manipulation of Reactive Oxygen Species, Redox and Nitric Oxide Signaling Systems to Activate Plant Innate Immunity for Crop Disease Management. In: Plant Innate Immunity Signals and Signaling Systems. Signaling and Communication in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1940-5_3

Download citation

Publish with us

Policies and ethics