Skip to main content

Safety Assessment of Nanoprobes

  • Chapter
  • First Online:
Gastric Cancer Prewarning and Early Diagnosis System

Part of the book series: Translational Medicine Research ((TRAMERE))

  • 620 Accesses

Abstract

Up to date, a lot of nanoprobes were designed and prepared for tumor imaging and therapy. These nanoprobes have to be evaluated and then are used for clinical application. This chapter summarized a systematic assessment method of the safety of nanoprobes, and existed difficulty and challenge. Nanomaterials still require a lot of research based on the current status of the safety assessment, and this is just the start of a new cross-cutting areas, and need to use research tools and knowledge of nanotechnology, biology, medicine, chemistry and physics and other fields to study, so this is a full opportunities for scientific innovation opportunity of human needs and the forefront of science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.

    Article  CAS  PubMed  Google Scholar 

  2. Chen HY, Zhang X, Dai SH, et al. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics. 2013;3(9):633–49.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang C, Li ZM, Liu B, et al. Dendrimer modified SWCNTs for high efficient delivery and intracellular imaging of surviving siRNA. Nano Biomed Eng. 2013;5(3):125–30.

    CAS  Google Scholar 

  4. Homan KA, Souza M, Truby R, et al. Silver nanoplate contrast agents for in vivo molecular photoacoustic imaging. ACS Nano. 2012;6(1):641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li W, Zhao Z, Xiong J, et al. The modification experimental study in vivo of nano-bone gelatin. Artif Cells Nanomed Biotechnol. 2013;6:1–7.

    CAS  Google Scholar 

  6. Oberdorster G, Sharp Z, Atudorei V, et al. Traslocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45.

    Article  CAS  PubMed  Google Scholar 

  7. Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;8:1172–8.

    Article  Google Scholar 

  8. Tan JF, Shah S, Thomas A, et al. The influence of size, shape and vessel geometry on nanoparticle distribution. Micofluid Nanofluidics. 2013;14(1–2):77–87.

    Article  CAS  Google Scholar 

  9. Crayton SH, Elias DR, Al Zaki A, et al. ICP-MS analysis of lanthanide-doped nanoparticles as a non-radiative, multiplex approach to quantify biodistribution and blood clearance. Biomaterials. 2012;33(5):1509–19.

    Article  CAS  PubMed  Google Scholar 

  10. Balasubramanian SK, Jittiwat J, Manikandan J, et al. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials. 2010;31:2034–42.

    Article  CAS  PubMed  Google Scholar 

  11. De Jong WH, Hagens WI, Krystek P, et al. Particles size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–9.

    Article  PubMed  Google Scholar 

  12. Fraga S, Ana B, Maria ES, et al. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomed : Nanotechnol, Biol Med. 2014;10(8):1757–66.

    Article  CAS  Google Scholar 

  13. Yamago S, Tokayama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene:14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 1995;2:385–9.

    Article  CAS  PubMed  Google Scholar 

  14. Jani PU, Mccarthy DE, Florence AT. Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Intl J Pharmaceut. 1994;105:157–68.

    Article  CAS  Google Scholar 

  15. Gamer AO, Leibold E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro. 2006;20:301–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lademann J, Weigmann H, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12:247–56.

    Article  CAS  PubMed  Google Scholar 

  17. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006;91:159–65.

    Article  CAS  PubMed  Google Scholar 

  18. Baroli B, Ennas MG, Loffredo F, et al. Pentration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–12.

    Article  CAS  PubMed  Google Scholar 

  19. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114:165–72.

    Article  PubMed  Google Scholar 

  20. Terentyuk GS, Maslyakova AV, Suleymanova LV, et al. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J Biophotonics. 2009;2:292–302.

    Article  CAS  PubMed  Google Scholar 

  21. Elder A, Gelein R, Finkelstein JN, et al. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci. 2005;2:614–29.

    Article  Google Scholar 

  22. Bar-llan O, Albrecht RM, Fako VE, et al. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small. 2009;5:1897–910.

    Article  Google Scholar 

  23. Chithrani BD, Ghazani AA, Chan WC, et al. Determining the size and shape dependence of gold nanoparticles uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hirn S, Manuela SB, Caesten S, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77:407–16.

    Article  CAS  PubMed  Google Scholar 

  25. Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103(9):3357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng Y, Zong Y, Ke T, et al. Pharmacokinetics, biodistribution and contrast enhanced MR blood pool imaging of Gd-DTPA cystine copolymers and Gd-DPTA cystine diethy1 ester co-polymers in a rat model. Pharm Res. 2006;23:1736–42.

    Article  CAS  PubMed  Google Scholar 

  27. Hagens WI, Oomen AG, de Jong WH, et al. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol. 2007;49:217–29.

    Article  CAS  PubMed  Google Scholar 

  28. Renaud G, Hamilton RL, Haval RJ. Hepatic metabolism of colloidal gold-low-density lipoprotein complexes in the rat: evidence for bulk excretion of lysosomal contents into bile. Hepatology. 1989;9:380–92.

    Article  CAS  PubMed  Google Scholar 

  29. Souris JS, Lee CH, Cheng CT, et al. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials. 2012;31:5564–74.

    Article  Google Scholar 

  30. Johnston HJ, Hutchison G, Christensen FM, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40:328–46.

    Article  CAS  PubMed  Google Scholar 

  31. Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Natl Biotecnol. 2007;25:1165–70.

    Article  CAS  Google Scholar 

  32. Choi CH, Zuckerman JE, Webster P, et al. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A. 2011;108(16):6656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pollinger K, Hennig R, Bauer S, et al. Biodistribution of quantum dots in the kidney after intravenous injection. J Nanosci Nanotechnol. 2014;14:3313–9.

    Article  CAS  PubMed  Google Scholar 

  34. Manabe M, Tatarazako N, Kinoshita M. Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae. Aquat Toxicol. 2011;105:576–81.

    Article  CAS  PubMed  Google Scholar 

  35. Wang YY, Lai SK, Suk JS, et al. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem. 2008;47:9575–781.

    Article  Google Scholar 

  36. Braydich-Stolle L, Hussain S, Schlager JJ, et al. In vitro cytotoxicity of nanoparticles in mammalian stem cells. Toxicol Sci. 2005;88:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goodman CM, Mccusker CD, Yilmaz T, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15:897–900.

    Article  CAS  PubMed  Google Scholar 

  38. Derfus AM, Chen AA, Min DH, et al. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007;18:1391–6.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang CL, Zhou ZJ, Zhi X, et al. Insights into the distinguishing stress-induced cytotoxicity of chiral gold nanoclusters and the relationship with GSTPI. Theranostics. 2015;5(2):134–49.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang P, Bao L, Zhang CL, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9797–809.

    Google Scholar 

  41. Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:9.

    Google Scholar 

  42. Kagan VE, Tyurina YY, Tyurina VA, et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett. 2006;165:88–100.

    Article  CAS  PubMed  Google Scholar 

  43. Basarkar A, Singh J. Poly(lactide-co-glycolide)-poly-methacrylate nanoparticles for intra muscular delivery of plasmid encoding interleukin-10 to prevent auto immune diabetes in mice. Pharm Res. 2009;26:72–81.

    Article  CAS  PubMed  Google Scholar 

  44. Wu W, Lee WK, Ryoo JW, et al. Suppression of collagen-induced arthritis by single administration of poly(lactic-co-glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. A rthritis Rheum. 2002;46:1109–20.

    Article  Google Scholar 

  45. Salvador M, Flahaut E. Complement activation and protein adsorption by carbon nanotubes. Mol Immunol. 2006;43:193–201.

    Article  Google Scholar 

  46. Gao ZC, Shen GX, Zhao XN, et al. Carbon dots, a safety nano-scale substance to immunologic system of mice. Nanoscale Res Lett. 2013;8:276.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nehler MR, Tayior LM, Porter JM. Iatrogenic vascular trauma. Semin Vasc Surg. 1998;11:283–93.

    CAS  PubMed  Google Scholar 

  48. Christie MS, John DF, Wenh G. The differential cytotoxicity of water soluble fullerenes. Nano Lett. 2004;4:1881.

    Article  Google Scholar 

  49. Moller W, Hofer T, Ziesenis A, et al. Ultrafine particles cause cytoskeletal dysfunction in macrophages. Toxicol Appl Pharm. 2002;182:197.

    Article  Google Scholar 

  50. Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Sci Total Environ. 2004;326:1–31.

    Article  CAS  PubMed  Google Scholar 

  51. Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med. 2004;229:383–92.

    CAS  Google Scholar 

  52. Christiane B, Rasmus F, Yuya H, et al. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicity Lett. 2012;3:286–92.

    Google Scholar 

  53. Christie MS, Andre MG, Kevin DA. Nano C60 cytotoxicity is due to lipid peroxidation action. Biomaterials. 2005;26:7587.

    Article  Google Scholar 

  54. Li N, Sioutas C, Cho A, et al. Ultrafine particlate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;3:455.

    Google Scholar 

  55. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11.

    Article  CAS  Google Scholar 

  56. Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum Exp Toxicol. 2013;32:186–95.

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalez L, Thomassen LC, Plas G, et al. Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology. 2010;4:382–95.

    Article  PubMed  Google Scholar 

  58. Sankar P, Telang AG, Kalaivanan R, et al. Effects of nanoparticle-encapsulated curcumin on arsenic-induced liver toxicity in rats. Enviromental Toxicol. 2013;2:1–10.

    Google Scholar 

  59. Paget V, Sergent J A, Grall R, et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines[J]. Nanotoxicology. 2014;8(1):46–56.

    Google Scholar 

  60. Abdelhalim MA, Moussa SA. The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: in vivo. Saudi J Biol Sci. 2013;20:177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang YC, Black KC, Luehmann H, et al. A comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013;7(3):2068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang ZJ, Wang LM, Wang J, et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater. 2012;24:1418–23.

    Article  CAS  PubMed  Google Scholar 

  63. Li YY, Wen T, Zhao RF, et al. Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano. 2014;8(11):11529–42.

    Article  CAS  PubMed  Google Scholar 

  64. Nima ZA, Mahmood M, Xu Y, et al. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep. 2014;4:4752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang ZJ, Wang J, Nie X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc. 2014;136:7317–26.

    Article  CAS  PubMed  Google Scholar 

  66. Wang K, Ma J, He M, et al. Toxicity assessments of near-infrared upconversion iuminescent LaF3:Yb,Er in early development of zebrafish embryos. Theranostics. 2013;3:258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V. and Shanghai Jiao Tong University Press, Shanghai

About this chapter

Cite this chapter

Liu, Y., Wang, Y., Cui, D. (2017). Safety Assessment of Nanoprobes. In: Cui, D. (eds) Gastric Cancer Prewarning and Early Diagnosis System. Translational Medicine Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0951-2_14

Download citation

Publish with us

Policies and ethics