Skip to main content

Zoonotic Transmission of Antimicrobial Resistant Enterococci: A Threat to Public Health or an Overemphasised Risk?

  • Chapter
  • First Online:
Zoonoses - Infections Affecting Humans and Animals

Abstract

Enterococci are intrinsically resistant to various antimicrobial classes and able to acquire resistance to clinically relevant drugs via horizontal transfer. Consequently, limited therapeutic options are available for treatment of enterococcal infections. Zoonotic transfer of antimicrobial resistance in enterococci has been studied for two decades. The first studies hypothesizing possible animal-to-human transmission of resistant strains and mobile genetic elements are dated 1993. Since then a considerable amount of papers has been published on this subject, providing the groundwork for important decisions limiting antimicrobial use in animal husbandry. In this chapter, the relative contribution by animal enterococci to antimicrobial resistance in human infections was reviewed taking into consideration the potential impact associated with different enterococcal species, animal hosts, epidemiological routes and mechanisms of transfer. The authors conclude that potential zoonotic risks mainly concern horizontal transfer of resistance genes and clonal transmission of multidrug-resistant Enterococcus faecalis sequence type ST16. The impact of clonal transmission from food animals to people appears to be negligible for other multidrug-resistant E. faecalis and E. faecium lineages responsible for hospital infections. Although it has been demonstrated experimentally that antimicrobial resistant enterococci of animal origin can transiently colonise the human digestive tract and transfer their resistance genes to the indigenous microflora, the actual risks associated with foodborne transmission are controversial, mainly limited to poultry meat products and possibly differ between geographical areas. Research is warranted to explore the ecology of enterococcal mobile genetic elements carrying resistance genes of clinical relevance and to develop suitable technologies to perform this type of studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM (1995) Occurrence of glycopeptide resistance among Enterococcus faecium isolates from conventional and ecological poultry farms. Microb Drug Resist 1:255–257

    CAS  PubMed  Google Scholar 

  • Aarestrup FM, Kruse H, Tast E et al (2000a) Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb Drug Resist 6:63–70

    Google Scholar 

  • Aarestrup FM, Agerso Y, Gerner-Smidt P et al (2000b) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137

    Google Scholar 

  • Aarestrup FM, Butaye P, Witte W (2002) Nonhuman reservoirs of enterococci. In: Gilmore MS (ed) The enterococci: pathogenesis, molecular biology and antibiotic resistance. ASM, pp 55–99

    Google Scholar 

  • Agerso Y, Lester CH, Porsbo LJ et al (2008) Vancomycin-resistant Enterococcus faecalis isolates from a Danish patient and two healthy human volunteers are possibly related to isolates from imported turkey meat. J Antimicrob Chemother 62:844–845

    CAS  PubMed  Google Scholar 

  • Ahmad A, Ghosh A, Schal C et al (2011) Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol 11:23

    PubMed Central  PubMed  Google Scholar 

  • Al-Ahmad A, Maier J, Follo M et al (2010) Food-borne enterococci integrate into oral biofilm: an in vivo study. J Endod 36:1812–1819

    PubMed  Google Scholar 

  • Ammerlaan HS, Harbarth S, Buiting AG et al (2013) Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clin Infect Dis 56:798–805

    CAS  PubMed  Google Scholar 

  • Anonymous (1997) Commission directive 97/6/EC. Off J Eur Commun Legis L 35:11–13

    Google Scholar 

  • Anonymous (1998a) Council Regulation 2821/98. Off J Eur Commun Legis L 351:4–8

    Google Scholar 

  • Anonymous (1998b) Commission Regulation 2788/98. Off J Eur Commun Legis L 347:31–32

    Google Scholar 

  • Anonymous (2003) Commission Regulation (EC) No 1831/2003. Off J Eur Union L 268:29–43

    Google Scholar 

  • Arias CA, Murray BE (2008) Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 6:637–655

    CAS  PubMed  Google Scholar 

  • Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arias CA, Contreras GA, Murray BE (2010) Management of multi-drug resistant enterococcal infections. Clin Microbiol Infect 16:555–562

    CAS  PubMed  Google Scholar 

  • Arias CA, Panesso D, McGrath DM et al (2011) Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 365:892–900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bager F, Madsen M, Christensen J et al (1997). Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112

    CAS  PubMed  Google Scholar 

  • Barros J, Andrade M, Radhouani H et al (2012) Detection of vanA-containing Enterococcus species in faecal microbiota of gilthead seabream (Sparus aurata). Microbes Environ 27:509–511

    PubMed Central  PubMed  Google Scholar 

  • Bates J, Jordens Z, Selkon JB (1993) Evidence for an animal origin of vancomycin-resistant enterococci. Lancet 342:490–491

    CAS  PubMed  Google Scholar 

  • Berchieri A (1999) Intestinal colonization of a human subject by vancomycin-resistant Enterococcus faecium. Clin Microbiol Infect 5:97–100

    PubMed  Google Scholar 

  • Biavasco F, Foglia G, Paoletti C et al (2007) VanA-type enterococci from humans, animals, and food: species distribution, population structure, Tn1546 typing and location, and virulence determinants. Appl Environ Microbiol 73:3307–3319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourdon N, Fines-Guyon M, Thiolet JM et al (2011) Changing trends in vancomycin-resistant enterococci in French hospitals, 2001–2008. J Antimicrob Chemother 66:713–721

    CAS  PubMed  Google Scholar 

  • Braga TM, Pomba C, Lopes MF (2013) High-level vancomycin resistant Enterococcus faecium related to humans and pigs found in dust from pig breeding facilities. Vet Microbiol 161:344–349

    PubMed  Google Scholar 

  • Butaye P, Devriese LA, Haesebrouck F (2001) Differences in antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium strains isolated from farm and pet animals. Antimicrob Agents Chemother 45:1374–1378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cercenado E et al (2010) Emerging linezolid resistance: dissemination of the cfr gene among Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus faecalis and inability of the Etest method for detection. Abstr. C2-1490. Abstract presented at the 50th interscience conference on antimicrobial agents and chemotherapy, Boston

    Google Scholar 

  • Cetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13:686–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow JW (2000) Aminoglycoside resistance in enterococci. Clin Infect Dis 31:586–589

    CAS  PubMed  Google Scholar 

  • Christiansen KJ, Turnidge JD, Bell JM et al (2007) Prevalence of antimicrobial resistance in Enterococcus isolates in Australia, 2005: report from the Australian Group on Antimicrobial Resistance. Commun Dis Intell Q Rep 31:392–397

    PubMed  Google Scholar 

  • Coque TM, Tomayko JF, Ricke SC et al (1996) Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob Agents Chemother 40:2605–2609

    Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34

    Google Scholar 

  • Cremniter J, Mainardi JL, Josseaume N et al (2006) Novel mechanism of resistance to glycopeptide antibiotics in Enterococcus faecium. J Biol Chem 281:32254–32262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damborg P, Top J, Hendrickx AP et al (2009) Dogs are a reservoir of ampicillin-resistant Enterococcus faecium lineages associated with human infections. Appl Environ Microbiol 75:2360–2365

    CAS  PubMed Central  PubMed  Google Scholar 

  • DANMAP (2011) Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. www.danmap.org. Accessed 1 Sept 2013

  • Das I, Fraise A, Wise R (1997) Are glycopeptide-resistant enterococci in animals a threat to human beings? Lancet 349:997–998

    CAS  PubMed  Google Scholar 

  • de Been M, van Schaik W, Cheng L et al (2013) Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. Genome Biol Evol 5:1524–1535

    PubMed Central  PubMed  Google Scholar 

  • de Garnica ML, Valdezate S, Gonzalo C et al (2013) Presence of the vanC1 gene in a vancomycin-resistant Enterococcus faecalis strain isolated from ewe bulk tank milk. J Med Microbiol 62:494–495

    PubMed  Google Scholar 

  • De Graef EM, Decostere A, De Leener E et al (2007) Prevalence and mechanism of resistance against macrolides, lincosamides, and streptogramins among Enterococcus faecium isolates from food-producing animals and hospital patients in Belgium. Microb Drug Resist 13:135–141.

    PubMed  Google Scholar 

  • De Kraker ME, Jarlier V, Monen JC et al (2013) The changing epidemiology of bacteraemias in Europe: trends from the European antimicrobial resistance surveillance system. Clin Microbiol Infect 19:860–868

    PubMed  Google Scholar 

  • De Leener E, Martel A, De Graef EM et al (2005) Molecular analysis of human, porcine, and poultry Enterococcus faecium isolates and their erm(B) genes. Appl Environ Microbiol 71:2766–2770

    PubMed Central  PubMed  Google Scholar 

  • de Regt MJ, van Schaik W, van Luit-Asbroek M et al (2012) Hospital and community ampicillin-resistant Enterococcus faecium are evolutionarily closely linked but have diversified through niche adaptation. PLoS ONE 7:e30319

    PubMed Central  PubMed  Google Scholar 

  • Del Campo R, Ruiz-Garbajosa P, Sanchez-Moreno MP et al (2003) Antimicrobial resistance in recent fecal enterococci from healthy volunteers and food handlers in Spain: genes and phenotypes. Microb Drug Resist 9:47–60

    CAS  PubMed  Google Scholar 

  • Deshpande LM, Fritsche TR, Moet GJ et al (2007) Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 58:163–170

    CAS  PubMed  Google Scholar 

  • Devriese LA, Ieven M, Goossens H et al (1996) Presence of vancomycin-resistant enterococci in farm and pet animals. Antimicrob Agents Chemother 40:2285–2287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diarra MS, Rempel H, Champagne J et al (2010) Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Appl Environ Microbiol 76:8033–8043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz L, Kiratisin P, Mendes RE et al (2012) Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 56:3917–3922

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donabedian SM, Thal LA, Hershberger E et al (2003) Molecular characterization of gentamicin-resistant Enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol 41:1109–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donabedian SM, Perri MB, Vager D et al (2006) Quinupristin-dalfopristin resistance in Enterococcus faecium isolates from humans, farm animals, and grocery store meat in the United States. J Clin Microbiol 44:3361–3365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donabedian SM, Perri MB, Abdujamilova N et al (2010) Characterization of vancomycin-resistant Enterococcus faecium isolated from swine in three Michigan counties. J Clin Microbiol 48:4156–4160

    PubMed Central  PubMed  Google Scholar 

  • Dowzicky MJ, Chmelarova E (2011) Global in vitro activity of tigecycline and linezolid against Gram-positive organisms collected between 2004 and 2009. Int J Antimicrob Agents 37:562–566

    CAS  PubMed  Google Scholar 

  • EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2013) The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA J 11(5):3196. www.efsa.europa.eu. Accessed 1 Sept 2013

    Google Scholar 

  • Fard RM, Heuzenroeder MW, Barton MD (2011) Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet Microbiol 148:276–282

    CAS  PubMed  Google Scholar 

  • Fontana R, Caneari P, Lleò MM et al (1990) Mechanisms of resistance of enterococci to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis 9:103–105

    CAS  PubMed  Google Scholar 

  • Freitas AR, Novais C, Ruiz-Garbajosa P et al (2009) Clonal expansion within clonal complex 2 and spread of vancomycin-resistant plasmids among different genetic lineages of Enterococcus faecalis from Portugal. J Antimicrob Chemother 63:1104–1111

    CAS  PubMed  Google Scholar 

  • Freitas AR, Coque TM, Novais C et al (2011a) Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn 1546 on indistinguishable plasmids. J Clin Microbiol 49:925–931

    Google Scholar 

  • Freitas AR, Novais C, Correia R et al (2011b) Non-susceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources. Int J Antimicrob Agents 38:174–176

    Google Scholar 

  • Frye JG, Jackson CR (2013) Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 4:135

    PubMed Central  PubMed  Google Scholar 

  • Galimand M, Schmitt E, Panvert M et al (2011) Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 17:251–262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galloway-Pena J, Roh JH, Latorre M et al (2012) Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS ONE 7:e30187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Getachew Y, Hassan L, Zakaria Z et al (2013) Genetic variability of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis isolates from humans, chickens, and pigs in Malaysia. Appl Environ Microbiol 79:4528–4533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh A, Dowd SE, Zurek L (2011) Dogs leaving the ICU carry a very large multi-drug resistant enterococcal population with capacity for biofilm formation and horizontal gene transfer. PLoS ONE 6:e22451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh A, Kukanich K, Brown CE et al (2012) Resident cats in small animal veterinary hospitals carry multi-drug resistant enterococci and are likely involved in cross-contamination of the hospital environment. Front Microbiol 3:62

    PubMed Central  PubMed  Google Scholar 

  • Gilmore MS, Lebreton F, van Schaik W (2013) Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16

    PubMed Central  PubMed  Google Scholar 

  • Giraffa G (2002) Enterococci from foods. FEMS Microbiol Rev 26:163–171

    CAS  PubMed  Google Scholar 

  • Goossens H (1998) Spread of vancomycin-resistant enterococci: differences between the United States and Europe. Infect Control Hosp Epidemiol 19:546–551

    CAS  PubMed  Google Scholar 

  • Graham JP, Price LB, Evans SL et al (2009) Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Sci Total Environ 407:2701–2710

    CAS  PubMed  Google Scholar 

  • Guardabassi L, Schwarz S, Lloyd DH (2004) Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother 54:321–332

    CAS  PubMed  Google Scholar 

  • Guardabassi L, Perichon B, van Heijenoort J et al (2005) Glycopeptide resistance vanA operons in Paenibacillus strains isolated from soil. Antimicrob Agents Chemother 49:4227–4233.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammerum AM (2012) Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18:619–625

    CAS  PubMed  Google Scholar 

  • Hammerum AM, Flannagan SE, Clewell Db et al (2001) Indication of transposition of a mobile DNA element containing the vat(D) and erm(B) genes in Enterococcus faecium. Antimicrob Agents Chemother 45:3223–3225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hammerum AM, Lester CH, Neimann J et al (2004) A vancomycin-resistant Enterococcus faecium isolate from a Danish healthy volunteer, detected 7 years after the ban of avoparcin, is possibly related to pig isolates. J Antimicrob Chemother 53:547–549

    CAS  PubMed  Google Scholar 

  • Hammerum AM, Agerso Y, Garcia-Migura L et al (2009) Evaluation of the quinupristin/dalfopristin breakpoints for Enterococcus faecium. Int J Antimicrob Agents 34:288–290

    CAS  PubMed  Google Scholar 

  • Harada T, Tsuji N, Otsuki K et al (2005) Detection of the esp gene in high-level gentamicin resistant Enterococcus faecalis strains from pet animals in Japan. Vet Microbiol 106:139–143

    CAS  PubMed  Google Scholar 

  • Hegstad K, Mikalsen T, Coque TM et al (2010) Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554

    CAS  PubMed  Google Scholar 

  • Herrero IA, Fernandez-Garayzabal JF, Moreno MA et al (2004) Dogs should be included in surveillance programs for vancomycin-resistant enterococci. J Clin Microbiol 42:1384–1385

    PubMed Central  PubMed  Google Scholar 

  • Hershberger E, Donabedian S, Konstantinou K et al (2004) Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis 38:92–-98

    Google Scholar 

  • Hidron AI, Edwards JR, Patel J et al (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011

    PubMed  Google Scholar 

  • Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433

    PubMed Central  PubMed  Google Scholar 

  • Howden BP, Holt KE, Lam MM et al (2013) Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio 4. doi:10.1128/mBio.00412-13

    Google Scholar 

  • Humphries RM, Kelesidis T, Tewhey R et al (2012) Genotypic and phenotypic evaluation of the evolution of high-level daptomycin nonsusceptibility in vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 56:6051–6053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson CR, Fedorka-Cray PJ, Davis JA et al (2009) Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. J Appl Microbiol 107:1269–1278

    CAS  PubMed  Google Scholar 

  • Jackson CR, Fedorka-Cray PJ, Davis JA et al (2010) Mechanisms of antimicrobial resistance and genetic relatedness among enterococci isolated from dogs and cats in the United States. J Appl Microbiol 108:2171–2179

    CAS  PubMed  Google Scholar 

  • Jensen LB (1998) Differences in the occurrence of two base pair variants of Tn1546 from vancomycin-resistant enterococci from humans, pigs, and poultry. Antimicrob Agents Chemother 42:2463–2464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen LB, Hammerum AM, Aerestrup FM et al (1998) Occurrence of satA and vgb genes in streptogramin-resistant Enterococcus faecium isolates of animal and human origins in the Netherlands. Antimicrob Agents Chemother 42:3330–3331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen LB, Willems RJ, van den Bogaard AE (2003) Genetic characterization of glycopeptide-resistant enterococci of human and animal origin from mixed pig and poultry farms. APMIS 111:669–672

    CAS  Google Scholar 

  • Jensen LB, Garcia-Migura L, Valenzuela AJ et al (2010) A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 80:25–43

    CAS  PubMed  Google Scholar 

  • Jung WK, Hong SK, Lim JY et al (2006) Phenotypic and genetic characterization of vancomycin-resistant enterococci from hospitalized humans and from poultry in Korea. FEMS Microbiol Lett 260:193–200

    CAS  PubMed  Google Scholar 

  • Jung YH, Shin ES, Kim O et al (2010) Characterization of two newly identified genes, vgaD and vatG, conferring resistance to streptogramin A in Enterococcus faecium. Antimicrob Agents Chemother 54:4744–4749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelesidis T, Chow AL (2013) Proximity to animal or crop operations may be associated with de novo daptomycin-non-susceptible Enterococcus infection. Epidemiol Infect 15:1–4

    Google Scholar 

  • Kieke AL, Borchardt MA, Kieke BA et al (2006) Use of streptogramin growth promoters in poultry and isolation of streptogramin-resistant Enterococcus faecium from humans. J Infect Dis 194:1200–1208

    CAS  PubMed  Google Scholar 

  • Klare I, Heier H, Claus H et al (1993) Environmental strains of Enterococcus faecium with inducible high-level resistance to glycopeptides. FEMS Microbiol Lett 106:23–29

    CAS  PubMed  Google Scholar 

  • Klare I, Heier H, Claus H et al (1995) vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol Lett 125:165–171

    CAS  PubMed  Google Scholar 

  • Klare I, Badstubner D, Konstabel C et al (1999) Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 5:45–52

    CAS  PubMed  Google Scholar 

  • Klare I, Konstabel C, Badstubner D et al (2003) Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88:269–290

    CAS  PubMed  Google Scholar 

  • Klare I, Witte W, Wendt C et al (2012) Vancomycin-resistant enterococci (VRE). Recent results and trends in development of antibiotic resistance. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55:1387–1400

    CAS  PubMed  Google Scholar 

  • Kuch A, Willems RJ, Werner G et al (2012) Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J Antimicrob Chemother 67:551–558

    CAS  PubMed  Google Scholar 

  • Kuhn I, Iversen A, Burman LG et al (2003) Comparison of enterococcal populations in animals, humans, and the environment-a European study. Int J Food Microbiol 88:133–145

    PubMed  Google Scholar 

  • Larsen J, Schonheyder HC, Lester Ch et al (2010) Porcine-origin gentamicin-resistant Enterococcus faecalis in humans, Denmark. Emerg Infect Dis 16:682–684

    PubMed Central  PubMed  Google Scholar 

  • Larsen J, Schonheyder HC, Singh KV et al (2011) Porcine and human community reservoirs of Enterococcus faecalis, Denmark. Emerg Infect Dis 17:2395–2397

    PubMed Central  PubMed  Google Scholar 

  • Lebreton F, Depardieu F, Bourdon N et al (2011) D-Ala-d-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55:4606–4612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lebreton F, van Schaik W, Manson MA et al (2013) Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 4. doi:10.1128/mBio.00534-13

    Google Scholar 

  • Leclercq R, Derlot E, Duval J et al (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161

    CAS  PubMed  Google Scholar 

  • Lester CH, Hammerum AM (2010) Transfer of vanA from an Enterococcus faecium isolate of chicken origin to a CC17 E. faecium isolate in the intestine of cephalosporin-treated mice. J Antimicrob Chemother 65:1534–1536

    CAS  PubMed  Google Scholar 

  • Lester CH, Frimodt-Moller N, Sorensen TL et al (2006) In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50:596–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lim SK, Kim TS, Lee HS et al (2006) Persistence of vanA-type Enterococcus faecium in Korean livestock after ban on avoparcin. Microb Drug Resist 12:136–139

    CAS  PubMed  Google Scholar 

  • Liu Y, Wang Y, Wu C et al (2012) First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob Agents Chemother 56:1650–1654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Wang Y, Schwarz S et al (2013) Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob Agents Chemother 57:42–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez M, Saenz Y, Rojo-Bezares B et al (2009) Detection of vanA and vanB2-containing enterococci from food samples in Spain, including Enterococcus faecium strains of CC17 and the new singleton ST425. Int J Food Microbiol 133:172–178

    CAS  PubMed  Google Scholar 

  • Lopez M, Cercenado E, Tenorio C et al (2012) Diversity of clones and genotypes among vancomycin-resistant clinical Enterococcus isolates recovered in a Spanish hospital. Microb Drug Resist 18:484–491

    CAS  PubMed  Google Scholar 

  • Mainardi JL, Legrand R, Arthur M et al (2000) Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 275:16490–16496

    CAS  PubMed  Google Scholar 

  • Manson JM, Keis S, Smith JM et al (2003) Characterization of a vancomycin-resistant Enterococcus faecalis (VREF) isolate from a dog with mastitis: further evidence of a clonal lineage of VREF in New Zealand. J Clin Microbiol 41:3331–3333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martone WJ (1998) Spread of vancomycin-resistant enterococci: why did it happen in the United States? Infect Control Hosp Epidemiol 19:539–545

    CAS  PubMed  Google Scholar 

  • McBride SM, Fischetti VA, Leblanc DJ et al (2007) Genetic diversity among Enterococcus faecalis. PLoS ONE 2:e582

    PubMed Central  PubMed  Google Scholar 

  • Moyaert H, De Graef EM, Haesebrouck F et al (2006) Acquired antimicrobial resistance in the intestinal microbiota of diverse cat populations. Res Vet Sci 81:1–7

    CAS  PubMed  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray BE (1992) Beta-lactamase-producing enterococci. Antimicrob Agents Chemother 36:2355–2359

    CAS  PubMed Central  PubMed  Google Scholar 

  • NARMS (2011) National Antimicrobial Resistance Monitoring System. Retail Meat Report. www.fda.gov. Accessed 1 Sept 2013

  • Nilsson O (2012) Vancomycin resistant enterococci in farm animals—occurrence and importance. Infect Ecol Epidemiol 2. doi:10.3402/iee.v2i0.16959

    Google Scholar 

  • Novais C, Sousa JC, Coque TM et al (2004) In vitro activity of daptomycin against enterococci from nosocomial and community environments in Portugal. J Antimicrob Chemother 54:964–966

    CAS  PubMed  Google Scholar 

  • Novais C, Coque TM, Costa MJ et al (2005) High occurrence and persistence of antibiotic-resistant enterococci in poultry food samples in Portugal. J Antimicrob Chemother 56:1139–1143

    CAS  PubMed  Google Scholar 

  • Novais C, Freitas AR, Silveira E et al (2013) Spread of multidrug-resistant Enterococcus to animals and humans: an underestimated role for the pig farm environment. J Antimicrob Chemother. doi:10.1093/jac/dkt289

    Google Scholar 

  • Ono S, Muratani T, Matsumoto T (2005) Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother 49:2954–2958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oravcova V, Zurek L, Townsend A et al (2013) American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ Microbiol. doi:10.1111/1462-2920.12213

    Google Scholar 

  • Oteo J, Cuevas O, Navarro C et al (2007) Trends in antimicrobial resistance in 3469 enterococci isolated from blood (EARSS experience 2001–2006, Spain): increasing ampicillin resistance in Enterococcus faecium. J Antimicrob Chemother 59:1044–1045

    CAS  PubMed  Google Scholar 

  • Palmer KL, Godfrey P, Griggs A et al (2012) Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio 3:e00318–11

    PubMed Central  PubMed  Google Scholar 

  • Pantosti A, Del Grosso M, Tagliabue S et al (1999) Decrease of vancomycin-resistant enterococci in poultry meat after avoparcin ban. Lancet 354:741–742

    CAS  PubMed  Google Scholar 

  • Poeta P, Costa D, Rodrigues J et al (2005) Study of faecal colonization by vanA-containing Enterococcus strains in healthy humans, pets, poultry and wild animals in Portugal. J Antimicrob Chemother 55:278–280

    CAS  PubMed  Google Scholar 

  • Poulsen LL, Bisgaard M, Son NT et al (2012) Enterococcus faecalis clones in poultry and in humans with urinary tract infections, Vietnam. Emerg Infect Dis 18:1096–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quinones D, Kobayashi N, Nagashima S (2009) Molecular epidemiologic analysis of Enterococcus faecalis isolates in Cuba by multilocus sequence typing. Microb Drug Resist 15:287–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rice LB, Carias LL, Rudin S et al (2005) Enterococcus faecium low-affinity pbp5 is a transferable determinant. Antimicrob Agents Chemother. 49:5007–5012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues J, Poeta P, Martins A et al (2002) The importance of pets as reservoirs of resistant Enterococcus strains, with special reference to vancomycin. J Vet Med B Infect Dis Vet Public Health 49:278–280

    CAS  PubMed  Google Scholar 

  • Ruiz-Garbajosa P, Bonten MJ, Robinson DA et al (2006) Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sacco E, Hugonnet JE, Josseaume N et al (2010) Activation of the L, D-transpeptidation peptidoglycan cross-linking pathway by a metallo-D, D-carboxypeptidase in Enterococcus faecium. Mol Microbiol 75:874–885

    CAS  PubMed  Google Scholar 

  • Sarti M, Campanile F, Sabia C et al (2012) Polyclonal diffusion of beta-lactamase-producing Enterococcus faecium. J Clin Microbiol 50:169–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen J, Wang Y, Schwarz S (2013) Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706

    CAS  PubMed  Google Scholar 

  • Simjee S, White DG, McDermott PF et al (2002) Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: evidence of gene exchange between human and animal enterococci. J Clin Microbiol 40:4659–4665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simjee S, Zhang Y, McDermott PF et al (2006) Heterogeneity of vat(E)-carrying plasmids in Enterococcus faecium recovered from human and animal sources. Int J Antimicrob Agents 28:200–205

    CAS  PubMed  Google Scholar 

  • Simonsen GS, Haaheim H, Dahl KH et al (1998) Transmission of VanA-type vancomycin-resistant enterococci and vanA resistance elements between chicken and humans at avoparcin-exposed farms. Microb Drug Resist 4:313–318

    CAS  PubMed  Google Scholar 

  • Singh KV, Murray BE (2005) Differences in the Enterococcus faecalis lsa locus that influence susceptibility to quinupristin-dalfopristin and clindamycin. Antimicrob Agents Chemother 49:32–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sletvold H, Johnsen PJ, Simonsen GS et al (2007) Comparative DNA analysis of two vanA plasmids from Enterococcus faecium strains isolated from poultry and a poultry farmer in Norway. Antimicrob Agents Chemother 51:736–739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soltani M, Beighton D, Philpott-Howard J et al (2000) Mechanisms of resistance to quinupristin-dalfopristin among isolates of Enterococcus faecium from animals, raw meat, and hospital patients in Western Europe. Antimicrob Agents Chemother 44:433–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Somarajan SR, Murray BE (2013) Could a phosphotransferase system provide the means to control outbreaks of Enterococcus faecium infection? J Infect Dis 207:1633–1636

    PubMed  Google Scholar 

  • Sorensen TL, Blom M, Monnet DL et al (2001) Transient intestinal carriage after ingestion of antibiotic-resistant Enterococcus faecium from chicken and pork. N Engl J Med 345:1161–1166

    CAS  PubMed  Google Scholar 

  • Sparo M, Urbizu L, Solana MV et al (2012) High-level resistance to gentamicin: genetic transfer between Enterococcus faecalis isolated from food of animal origin and human microbiota. Lett Appl Microbiol 54:119–125

    CAS  PubMed  Google Scholar 

  • Spiliopoulou I, Damani A, Chini V et al (2011) Linezolid-resistant enterococci in Greece: epidemiological characteristics. Chemotherapy 57:181–185

    CAS  PubMed  Google Scholar 

  • Stobberingh E, van den Bogaard AE, London N et al (1999) Enterococci with glycopeptide resistance in turkeys, turkey farmers, turkey slaughterers, and (sub)urban residents in the south of The Netherlands: evidence for transmission of vancomycin resistance from animals to humans? Antimicrob Agents Chemother 43:2215–2221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundsfjord A, Simonsen GS, Courvalin P (2001) Human infections caused by glycopeptide-resistant Enterococcus spp.: are they a zoonosis? Clin Microbiol Infect 7(Suppl 4):16–33.

    PubMed  Google Scholar 

  • The Surveillance Network, USA (2013) www.cddep.org/map. Accessed 1 Sept 2013

  • Torres C, Reguera JA, Sanmartin MJ et al (1994) vanA-mediated vancomycin-resistant Enterococcus spp. in sewage. J Antimicrob Chemother 33:553–561

    CAS  PubMed  Google Scholar 

  • Torres C, Tenorio C, Portillo A et al (2003) Intestinal colonization by vanA- or vanB2- containing enterococcal isolates of healthy animals in Spain. Microb Drug Resist 9(Suppl 1):S47–S52

    CAS  PubMed  Google Scholar 

  • Tran TT, Panesso D, Gao H et al (2013) Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycin-resistant variant arising during therapy. Antimicrob Agents Chemother 57:261–268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tremblay CL, Letellier A, Quessy S et al (2011) Multiple-antibiotic resistance of Enterococcus faecalis and Enterococcus faecium from cecal contents in broiler chicken and turkey flocks slaughtered in Canada and plasmid colocalization of tetO and ermB genes. J Food Prot 74:1639–1648

    CAS  PubMed  Google Scholar 

  • Tremblay CL, Letellier A, Quessy S et al (2012) Antibiotic-resistant Enterococcus faecalis in abattoir pigs and plasmid colocalization and cotransfer of tet(M) and erm(B) genes. J Food Prot 75:1595–1602

    CAS  PubMed  Google Scholar 

  • Tzavaras I, Siarkou VI, Zdragas A et al (2012) Diversity of vanA-type vancomycin-resistant Enterococcus faecium isolated from broilers, poultry slaughterers and hospitalized humans in Greece. J Antimicrob Chemother 67:1811–1818

    CAS  PubMed  Google Scholar 

  • Uttley AH, Collins CH, Naidoo J et al (1988) Vancomycin-resistant enterococci. Lancet 1:57–58

    CAS  PubMed  Google Scholar 

  • van Belkum A, van den Braak N, Thomassen R et al (1996) Vancomycin-resistant enterococci in cats and dogs. Lancet 348:1038–1039.

    Google Scholar 

  • van den Bogaard AE, Mertens P, London NH et al (1997a) High prevalence of colonization with vancomycin- and pristinamycin-resistant enterococci in healthy humans and pigs in The Netherlands: is the addition of antibiotics to animal feeds to blame? J Antimicrob Chemother 40:454–456.

    Google Scholar 

  • van den Bogaard AE, Jensen LB, Stobberingh EE (1997b) Vancomycin-resistant enterococci in turkeys and farmers. N Engl J Med 337:1558–1559

    Google Scholar 

  • van den Bogaard AE, Bruinsma N, Stobberingh EE (2000) The effect of banning avoparcin on VRE carriage in The Netherlands. J Antimicrob Chemother 46:146–148

    PubMed  Google Scholar 

  • van den Bogaard AE, Willems RJ, London N et al (2002) Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 49:497–505

    PubMed  Google Scholar 

  • van Schaik W, Top J, Riley DR et al (2010) Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 11:239

    PubMed Central  PubMed  Google Scholar 

  • Waites KB, Duffy LB, Dowzicky MJ (2006) Antimicrobial susceptibility among pathogens collected from hospitalized patients in the United States and in vitro activity of tigecycline, a new glycylcycline antimicrobial. Antimicrob Agents Chemother 50:3479–3484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wegener HC, Madsen M, Nielsen N et al (1997) Isolation of vancomycin resistant Enterococcus faecium from food. Int J Food Microbiol 35:57–66

    CAS  PubMed  Google Scholar 

  • Welton LA, Thal LA, Perri MB et al (1998) Antimicrobial resistance in enterococci isolated from Turkey flocks fed virginiamycin. Antimicrob Agents Chemother 42:705–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werner G, Klare I, Witte W (1998) Association between quinupristin/dalfopristin resistance in glycopeptide-resistant Enterococcus faecium and the use of additives in animal feed. Eur J Clin Microbiol Infect Dis 17:401–402

    CAS  PubMed  Google Scholar 

  • Werner G, Coque TM, Franz CM et al (2013) Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 303:360–379

    CAS  PubMed  Google Scholar 

  • Willems RJ, Hanage WP, Bessen DE et al (2011) Population biology of gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 35:872–900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willems RJ, Top J, van Schaik W (2012) Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3:e00151–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodford N, Adebiyi AM, Palepou MF et al (1998) Diversity of VanA glycopeptide resistance elements in enterococci from humans and nonhuman sources. Antimicrob Agents Chemother 42:502–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Paganelli FL, Bierschenk D et al (2012) Genome-wide identification of ampicillin resistance determinants in Enterococcus faecium. PLoS Genet 8:e1002804

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Bortolaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bortolaia, V., Guardabassi, L. (2015). Zoonotic Transmission of Antimicrobial Resistant Enterococci: A Threat to Public Health or an Overemphasised Risk?. In: Sing, A. (eds) Zoonoses - Infections Affecting Humans and Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9457-2_16

Download citation

Publish with us

Policies and ethics