Skip to main content

ABA Transport and Distribution in Relation to Its Function in Plants

  • Chapter
  • First Online:
Abscisic Acid: Metabolism, Transport and Signaling

Abstract

Abscisic acid (ABA) is a phytohormone with key roles in various physiological processes, including germination, stomatal movement, and biotic and abiotic stress responses. Given that the sites of ABA biosynthesis and action are separated in plant cells, ABA transport is an important step in ABA signaling. ABA exhibits distinct patterns of compartmentalization, and its level in a specific compartment is not only determined by its rate of biosynthesis and catabolism, but also by the rates of ABA export and import. Compartmentalization ensures that the physiology of the plant is not affected by ABA under normal conditions and that redistribution of ABA in response to stress stimuli triggers ABA stress signaling. ABA is transported between cells or tissues and also systemically in whole plants. The expression of genes encoding key enzymes in the ABA biosynthesis pathway in vascular tissues and the overlap in the expression patterns of genes encoding enzymes involved in ABA biosynthesis and ABA transport implies the importance of ABA transport, particularly ABA systemic transport, in ABA functioning. The root-to-shoot transport of ABA further shows that ABA transport has critical roles in plant systemic signaling, and the molecular identification and functional characterization of ABA transporters provided direct evidence that ABA transport is required for ABA signaling. The ion-trap mechanism by pH and ABA transporters may operate synergistically, but in different manners, to control ABA transport and distribution. Further investigations on ABA transport and localization will contribute to our understanding of mechanisms that modulate ABA signaling in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astle MC, Rubery PH. A study of abscisic acid uptake by apical and proximal root segments of Phaseolus coccineus L. Planta. 1980;150:312–20.

    Article  PubMed  CAS  Google Scholar 

  • Astle MC, Rubery PH. Carriers for abscisic acid and indole-3-acetic acid in primary roots: their regional localization and thermodynamic driving forces. Planta. 1983;157:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Bahrun A, Jensen CR, Asch F, Mogensen VO. Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J Exp Bot. 2002;53:251–63.

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Gimmler H, Hartung W. Permeability of guard cell plasma membrane and tonoplast. J Exp Bot. 1998;41:351–8.

    Article  Google Scholar 

  • Behl R, Hartung W. Movement and compartmentation of abscisic acid in guard cells of Valerianella locusta: Effects of osmotic stress, external H(+)-concentration and fusicoccin. Planta. 1986;168:360–8.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand S, Benhamou N, Nadeau P, Dostaler D, Gosselin A. Immunogold localization of free abscisic acid in tomato root cells. Can J Bot. 1992;70(5):1001–11.

    Article  CAS  Google Scholar 

  • Blackman PG, Davies WJ. Root to shoot communication in maize plants of the effects of soil drying. J Exp Bot. 1985;36:39–48.

    Article  Google Scholar 

  • Bray EA, Zeevaart JA. The compartmentation of abscisic acid and beta-d-glucopyranosyl abscisate in mesophyll cells. Plant Physiol. 1985;79(3):719–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruggeman FJ, Libbenga KR, Duijn BV. The diffusive transport of gibberellins and abscisic acid through the aleurone layer of germinating barley grain: A mathematical model. Planta. 2001;214(1):89–96.

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, et al. A unique short-chaindehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14:2723–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • CornishJan Katrina, Zeevaart. AD. Abscisic Acid Accumulation by in Situ and Isolated Guard Cells of Pisum sativum L. and Vicia faba L. in relation to water stress. Am Soc Plant Biol. 1986;81:1017–21.

    Google Scholar 

  • Cowan AK, Railton ID. Chloroplasts and the biosynthesis and catabolism of abscisic acid. J Plant Growth Regul. 1986;4(21):1–24.

    Google Scholar 

  • Davies WJ, Zhang J. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physinl Plant Mo1 Biol. 1991;42:55–76.

    Article  CAS  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL. How do chemical signals work in plants that grow in drying soil. Plant Physiol. 1994;104:309–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  • De Diego N, Rodríguez JL, Dodd IC, Pérez-Alfocea F, Moncaleán P, Lacuesta M. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and re-watering. Tree Physiol. 2013;33(5):537–49.

    Article  PubMed  CAS  Google Scholar 

  • Deytieux C, Geny L, Doneche B. Relation between hormonal balance and polygalacturonase activity in grape berry. Acta Hortic. 2005;682:163–70.

    CAS  Google Scholar 

  • Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta. 2004;218:958–64.

    Article  PubMed  CAS  Google Scholar 

  • Giribaldi M, Gény L, Delrot S, Schubert A. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. J Exp Bot. 2010;61:2447–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris MJ, Dugoer WM. Levels of free and conjugated abscisic acid in developing floral organs of the navel orange. Plant Physiol. 1986;82:1164–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartung W. The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell Environ. 1983;6:27–428.

    Article  Google Scholar 

  • Hartung and Slovik. Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution. New Phytol. 1991;119:361–82.

    Article  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R. Stomatal control in tomato with ABA-deficient response of grafted plants to soil drying. J Exp Bot. 2002;53:1503–14.

    Article  PubMed  CAS  Google Scholar 

  • Jia WS, Davies WJ. Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol. 2007;143:68–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia W, Zhang J. Comparison of exportation and metabolism of xylem-delivered ABA in maize leaves at different water status and xylem sap pH. Plant Growth Regul. 1997;21:43–9.

    Article  CAS  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 2011;157:188–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang J, et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA. 2010;107:2355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, et al. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis ABA transport and hormone interactions. Plant Cell Physiol. 2010;51:1988–2001.

    Article  PubMed  CAS  Google Scholar 

  • Kanno Y, et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA. 2012;109:9653–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karppinen K, Hirvelä E, Nevala T, Sipari N, Suokas M, Jaakola L. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Phytochemistry. 2013;95:127–34.

    Article  PubMed  CAS  Google Scholar 

  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, et al. Tissue specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol. 2004;134:1697–707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kondo Satoru, Ponrod Wanvisa, Kanlayanarat Sirichai, Hirai Nobuhiro. Abscisic acid metabolism during fruit development and maturation of mangosteens. J Am Soc Hortic Sci. 2002;127:737–41.

    CAS  Google Scholar 

  • Kuromori T, et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA. 2010;107:2361–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lahr W, Raschke K. Abscisic-acid contents and concentrations in protoplasts from guard cells and mesophyll cells of Vicia faba L. Planta. 1988;173:528–31.

    Article  PubMed  CAS  Google Scholar 

  • Munns R, King RW. ABA is not the only stomatal inhibitor in transpiration stream of wheat plants. Plant Physiol. 1988;88:703–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.

    Article  PubMed  CAS  Google Scholar 

  • Pekic S, Stikic R, Tomljanoviv L, Andjelkovic V, Anovic MI, Quarrie SA. Characterization of maize lines differing in leaf abscisic acid content in the field. 1 Abscisic acid physiology. Ann Bot. 1995;75:67–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilet PE, Rivier L. Abscisic acid distribution in horizontal maize root segments. Planta. 1981;153:453–8.

    Article  PubMed  CAS  Google Scholar 

  • Ren HB, Gao ZH, Chen L, Wei KF, Liu J, Fan YJ, Jia W, Zhang J. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J Exp Bot. 2007;58:211–9.

    Article  PubMed  CAS  Google Scholar 

  • Rinne P, Tuominen H, Junttila O. Seasonal changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic acid concentration in adult trees of Betula pubescens. Tree Physiol. 1994;14(6):549–61.

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzymein the oxidative catabolism of abscisic acid. Plant Physiol 2004;134:1439–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature. 2009;462:665–8.

    Article  PubMed  CAS  Google Scholar 

  • Schraut D, Ullrich CI, Hartung W. Lateral ABA-transport in maize roots (Zea mays): visualization by immunolocalization. J Exp Bot. 2004;55:1635–41.

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koshiba T. Transport of ABA from the site of biosynthesis to the site of action. J Plant Res. 2011;124(4):501–7.

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY, Fan RC, Xu YH, Zhang DP. The Mg-chelatase H subunit is an abscisic acid receptor. Nature. 2006;443:823–6.

    Article  PubMed  CAS  Google Scholar 

  • Slovik S, Hartung W. Compartmental distribution and redistribution of abscisic acid in intact leaves: III. Analysis of the stress-signal chain. Planta. 1992;187(1):37–47.

    Article  PubMed  CAS  Google Scholar 

  • Sossountzov L, Sotta B, Maldiney R, Sabbagh I, Migniniac E. Immunoelectron—microscopy localization of abscisic acid with colloidal gold on Lowicryl-embedded tissues of Chenopodium polyspermum L. Planta. 1986;168:471–81.

    Article  PubMed  CAS  Google Scholar 

  • Sotta B, Sossountzov L, Maldiney R, Sabbagh I, Tachon P, Miginiac E. Abscisic acid localization by light microscopic immunohistochemistry in Chenopodium polyspermum L. Effect of water stress. J Histochem Cytochem. 1985;33:201–8.

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003;35:44–56.

    Article  PubMed  CAS  Google Scholar 

  • Verrier PJ, et al. Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci. 2008;13:151–9.

    Article  PubMed  CAS  Google Scholar 

  • Vysotskaya LB, Korobova AV, Kudoyarova GR. Abscisic acid accumulation in the roots of nutrient-limited plants: Its impact on the differential growth of roots and shoot. J Plant Physiol. 2008;165:1274–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang XC, Jia W. Stress-induced stomatal closure in relation to compartmentation and redistribution of ABA in intact leaves of Vicia faba L. Acta Phytophysiologica Sinica. 1995;21:324–8.

    CAS  Google Scholar 

  • Wikinson S, Davies WJ. ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ. 2002;25:195–210.

    Article  Google Scholar 

  • Zeevaart JAD. Metabolism of abscisic acid and its regulation in Xanthium leaves during and after water stress. Plant Physiol. 1983;7(1):477–81.

    Article  Google Scholar 

  • Zhang J, Davies WJ. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 1989;12:73–81.

    Article  CAS  Google Scholar 

  • Zhang J, Davies WJ. Changes in the concentration of ABA in xylem sap as a function of changing soil water status com account for changes in leaf conductance and growth. Plant Cell Environ. 1990;13:271–85.

    Article  Google Scholar 

  • Zhang J, Davies WJ. Anti-transpirant activity in the xylem sap of maize plants. J Exp Bot. 1991;42:317–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensuo Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, B., Jia, W. (2014). ABA Transport and Distribution in Relation to Its Function in Plants. In: Zhang, DP. (eds) Abscisic Acid: Metabolism, Transport and Signaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9424-4_4

Download citation

Publish with us

Policies and ethics