Skip to main content

Potentially Harmful Elements in the Atmosphere

  • Chapter
  • First Online:
PHEs, Environment and Human Health

Abstract

The atmosphere represents a complex system influenced by the chemical and physical processes that occur at the Earth surface. These processes include emissions, transport, lifetimes and fates of several anthropogenic and biogenic/geogenic chemicals emitted from a wide variety of sources. Among these chemicals, some are considered air pollutants, i.e. any substance present in ambient air and likely to have harmful effects on human health and/or the environment as a whole. Metals, and in general elements, are natural components of the earth’s crust and constituents of all ecosystems. In the atmosphere, they are mainly related to particle phase but also they can be present in a liquid phase due to the dissolution of aerosol particles in the water drops. Whatever their origin, both natural and anthropogenic, most elements, and in particular heavy metals, are dangerous because they tend to bio-accumulate in the human body.

This chapter describes a general overview on elements and their sources and potential effects on human health in atmosphere. Furthermore, considering the increase of the interest on biological fraction of PM, a briefly description of bioaerosols will be made. Recently, the number of evidence that describes how this fraction may play a key role in the effects of PM on biological systems with negative impacts on human health and ecosystem functioning are increased.

Mathematical model applied to air pollution studies will be briefly described. Mathematical models (dispersion and transport model), that predict the concentration and the dispersion of primary and secondary pollutants in atmosphere, represent a fundamental tool in the atmospheric studies to develop health and/or environmental risk assessment and various control strategy actions. Moreover, some specific elements (Sb, Tl, V and Be) will be discussed investigating the effects on health, main sources application and reviewing the most recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alastuey A, Moreno N, Querol X, Viana M, Artiñano B, Luaces JA, Basora J, Guerra A (2007) Contribution of harbour activities to levels of particulate matter in a harbour area: Hada project Tarragona Spain. Atmos Environ 41:6366–6378

    CAS  Google Scholar 

  • Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2005) Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos Environ 39:3127–3138

    CAS  Google Scholar 

  • Amato P, Parazols M, Sancelme M, Laj P, Mailhot G, Delort A (2007a) Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: major groups and growth abilities at low temperatures. FEMS Microbiol Ecol 59:255–264

    CAS  Google Scholar 

  • Amato P, Demeer F, Melaouhi A, Fontanella S, Martin-Biesse A, Sancelme M, Laj P, Delort A (2007b) A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos Chem Phys 7:4159–4169

    CAS  Google Scholar 

  • Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T (2009) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ 43:1650–1659

    CAS  Google Scholar 

  • Amato F, Moreno T, Pandolfi M, Querol X, Alastuey A, Delgado A, Pedrero M, Cots N (2010) Concentrations sources and geochemistry of airborne particulate matter at a major European airport. J Environ Monit 12:854–862

    CAS  Google Scholar 

  • Aneja VP, Isherwood A, Morgan P (2012) Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos Environ 54:496–501

    CAS  Google Scholar 

  • Araujio JA (2011) Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health 4:79–93

    Google Scholar 

  • Araujo JA, Nel AE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle Fibre Toxicol 6(24):19

    Google Scholar 

  • Ariya PA, Nepotchatykh O, Ignatova O, Amyot M (2002) Microbiological degradation of atmospheric organic compounds. Geophys Res Lett 29:2077–2080

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services) (2002) Toxicological profile for beryllium. http://www.atsdr.cdc.gov

  • Bäumer D, Vogel B, Versick S, Rinke R, Möhler O, Schnaiter M (2008) Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany. Atmos Environ 42:989–998

    Google Scholar 

  • Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, Franzetti A (2013) Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl Microbiol Biotechnol 97:6561–6570

    CAS  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    CAS  Google Scholar 

  • Bhatnagar A (2006) Environmental cardiology: studying mechanistic links between pollution and heart disease. Circ Res 99:692–705

    CAS  Google Scholar 

  • Bohdalkova L, Novak M, Voldrichova P, Prechova E, Veselovsky F, Erbanova L, Krachler M, Komarek A, Mikova J (2012) Atmospheric deposition of beryllium in Central Europe: comparison of soluble and insoluble fractions in rime and snow across a pollution gradient. Sci Total Environ 439:26–34

    CAS  Google Scholar 

  • Brewer RL, Gordon RJ, Shepard LS, Ellis EC (1983) Chemistry of mist and fog from the Los Angeles urban area. Atmos Environ 17:2267–2270

    CAS  Google Scholar 

  • Brook RD (2008) Cardiovascular effects of air pollution. Clin Sci 115:175–187

    CAS  Google Scholar 

  • Brunekreef B, Janssen NAH, Harssema H, Knape M, Vliet PV (1997) Air pollution from truck traffic and lung function in children living near motorways. Epidemiology 8:298–303

    CAS  Google Scholar 

  • Burger H (1990) Bioaerosols: prevalence and health effects in the indoor environment. J Allergy Clin Immunol 86:687–701

    Google Scholar 

  • Callender E, Rice KC (2000) The urban environmental gradient: anthropogenic influences on the spatial and temporal distributions of lead and zinc in sediments. Environ Sci Technol 34:232–238

    CAS  Google Scholar 

  • Charlesworth S, De Miguel E, Ordóñez A (2011) A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health 33:103–123

    CAS  Google Scholar 

  • Cheam V, Lechner J, Desrosiers R, Sekerka I, Lawson G, Mudroch A (1995) Dissolved and total thallium in Great Lakes waters. J Great Lakes Res 21:384–394

    CAS  Google Scholar 

  • Cheng Y, Zou SC, Lee SC, Chow JC, Ho KF, Watson JG, Han YM, Zhang RJ, Zhang F, Yau PS, Huang Y, Bai Y, Wu WJ (2011) Characteristics and source apportionment of PM1 emissions at a roadside station. J Hazard Mater 195:82–91

    CAS  Google Scholar 

  • Conaway CH, Storlazzi CD, Draut AE, Swarzenski PW (2013) Short-term variability of 7Be atmospheric deposition and watershed response in a Pacific coastal stream, Monterey Bay, California, USA. J Environ Radioact 120:94–103

    CAS  Google Scholar 

  • Conesa JA, Gálvez A, Mateos F, Martín-Gullón I, Font R (2008) Organic and inorganic pollutants from cement kiln stack feeding alternative fuels. J Hazard Mater 158:585–592

    CAS  Google Scholar 

  • De Boeck M, Kirsch-Volders M, Lison D (2003) Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res 533:135–152

    Google Scholar 

  • De Kok TMCM, Driece HML, Hogervorst JGF, Briedé J (2006) Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat Res 613:103–122

    Google Scholar 

  • Deguillaume L, Leriche M, Amato P, Ariya PA, Delort A-M, Poschl U, Chaumerliac N, Bauer H, Flossmann AI, Morris CE (2008) Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 5:1073–1084

    CAS  Google Scholar 

  • Delgado JD, García OE, Díaz AM, Díaz JP, Expósito FJ, Cuevas E, Querol X, Alastuey A, Castillo S (2010) Origin and SEM analysis of aerosols in the high mountain of Tenerife (Canary Islands). Nat Sci 2:1119–1129

    CAS  Google Scholar 

  • Delvalls TA, Saenz V, Arias AM, Blasco J (1999) Thallium in the marine environment: first ecotoxicological assessments in the Guadalquivir estuary and its potential adverse effect on the Donãna European natural reserve after the Aznalcollar mining spill. Cienc Mar 25:161–175

    CAS  Google Scholar 

  • Dockery DW, Pope A (1996) Epidemiology of acute health effects: summary of time-series studied. In: Wilson R, Spengler JD (eds) Particles in our air: concentration and health effects. Harvard University Press, Cambridge, MA, pp 123–147

    Google Scholar 

  • Dongarrà G, Manno E, Varrica D, Lombardo M, Vultaggio M (2010) Study on ambient concentrations of PM10, PM10−2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos Environ 44:5244–5257

    Google Scholar 

  • Douwes J, Thorne P, Pearce N, Heederik D (2003) Review. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200

    CAS  Google Scholar 

  • Ehrlich VA, Nersesyan AK, Hoelzl C, Ferk F, Bichler J, Valic E, Schaffer A, Schulte-Hermann R, Fenech M, Wagner K-H, Knasmüller S (2008) Inhalative exposure to vanadium pentoxide causes DNA damage in workers: results of a multiple end point study. Environ Health Perspect 116:1689–1693

    CAS  Google Scholar 

  • Elminir HK (2005) Dependence of urban air pollutants on meteorology. Sci Total Environ 350:225–237

    CAS  Google Scholar 

  • EMEP (2009) Joint EMEP/CORINAIR emission inventory guidebook, 3rd edn, October 2002. http://www.eea.europa.eu/publications/EMEPCORINAIR5. Updated 2009, Last access: August, 2013

  • Englert N (2004) Fine particle and human health – a review of epidemiological studies. Toxicol Lett 149:235–242

    CAS  Google Scholar 

  • EPA (2011) http://www.epa.gov/air/aqmportal/management/emissions_inventory/. Last access: August, 2013

  • European Community (2008) Council Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Commun L152/1, 11/6/2008

    Google Scholar 

  • Farmer GT, Cook J (2013) Climate change science: a modern synthesis. Volume 1 – the physical climate. Springer, Dordrecht

    Google Scholar 

  • Fernandez Espinosa AJ, Ternero Rodrìguez M, Barragàn de la Rosa FJ, Jiménez Sànchez JC (2001) Size distribution of metals in urban aerosols in Seville (Spain). Atmos Environ 35:2595–2601

    Google Scholar 

  • Fernàndez Espinosa AJ, Ternero Rodrìguez M, Barragàn de la Rosa FJ, Jiménez Sànchez JC (2002) A chemical speciation of trace metals for fine urban particles. Atmos Environ 36:773–780

    Google Scholar 

  • Florea A-M, Büsselberg D (2006) Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals 19:419–427

    CAS  Google Scholar 

  • Ford A (2009) Modeling the environment, 2nd edn. Island Press, Washington, DC, p 380. ISBN 9781597264723

    Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res 674:3–22

    CAS  Google Scholar 

  • Fuzzi S, Mandrioli P, Perfetto A (1997) Fog droplets-an atmospheric source of Secondary biological aerosol particles. Atmos Environ 31:281–290

    Google Scholar 

  • Grgić I (2008) Metals in aerosols. In: Colbeck I (ed) Environmental chemistry of aerosols. Blackwell Publishing Ltd., Oxford. ISBN 978-1-405-13919-9

    Google Scholar 

  • Gutiérrez-Cañas C, Legarreta JA, Larrión M, Astarloa S, Guede E (2009) Estudio de la emisión de metales pesados en una fábrica de cemento: determinación de patrones de emisión y enriquecimiento en relación al uso de materiales alternativos. pp 116–121. ISSN 0210-2064, 470.

    Google Scholar 

  • Hagler GSW, Bergin MH, Salmon LG, Yu JZ, Wan ECH, Zheng M, Zeng LM, Kiang CS, Zhang YH, Schauer JJ (2007) Local and regional anthropogenic influence on PM2.5 elements in Hong Kong. Atmos Environ 41:5994–6004

    CAS  Google Scholar 

  • Hao Y, Guo Z, Yang Z, Fang M, Feng J (2007) Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China. Atmos Res 85:27–37

    CAS  Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    CAS  Google Scholar 

  • He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci Total Environ 421–422:41–50

    Google Scholar 

  • Hedberg E, Gidhagen L, Johansson C (2005) Source contributions to PM10 and arsenic concentrations in Central Chile using positive matrix factorization. Atmos Environ 39:549–561

    CAS  Google Scholar 

  • Hernàndez F, Hernàndez-Armas J, Catalàn A, Fernàndez-Aldecoa JC, Karlsson L (2005) Gross alpha, gross beta activities and gamma emitting radionuclides composition of airborne particulate samples in an oceanic island. Atmos Environ 39:4057–4066

    Google Scholar 

  • Hernàndez F, Rodrìguez S, Karlsson L, Alonso-Pérez S, Lòpez-Pérez M, Hernandez-Armas J, Cuevas E (2008) Origin of observed high 7Be and mineral dust concentrations in ambient air on the Island of Tenerife. Atmos Environ 42:4247–4256

    Google Scholar 

  • HHS (U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program) (2011) Report on carcinogens, 12th edn. U.S. Dept. of Health and Human Services, Public Health Service, National Toxicology Program, Research Triangle Park, p 449

    Google Scholar 

  • Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651

    CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (2006) Vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum 86:227–292

    Google Scholar 

  • IARC (2013) Web link: http://monographs.iarc.fr/ENG/Classification/index.php. Last access: November 2013

  • IPCC (2007) Climate change the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC 2007. ISBN: 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback

    Google Scholar 

  • Jacobson MZ (1999) Fundamentals of atmospheric modeling. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Jang H-N, Seo Y-C, Lee J-H, Hwang K-W, Yoo J-I, Sok C-H, Kim S-H (2007) Formation of fine particles enriched by V and Ni from heavy oil combustion: anthropogenic sources and drop-tube furnace experiments. Atmos Environ 41:1053–1063

    CAS  Google Scholar 

  • Juda-Rezler K, Kowalczyk D (2013) Size distribution and trace elements contents of coal fly ash from pulverized boilers. Pol J Environ Stud 22:25–40

    CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    CAS  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199

    Google Scholar 

  • Kazantzis G (2000) Thallium in the environment and health effects. Environ Geochem Health 22:275–280

    CAS  Google Scholar 

  • Kim KY, Kim CN (2007) Airborne microbiological characteristics in public buildings of Korea. Build Environ 42:2188–2196

    Google Scholar 

  • Kukkonen J, Pohjiola M, Sokhi RS, Luhana L, Kitwiroon N, Fragkou L, Rantamaki M, Berge E, Ødegaard V, Harvard Slørdal L, Denby L, Finardi S (2005) Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos Environ 39:2759–2773

    CAS  Google Scholar 

  • Kuske CR (2006) Current and emerging technologies for the study of bacteria in the outdoor air. Curr Opin Biotechnol 17:291–296

    CAS  Google Scholar 

  • Lacey ME, West JS (2006) The air spora: a manual for catching and identifying airborne biological particles. Springer, Dordrecht. 1–2

    Google Scholar 

  • Larssen T, Lydersen E, Tang DG, He Y, Gao JX, Liu HY, Duan L, Seip HM, Vogt RD, Mulder J, Shao M, Wang YH, Shang H, Zhang XS, Solberg S, Aas W, Okland T, Eilertsen O, Angell V, Liu QR, Zhao DW, Xiang RJ, Xiao JS, Luo JH (2006) Acid rain in China. Environ Sci Technol 40:418–425

    CAS  Google Scholar 

  • Lazaridis M, Semb M, Hov Ø (1999) Long-range transport of aerosol particle. A literature review. Norwegian Institute for Air Research, Kjeller, EMEP/CCC-Report 8/99

    Google Scholar 

  • Lim J-M, Lee J-H, Moon J-H, Chung Y-S, Kim K-H (2010) Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmos Res 96:53–64

    CAS  Google Scholar 

  • Lin C-C, Chen S-J, Huang K-L (2005) Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ Sci Technol 39:8113–8122

    CAS  Google Scholar 

  • Lough G, Schauer JJ, Park JS, Shafer MM, Deminter JT, Weinstein JP (2005) Emissions of metals associated with motor vehicle roadways. Environ Sci Technol 39:826–836

    CAS  Google Scholar 

  • Lupu A, Maenhaut W (2002) Application and comparison of two statistical trajectory techniques for identification of source regions of atmospheric aerosol species. Atmos Environ 36:5607–5618

    CAS  Google Scholar 

  • Majestic BJ, Turner JA, Marcotte AR (2012) Respirable antimony and other trace-elements inside and outside an elementary school in Flagstaff, AZ, USA. Sci Total Environ 435–436:253–261

    Google Scholar 

  • Marconi E, Canepari S, Astolfi ML, Perrino C (2011) Determination of Sb(III), Sb(V) and identification of Sb-containing nanoparticles in airborne particulate matter. Procedia Environ Sci 4:209–217

    CAS  Google Scholar 

  • Mazzei F, D’Alessandro A, Lucarelli F, Nava S, Prati P, Valli G, Vecchi R (2008) Characterization of particulate matter sources in an urban environment. Sci Total Environ 401:81–89

    CAS  Google Scholar 

  • Meij R, Winkel H (2007) The emission of heavy metals and persistent pollutants from modern coal-fired power stations. Atmos Environ 41:9262–9272

    CAS  Google Scholar 

  • Morawska L, Zhang J (2002) Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 49:1045–1058

    CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Viana M, Salvador P, Sanchez de la Campa A, Artinano B, de la Rosa J, Gibbons W (2006) Variation in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmos Environ 40:6791–6803

    CAS  Google Scholar 

  • Moreno T, Alastuey A, Querol X, Font O, Gibbons W (2007) The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. Int J Coal Geol 71:122–128

    CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Gibbons W (2008a) Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmos Environ 42:7851–7861

    CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Pey J, Minguillon MC, Pérez N, Bernabé RM, Blanco S, Càrdenas B, Gibbons W (2008b) Lanthanoid geochemistry of urban atmospheric particulate matter. Environ Sci Technol 42:6502–6507

    CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, de la Rosa J, Sánchez de la Campa AM, Minguillón MC, Pandolfi M, González-Castanedo Y, Monfort E, Gibbons W (2010) Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci Total Environ 408:4569–4579

    CAS  Google Scholar 

  • NARSTO (2000) An Assessment of tropospheric ozone pollution: a North American perspective. North American Research Strategy for Tropospheric Ozone. Available from NARSTO Management Coordinator Office, Pasco, Washington, or Electric Power Research Institute, 1-800-313-3774 or www.epri.com

  • Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, Garcìa-Orellana I, Lucarelli F, Ludwig N, Migliori A, Sabbioni C, Udisti R, Valli G, Vecchi R (2010) An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: the case study of Michelozzo’s Courtyard in Florence (Italy). Sci Total Environ 408:1403–1413

    CAS  Google Scholar 

  • Niu J, Rasmussen PE, Hassan NM, Nouri M, Renaud V (2010) Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: influence of particle size. Water Air Soil Pollut 213:211–225

    CAS  Google Scholar 

  • Oberdorster G, Oberdoster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–829

    CAS  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Taylor and Francis, London, p 435

    Google Scholar 

  • Okuda T, Nakao S, Katsuno M, Tanaka S (2007) Source identification of nickel in TSP and PM2.5 in Tokyo, Japan. Atmos Environ 41:7642–7648

    CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D, Nitter S, Pregger T, Pfeiffer H, Friedrich R (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41:8557–8566

    CAS  Google Scholar 

  • Pandey PK, Patel KS, Subrt P (1998) Trace elemental composition of atmospheric particulate at Bhilai in central-east India. Sci Total Environ 215:123–134

    CAS  Google Scholar 

  • Papastefanou C, Loannidou A (1996) Beryllium-7 aerosols in ambient air. Environ Int 22:S125–S130

    CAS  Google Scholar 

  • Pappas RS, Polzin GM, Zhang L, Watson CH, Paschal DC, Ashley DL (2006) Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem Toxicol 44:714–723

    CAS  Google Scholar 

  • Pappas RS, Polzin GM, Watson CH, Ashley DL (2007) Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food Chem Toxicol 45:202–209

    CAS  Google Scholar 

  • Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ 40:3941–3961

    CAS  Google Scholar 

  • Peccia J, Milton DK, Reponen T, Hill J (2008) A role for environmental engineering and science in preventing bioaerosol-related disease. Environ Sci Technol 42:4631–4637

    CAS  Google Scholar 

  • Pecorari E (2010) Monitoraggio delle emissioni aeroportuali nell’area Veneziana: aeroporto “Marco Polo” di Tessera. Book of abstracts: 4° Convegno Nazionale sul Particolato Atmosferico. In Italian

    Google Scholar 

  • Pecorari E, Squizzato S, Masiol M, Radice P, Pavoni B, Rampazzo G (2013) Using a photochemical model to assess the horizontal, vertical and time distribution of PM2.5 in a complex area: relationships between the regional and local sources and the meteorological conditions. Sci Total Environ 443:681–691

    CAS  Google Scholar 

  • Perrino C, Canepari S, Pappalardo S, Marconi E (2010) Time-resolved measurements of water-soluble ions and elements in atmospheric particulate matter for the characterization of local and long-range transport events. Chemosphere 80:1291–1300

    CAS  Google Scholar 

  • Peter ALJ, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31:493–501

    CAS  Google Scholar 

  • Peters LK, Berkowitz CM, Carmichael GR, Easter RC, Fairweather G, Ghan SJ, Hales JM, Leung LR, Pennell WR, Potra FA, Saylor RD, Tsang TT (1995) The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species: a review. Atmos Environ 29:189–222

    CAS  Google Scholar 

  • Polymenakou PN (2012) Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3:87–102

    Google Scholar 

  • Pope CAI, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    CAS  Google Scholar 

  • Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh E, ten Brink HM, Lutz M, Brukmann P (2004) Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos Environ 38:6547–6555

    CAS  Google Scholar 

  • Querol X, Viana M, Alastuey A, Amato F, Moreno T, Castillo S, Pey J et al (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231

    CAS  Google Scholar 

  • Rajšić S, Mijić Z, Tasić M, Radenković M, Joksić J (2008) Evaluation of the levels and sources of trace elements in urban particulate matter. Environ Chem Lett 6:95–100

    Google Scholar 

  • Ress NB, Chou BJ, Renne RA, Dill JA, Miller RA, Roycroft JH, Hailey JR, Haseman JK, Bucher JR (2003) Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci 74:287–296

    CAS  Google Scholar 

  • Russell A, Dennis R (2000) NARSTO critical review of photochemical models and modeling. Atmos Environ 34:2283–2324

    CAS  Google Scholar 

  • Ryan JG (2002) Trace-element systematics of beryllium in terrestrial materials. Rev Mineral Geochem 50:121–146

    CAS  Google Scholar 

  • Salvador P, Artiñano B, Querol X, Alastuey A, Costoya M (2007) Characterization of local and external contributions of atmospheric particulate matter at a background coastal site. Atmos Environ 41:1–17

    CAS  Google Scholar 

  • Sánchez de la Campa AM, de la Rosa JD, González-Castanedo Y, Fernández-Camacho R, Alastuey A, Querol X, Pio C (2010) High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmos Res 96:633–644

    Google Scholar 

  • Santacatalina M, Yubero E, Mantilla E, Carratalá A (2012) Relevance of the economic crisis in chemical PM10 changes in a semi-arid industrial environment. Environ Monit Assess 184:6827–6844

    CAS  Google Scholar 

  • Sarma A (2008) Meteorological modeling quality applications. In: Zannetti P (ed) Air quality modeling – theories, methodologies, computational techniques, and available databases and software. Vol. III – fundamentals. The EnviroComp Institute and the Air and Waste Management Association, Pittsburgh

    Google Scholar 

  • Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242

    Google Scholar 

  • Seigneur C, Moran M (2004) Chemical-transport models. In: McMurry PH, Shepherd MF, Vickery JS (eds) Particulate matter for policy makers: a NARSTO assessment. Cambridge University Press, Cambridge, p 510

    Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  • Sella SM, Neves AF, Costa Moreira J, Silva-Filho EV (2006) Biogenic vanadium in total suspended particulate matter from Cabo Frio upwelling region, Southeast, Brazil. Atmos Environ 40:6181–6191

    CAS  Google Scholar 

  • Shinn EA, Smith GW, Prospero JM, Betzer P, Hayes ML, Garrison V, Barber RT (2000) African dust and the demise of Caribbean coral reefs. Geophys Res Lett 27:3029–3032

    Google Scholar 

  • Smichowski P (2008) Antimony in the environment as a global pollutant: a review on analytical methodologies for its determination in atmospheric aerosols. Talanta 75:2–14

    CAS  Google Scholar 

  • Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall, Englewood Cliffs, p 316

    Google Scholar 

  • Sternbeck J, Sjodin A, Andréasson K (2002) Metal emission from road traffic and the influence of resuspension: results from two tunnel studies. Atmos Environ 36:4735–4744

    CAS  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666

    Google Scholar 

  • Sutton M, Bibby RK, Eppich GR, Lee S, Lindvall RE, Wilson K, Esser BK (2012) Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory. Sci Total Environ 437:373–383

    CAS  Google Scholar 

  • Swaine DJ (2000) Why trace elements are important. Fuel Process Technol 65–66:21–33

    Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282

    CAS  Google Scholar 

  • Valkama I, Kukkonen J (eds) (2004) Identification and classification of air pollution episodes in terms of pollutants, concentration levels and meteorological conditions. Deliverable 2.1 of the FUMAPEX Project, Helsinki, 30 pp

    Google Scholar 

  • Vallés I, Camacho A, Ortega X, Serrano I, Blazquez S, Pérez S (2009) Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). J Environ Radioact 100:102–107

    Google Scholar 

  • Vardoulakis S, Kassomenos P (2008) Sources and factors affecting PM10 levels in two European cities: implications for local air quality management. Atmos Environ 42:3949–3963

    CAS  Google Scholar 

  • Varrica D, Bardelli F, Dongarrà G, Tamburo E (2013) Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos Environ 64:18–24

    CAS  Google Scholar 

  • Vecchi R, Valli G (1997) 7Be in surface air: a natural atmospheric tracer. J Aerosol Sci 28:895–900

    CAS  Google Scholar 

  • Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42:2240–2253

    CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849

    CAS  Google Scholar 

  • Wang X, Sato T, Xing B (2006) Size distribution and anthropogenic sources apportionment of airborne trace metals in Kanazawa, Japan. Chemosphere 65:2440–2448

    CAS  Google Scholar 

  • WHO, World Health Organization (2000) Air quality guidelines for Europe, vol 91, 2nd edn, WHO regional publications, European series. World Health Organization, Copenhagen

    Google Scholar 

  • Wong SC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals. Environ Pollut 142:1–16

    CAS  Google Scholar 

  • Zhu Y-J, Olson N, Beebe TP Jr (2001) Surface Chemical Characterization of 2.5-μm Particulates (PM2.5) from Air Pollution in Salt Lake City Using TOF-SIMS, XPS, and FTIR. Environ Sci Technol 35:3113–3121

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Rampazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rampazzo, G., Innocente, E., Pecorari, E., Squizzato, S., Valotto, G. (2014). Potentially Harmful Elements in the Atmosphere. In: Bini, C., Bech, J. (eds) PHEs, Environment and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8965-3_1

Download citation

Publish with us

Policies and ethics