Skip to main content

Nanoparticles: Cellular Uptake and Cytotoxicity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Understanding the interactions of nanoparticles (NPs) with cells and how these interactions influence their cellular uptake is essential to exploring the biomedical applications of NPs, particularly for drug delivery. Various factors, whether differences in physical properties of NPs or variations in cell-membrane characteristics, influence NP-cell interactions and uptake processes. NP-cell membrane interactions may also influence intracellular trafficking of NPs, their sorting into different intracellular compartments, cellular retention, and hence the efficacy of encapsulated therapeutics. A crucial consideration is whether such interactions might cause any toxicity, starting with how NPs interact in transit with the biological environment prior to their interactions with targeted cells and tissues. Understanding the effects of various NP characteristics on cellular and biological processes could help in designing NPs that are efficient but also nontoxic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

AR:

Aspect ratio

CME:

Clathrin-mediated endocytosis

CPP:

Cell-penetrating peptides

CTAB:

Cetyltrimethylammonium bromide

DMAB:

Didodecyldimethylammonium bromide

DTAB:

Dodecyltrimethylammonium bromide

HIV:

Human immunodeficiency virus

MTs:

Microtubules

NPs:

Nanoparticles

PLGA:

Poly (d, l-lactide co-glycolide)

RISC:

RNA-induced silencing complex

RNAi:

RNA-interference

siRNAs:

Small interfering RNAs

SNPs:

Silica NPs

TAT:

trans-activating transcriptional activator

References

  1. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  2. Labhasetwar V, Song C, Levy RJ (1997) Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev 24(1):63–85

    Article  CAS  Google Scholar 

  3. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci U S A 100(20):11350–11355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hwang DW, Song IC, Lee DS, Kim S (2010) Smart magnetic fluorescent nanoparticle imaging probes to monitor microRNAs. Small 6(1):81–88

    Article  CAS  Google Scholar 

  5. Sundaram S, Roy SK, Ambati BK, Kompella UB (2009) Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium. FASEB J 23(11):3752–3765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2):118–122

    Article  CAS  PubMed  Google Scholar 

  7. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Article  CAS  PubMed  Google Scholar 

  8. Nel AE, Mädler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  PubMed  Google Scholar 

  9. Mailä̈Nder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10(9):2379–2400

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    Article  CAS  PubMed  Google Scholar 

  11. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8):1639–1644

    Article  CAS  PubMed  Google Scholar 

  12. Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46): 14792–14793

    Article  CAS  PubMed  Google Scholar 

  13. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10):1322–1337

    Article  CAS  PubMed  Google Scholar 

  14. Buono C, Anzinger JJ, Amar M, Kruth HS (2009) Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest 119(5): 1373–1381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182(2):389–400

    Article  CAS  PubMed  Google Scholar 

  16. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  17. Brodsky FM, Chen C-Y, Knuehl C, Towler MC, Wakeham DE (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17(1):517–568

    Article  CAS  PubMed  Google Scholar 

  18. Ehrlich M, Boll W, Van Oijen A et al (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118(5):591–605

    Article  CAS  PubMed  Google Scholar 

  19. Sorkin A (2004) Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol 16(4):392–399

    Article  CAS  PubMed  Google Scholar 

  20. Takei K, Haucke V (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11(9):385–391

    Article  CAS  PubMed  Google Scholar 

  21. Perry DG, Daugherty GL, Martin WJ 2nd (1999) Clathrin-coated pit-associated proteins are required for alveolar macrophage phagocytosis. J Immunol 162(1):380–386

    CAS  PubMed  Google Scholar 

  22. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(1):159–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161(4):673–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Maxfield FR (2002) Plasma membrane microdomains. Curr Opin Cell Biol 14(4):483–487

    Article  CAS  PubMed  Google Scholar 

  25. Stan R-V (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57(5):350–364

    Article  PubMed  Google Scholar 

  26. Bohdanowicz M, Grinstein S (2013) Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol Rev 93(1):69–106

    Article  CAS  PubMed  Google Scholar 

  27. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  28. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67(1):199–225

    Article  CAS  PubMed  Google Scholar 

  29. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Article  CAS  PubMed  Google Scholar 

  30. Kumari A, Yadav SK (2011) Cellular interactions of therapeutically delivered nanoparticles. Expert Opin Drug Deliv 8(2):141–151

    Article  PubMed  CAS  Google Scholar 

  31. Doherty GJ, Mcmahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  32. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  CAS  PubMed  Google Scholar 

  33. Adjei IM, Peetla C, Labhasetwar V (2014) Heterogeneity in nanoparticles influences biodistribution and targeting. Nanomedicine (Lond) 9:267–278

    Google Scholar 

  34. Wang Z, Tiruppathi C, Minshall RD, Malik AB (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3(12):4110–4116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Prabha S, Zhou W-Z, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244(1–2):105–115

    Article  CAS  PubMed  Google Scholar 

  36. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35):9353–9363

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Tekobo S, Tu Y et al (2012) Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces 4(8):4099–4105

    Article  CAS  PubMed  Google Scholar 

  38. Huang X, Teng X, Chen D, Tang F, He J (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  CAS  PubMed  Google Scholar 

  39. Verma A, Uzun O, Hu Y et al (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9(2):435–443

    Article  CAS  PubMed  Google Scholar 

  41. Gessner A, Lieske A, Paulke BR, Müller R (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170

    Article  CAS  PubMed  Google Scholar 

  42. Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610

    Article  CAS  PubMed  Google Scholar 

  43. Cho WS, Thielbeer F, Duffin R et al (2014) Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 8:202–211

    Article  CAS  PubMed  Google Scholar 

  44. Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19(5):507–514

    Article  CAS  PubMed  Google Scholar 

  45. Sampaio JL, Gerl MJ, Klose C et al (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci U S A 108(5):1903–1907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  CAS  PubMed  Google Scholar 

  47. Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221

    Article  CAS  PubMed  Google Scholar 

  48. Bava A, Cappellini F, Pedretti E et al (2013) Heparin and carboxymethylchitosan metal nanoparticles: an evaluation of their cytotoxicity. Biomed Res Int 2013:1

    Article  CAS  Google Scholar 

  49. Mejías R, Pérez-Yagüe S, Gutiérrez L et al (2011) Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32(11):2938–2952

    Article  PubMed  CAS  Google Scholar 

  50. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  PubMed Central  PubMed  Google Scholar 

  51. Arvizo RR, Miranda OR, Thompson MA et al (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10(7):2543–2548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wang B, Zhang L, Bae SC, Granick S (2008) Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci U S A 105(47):18171–18175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Choi CH, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci U S A 110(19):7625–7630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Shrestha R, Elsabahy M, Florez-Malaver S, Samarajeewa S, Wooley KL (2012) Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities. Biomaterials 33(33):8557–8568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Peetla C, Labhasetwar V (2008) Biophysical characterization of nanoparticle-endothelial model cell membrane interactions. Mol Pharm 5(3):418–429

    Article  CAS  PubMed  Google Scholar 

  56. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  CAS  PubMed  Google Scholar 

  57. Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 6(5):1264–1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Peetla C, Rao KS, Labhasetwar V (2009) Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles. Mol Pharm 6(5):1311–1320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sharma B, Peetla C, Adjei IM, Labhasetwar V (2013) Selective biophysical interactions of surface modified nanoparticles with cancer cell lipids improve tumor targeting and gene therapy. Cancer Lett 334(2):228–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15): 1615–1626

    Article  CAS  PubMed  Google Scholar 

  61. Yang PH, Sun X, Chiu JF, Sun H, He QY (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug Chem 16(3):494–496

    Article  CAS  PubMed  Google Scholar 

  62. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin conjugated paclitaxel loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112(2):335–340

    Article  CAS  PubMed  Google Scholar 

  63. Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  64. Richard JP, Melikov K, Vives E et al (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1): 585–590

    Article  CAS  PubMed  Google Scholar 

  65. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7):848–866

    Article  CAS  PubMed  Google Scholar 

  66. Vivès E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4(2):125–132

    Article  PubMed  Google Scholar 

  67. Santra S, Yang H, Stanley JT et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun 25:3144–3146

    Article  CAS  Google Scholar 

  68. Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29(33):4429–4438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Jiang W, Kimbetty YS, Rutka JT, Chanwarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  70. Oh E, Delehanty JB, Sapsford KE et al (2011) Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5(8):6434–6448

    Article  CAS  PubMed  Google Scholar 

  71. Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 110(9):3270–3275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kolhar P, Anselmo AC, Gupta V et al (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A 110(26):10753–10758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Salvati A, Pitek AS, Monopoli MP et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2): 137–143

    Article  CAS  PubMed  Google Scholar 

  74. Brezesinski G, Möhwald H (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv Colloid Interface Sci 100–102:563–584

    Article  PubMed  CAS  Google Scholar 

  75. Peetla C, Bhave R, Vijayaraghavalu S, Stine A, Kooijman E, Labhasetwar V (2010) Drug resistance in breast cancer cells: biophysical characterization of and doxorubicin interactions with membrane lipids. Mol Pharm 7(6):2334–2348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Shaw JE, Slade A (2003) Yip CM: simultaneous in situ total internal reflectance fluorescence/atomic force microscopy studies of DPPC/dPOPC microdomains in supported planar lipid bilayers. J Am Chem Soc 125(39):11838–11839

    Article  CAS  PubMed  Google Scholar 

  77. Okumura Y, Zhang H, Sugiyama T, Iwata Y (2007) Electroformation of giant vesicles on a non-electroconductive substrate. J Am Chem Soc 129(6):1490–1491

    Article  CAS  PubMed  Google Scholar 

  78. Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124(5):997–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Gratton SE, Ropp PA, Pohlhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33): 11613–11618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Rejman J, Bragonzi A, Conese M (2005) Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther 12(3):468–474

    Article  CAS  PubMed  Google Scholar 

  81. Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4(11):724–738

    Article  CAS  PubMed  Google Scholar 

  82. Maxfield FR (1982) Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol 95(2 Pt 1):676–681

    Article  CAS  PubMed  Google Scholar 

  83. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228

    Article  CAS  PubMed  Google Scholar 

  84. Jones RA, Cheung CY, Black FE et al (2003) Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem J 372(Pt 1):65–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16(10):1217–1226

    Article  CAS  PubMed  Google Scholar 

  86. Kwon EJ, Bergen JM, Pun SH (2008) Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjug Chem 19(4):920–927

    Article  CAS  PubMed  Google Scholar 

  87. Kantchev EA, Chang CC, Chang DK (2006) Direct Fmoc/tert-Bu solid phase synthesis of octamannosyl polylysine dendrimer-peptide conjugates. Biopolymers 84(2):232–240

    Article  CAS  PubMed  Google Scholar 

  88. Hatakeyama H, Ito E, Akita H et al (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139(2):127–132

    Article  CAS  PubMed  Google Scholar 

  89. Mok H, Park TG (2008) Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers 89(10):881–888

    Article  CAS  PubMed  Google Scholar 

  90. Salomone F, Cardarelli F, Di Luca M et al (2012) A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release 163(3):293–303

    Article  CAS  PubMed  Google Scholar 

  91. Ilker MF, Schule H, Coughlin EB (2004) Modular norbornene derivatives for the preparation of well-defined amphiphilic polymers: study of the lipid membrane disruption activities. Macromolecules 37(3):694–700

    Article  CAS  Google Scholar 

  92. Ogris M, Carlisle RC, Bettinger T, Seymour LW (2001) Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J Biol Chem 276(50):47550–47555

    Article  CAS  PubMed  Google Scholar 

  93. Selbo PK, Weyergang A, Høgset A et al (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148(1):2–12

    Article  CAS  PubMed  Google Scholar 

  94. Prasmickaite L, Hogset A, Selbo PK, Engesaeter BØ, Hellum M, Berg K (2002) Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy. Br J Cancer 86(4):652–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Pon LA (2011) Organelle transport: mitochondria hitch a ride on dynamic microtubules. Curr Biol 21(17):R654–R656

    Article  CAS  PubMed  Google Scholar 

  96. Barlan K, Rossow MJ, Gelfand VI (2013) The journey of the organelle: teamwork and regulation in intracellular transport. Curr Opin Cell Biol 25(4):483–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Panyam J, Labhasetwar V (2003) Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 1(1):77–84

    Article  CAS  Google Scholar 

  98. Pratt AJ, Macrae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284(27):17897–17901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Yuan X, Naguib S, Wu Z (2011) Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 8(4):521–536

    Article  CAS  PubMed  Google Scholar 

  100. Panyam J, Labhasetwar V (2004) Targeting intracellular targets. Curr Drug Deliv 1(3):235–247

    Article  CAS  PubMed  Google Scholar 

  101. Kim AJ, Boylan NJ, Suk JS, Lai SK, Hanes J (2012) Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles. J Control Release 158(1):102–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7(1):347–354

    Article  CAS  PubMed  Google Scholar 

  103. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Heller A, Brockhoff G, Goepferich A (2012) Targeting drugs to mitochondria. Eur J Pharm Biopharm 82(1):1–18

    Article  CAS  PubMed  Google Scholar 

  105. Malhi SS, Murthy RS (2012) Delivery to mitochondria: a narrower approach for broader therapeutics. Expert Opin Drug Deliv 9(8):909–935

    Article  CAS  PubMed  Google Scholar 

  106. Szabo I, Leanza L, Gulbins E, Zoratti M (2012) Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch 463(2): 231–246

    Article  CAS  PubMed  Google Scholar 

  107. Wang X-H, Peng H-S, Yang L et al (2013) Poly-l-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria. J Mater Chem B 1(38): 5143–5152

    Article  CAS  Google Scholar 

  108. Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D (2013) Mitochondrial delivery of Doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 30(11): 2832–2842

    Article  CAS  PubMed  Google Scholar 

  109. Johnston HJ, Semmler-Behnke M, Brown DM, Kreyling W, Tran L, Stone V (2010) Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol 242(1):66–78

    Article  CAS  PubMed  Google Scholar 

  110. Panyam J, Labhasetwar V (2003) Dynamics of endocytosis and exocytosis of poly(D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res 20(2):212–220

    Article  CAS  PubMed  Google Scholar 

  111. Hemmerich PH, von Mikecz AH (2013) Defining the subcellular interface of nanoparticles by live-cell imaging. PLoS One 8(4):e62018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2):151–165

    Article  CAS  PubMed  Google Scholar 

  113. Lengyel JS, Milne JL, Subramaniam S (2008) Electron tomography in nanoparticle imaging and analysis. Nanomedicine (Lond) 3(1):125–131

    Article  CAS  Google Scholar 

  114. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  PubMed  Google Scholar 

  115. Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624): 1434–1436

    Article  CAS  PubMed  Google Scholar 

  116. Greish K, Thiagarajan G, Herd H et al (2012) Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology 6(7):713–723

    Article  CAS  PubMed  Google Scholar 

  117. Yu T, Greish K, McGill LD, Ray A, Ghandehari H (2012) Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano 6(3):2289–2301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Labhasetwar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adjei, I.M., Sharma, B., Labhasetwar, V. (2014). Nanoparticles: Cellular Uptake and Cytotoxicity. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_5

Download citation

Publish with us

Policies and ethics