Skip to main content

Applications of Photofermentative Hydrogen Production

  • Chapter
  • First Online:
Microbial BioEnergy: Hydrogen Production

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

Summary

Scientific and market strategy is essential in developing biological hydrogen production processes. Plans for future research should be based on current knowledge, experience and techniques. This chapter focuses on the applied issues of photofermentative H2 production using purple non sulfur bacteria (PNSB) in combined systems, and in particular, the optimization of the process on real feedstock such as olive mill wastewater and dark fermenter effluents (DFEs) of thick juice, molasses, and potato steam peels. Based on the current state of the knowledge in the field, the future applicability and prospects of these systems are evaluated. Strategies to overcome the problems are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BCI:

Biomass cost index

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

CSTR:

Continuously stirred tank reactor

DFE:

Dark fermenter effluent

FVW:

Fruit and vegetable wastes

gdcw lc −1 :

Gram cell dry weight per liter of culture

HRT:

Hydraulic retention time

LDPE:

Low density polyethylene

lH2 :

Liters of hydrogen

lOMW :

Liters of olive mill wastewater

M:

Molar

OMW:

Olive mill wastewater

PBR:

Photobioreactor

PNSB:

Purple non-sulfur bacteria

SRW:

Sugar refinery wastewater

TOC:

Total organic carbon

VFA:

Volatile fatty acids

References

  • Abd-Alla MH, Morsy FM, El-Enany AWE (2011) Hydrogen production from rotten dates by sequential three stages fermentation. Int J Hydrog Energy 36:13518–13527

    CAS  Google Scholar 

  • Aceves-Lara CA, Latrille E, Bernet N, Buffière P, Steyer JP (2008) A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42:2539–2550

    CAS  PubMed  Google Scholar 

  • Adessi A, McKinlay JB, Harwood CS, De Philippis R (2012) A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4 +-containing vegetable waste. Int J Hydrog Energy 37:15893–15900

    CAS  Google Scholar 

  • Afşar N (2012) A Global approach to the hydrogen production, carbon assimilation and nitrogen metabolism of Rhodobacter capsulatus by physiological and microarray analyses. Ph.D. thesis. Graduate School of Natural and Applied Sciences, METU, Ankara, Turkey. http://etd.lib.metu.edu.tr/upload/12615030/index.pdf

  • Afşar N, Özgür E, Gürgan M, Akkose S, Yücel M, Gündüz U, Eroglu I (2011) Hydrogen productivity of photosynthetic bacteria on dark fermenter effluent of potato steam peels hydrolysate. Int J Hydrog Energy 36:432–438

    CAS  Google Scholar 

  • Akköse S, Gündüz U, Yücel M, Eroglu I (2009) Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides OU001. Int J Hydrog Energy 34:8818–8827

    Google Scholar 

  • Androga DD, Özgür E, Eroglu I, Gündüz U, Yücel M (2011a) Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int J Hydrog Energy 36:15583–15594

    CAS  Google Scholar 

  • Androga DD, Özgür E, Gündüz U, Yücel M, Eroglu I (2011b) Factors affecting the long-term stability of biomass and hydrogen productivity in outdoor photofermentation. Int J Hydrog Energy 36:11369–11378

    CAS  Google Scholar 

  • Androga DD, Özgür E, Eroglu I, Gündüz U, Yücel M (2012) Amelioration of photofermentative hydrogen production from molasses dark fermenter effluent by zeolite-based removal of ammonium ion. Int J Hydrog Energy 37:16421–16429

    CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan IK (2009) Hydrogen production by combined dark and light fermentation of ground wheat solution. Int J Hydrog Energy 34:4304–4311

    Google Scholar 

  • Avcioglu SG, Özgür E, Eroglu I, Yücel M, Gündüz U (2011) Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. Int J Hydrog Energy 36:11360–11368

    CAS  Google Scholar 

  • Azbar N, Cetinkaya-Dokgöz FT (2010) The effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor. Int J Hydrog Energy 35:5028–5033

    CAS  Google Scholar 

  • Azbar N, Çetinkaya Dokgöz FT, Keskin T, Korkmaz KS, Syed HM (2009a) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34:7441–7447

    CAS  Google Scholar 

  • Azbar N, Dokgöz FT, Keskin T, Eltem R, Korkmaz KS, Gezgin Y, Akbal Z, Öncel S, Dalay MC, Gönen Ç, Tutuk F (2009b) Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. Int J Green Energy 6:192–200

    CAS  Google Scholar 

  • Azbar N, Dokgöz FTÇ, Peker Z (2009c) Optimization of basal medium for fermentative hydrogen production from cheese whey wastewater. Int J Green Energy 6:371–380

    CAS  Google Scholar 

  • Biebl H, Pfennig N (1981) Isolation of members of the family Rhodosprillaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer-Verlag, New York, pp 267–273

    Google Scholar 

  • Boran E (2011) Process development for continuous photofermentative hydrogen production. Thesis, Graduate School of Natural and Applied Sciences, METU, Ankara, Turkey. (http://etd.lib.metu.edu.tr/upload/12612955/index.pdf)

  • Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012a) Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. J Clean Prod 31:150–157

    CAS  Google Scholar 

  • Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012b) Biohydrogen production by Rhodobacter capsulatus Hup− mutant in pilot solar tubular photobioreactor. Int J Hydrog Energy 37:16437–16445

    CAS  Google Scholar 

  • Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995

    CAS  Google Scholar 

  • Cabrera F, Lopez R, Martinez-Bordiu A, Dupuy de Lome E, Murillo JM (1996) Land treatment of olive oil mill wastewater. Int Biodeter Biodegrad 38:215–255

    Google Scholar 

  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    CAS  Google Scholar 

  • Claassen PAM, de Vrije T (2006) Non-thermal production of pure hydrogen from biomass: HYVOLUTION. Int J Hydrog Energy 31:1416–1423

    CAS  Google Scholar 

  • Claassen PAM, Budde MAW, Niel EWJV, de Vrije T (2005) Utilization of biomass for hydrogen fermentation. In: Lens P, Westermann P, Haberbauer M, Monero A (eds) Biofuels for fuel cells: biomass fermentation towards usage in fuel cells. IWA Publishing, London, pp 221–230

    Google Scholar 

  • de Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PAM (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12

    PubMed Central  PubMed  Google Scholar 

  • Diamantopoulou LK, Karaoglanoglou LS, Koukios EG (2011) Biomass cost index: mapping biomass-to-biohydrogen feedstock costs by a new approach. Bioresour Technol 102:2641–2650

    CAS  PubMed  Google Scholar 

  • Djomo S, Humbert S (2008) Life cycle assessment of hydrogen produced from potato steam peels. Int J Hydrog Energy 33:3067–3072

    CAS  Google Scholar 

  • Elkahlout KE (2011) Phototrophic hydrogen production by agar-immobilized Rhodobacter capsulatus. Ph.D. thesis, Graduate School of Natural and Applied Sciences, METU, Ankara, Turkey. https://etd.lib.metu.edu.tr/upload/12613033/index.pdf

  • Ergüder TH, Güven E, Demirer GN (2000) Anaerobic treatment of olive mill wastes in batch reactors. Process Biochem 36:243–248

    Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    CAS  PubMed  Google Scholar 

  • Eroglu E, Gündüz U, Yücel M, Turker L, Eroglu I (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrog Energy 29:163–171

    CAS  Google Scholar 

  • Eroglu E, Gündüz U, Yücel M, Turker L, Eroglu I (2006) Biological hydrogen production from olive mill wastewater with two stage processes. Int J Hydrog Energy 31:1527–1535

    CAS  Google Scholar 

  • Eroglu E, Eroglu I, Gündüz U, Yücel M (2008a) Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour Technol 99:6799–6808

    CAS  PubMed  Google Scholar 

  • Eroglu I, Tabanoglu A, Gündüz U, Eroglu E, Yücel M (2008b) Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor. Int J Hydrog Energy 33:531–541

    CAS  Google Scholar 

  • Eroglu E, Eroglu I, Gündüz U, Yücel M (2009a) Treatment of olive mill wastewater by different physicochemical methods and the utilization of their liquid effluents for biological hydrogen production. Biomass Bioenergy 33:701–705

    CAS  Google Scholar 

  • Eroglu E, Eroglu I, Gündüz U, Yücel M (2009b) Comparison of the physicochemical characteristics and photofermentative hydrogen production potential of wastewaters produced from different olive-oil mills in Western-Anatolia Turkey. Biomass Bioenergy 33(4):706–711

    CAS  Google Scholar 

  • Eroglu E, Gündüz U, Yücel M, Eroglu I (2010) Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. Int J Hydrog Energy 35:5293–5300

    CAS  Google Scholar 

  • Eroglu E, Gündüz U, Yücel M, Eroglu I (2011) Effect of Fe and Mo addition on the photofermentative hydrogen production from olive mill wastewater. Int J Hydrog Energy 36:5895–5903

    CAS  Google Scholar 

  • Fascetti E, D’Addario E, Todini O, Robertiello A (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrog Energy 23:753–760

    CAS  Google Scholar 

  • Favinger J, Stadtwald R, Gest H (1989) Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. A Van Leeuw J Microbiol 55:291–296

    CAS  Google Scholar 

  • Foglia D, Ljunggren M, Wukovits W, Friedl A, Zacchi G, Urbaniec K, Markowski M (2010) Integration studies on a two-stage fermentation process for the production of biohydrogen. J Clean Prod 18:S72–S80

    CAS  Google Scholar 

  • Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011) Effects of feedstocks on the process integration of biohydrogen production. Clean Technol Environ 13:547–558

    CAS  Google Scholar 

  • Gebicki J, Modigell M, Schumacher M, van der Burg J, Roebroeck E (2010) Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus. J Clean Prod 18:S36–S42

    CAS  Google Scholar 

  • Gonzalez MD, Moreno E, Quvedo-Sarmiento F, Ramos- Cormenzana A (1990) Studies on the antibacterial activity of wastewaters from olive oil mills (alpechin): inhibitory activity of phenolic and fatty acids. Chemosphere 20:423–432

    CAS  Google Scholar 

  • Guo WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, Qu YY, Zhang LS (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGBS) reactor. Int J Hydrog Energy 33:4981–4988

    CAS  Google Scholar 

  • Gürgan Doğan M (2011) Microarray analysis of the effects of heat and cold stress on hydrogen production metabolism of Rhodobacter capsulatus. M. Sc. thesis Graduate School of Natural and Applied Sciences, METU, Ankara, Turkey. http://etd.lib.metu.edu.tr/upload/12613668/index.pdf

  • Hampannavar US, Shivayogimath CB (2010) Anaerobic treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor at ambient temperature. Int J Environ Sci 1:631–639

    CAS  Google Scholar 

  • Jansson C, Westerbergh A, Zhang J, Hu X, Sun C (2009) A potential biofuel crop in (the) People’s Republic of China. Appl Energy 86:S95–S99

    Google Scholar 

  • Jeong HS, Jouanneau Y (2000) Enhanced nitrogenase activity in strains of Rhodobacter capsulatus that overexpress the rnf genes. J Bacteriol 182:1208–1214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microbiol Technol 38:569–582

    CAS  Google Scholar 

  • Kargi F, Pamukoglu MY (2009) Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. Int J Hydrog Energy 34:2940–2946

    CAS  Google Scholar 

  • Kars G, Gündüz U (2010) Towards a super H2 producer: improvements in photofermentative biohydrogen production by genetic manipulations. Int J Hydrog Energy 35:6646–6656

    CAS  Google Scholar 

  • Kars G, Gündüz U, Rakhely G, Yücel M, Eroglu I, Kovacs KL (2008) Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 33:3056–3060

    CAS  Google Scholar 

  • Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568

    CAS  PubMed  Google Scholar 

  • Kim EJ, Kim MS, Lee JK (2008) Hydrogen evolution under photoheterotrophic and dark fermentative conditions by recombinant Rhodobacter sphaeroides containing the genes for fermentative pyruvate metabolism of Rhodospirillum rubrum. Int J Hydrog Energy 33:5131–5136

    CAS  Google Scholar 

  • Kim MS, Kim DH, Son HN, Ten LN, Lee JK (2011) Enhancing photo-fermentative hydrogen production by Rhodobacter sphaeroides KD131 and its PHB synthase deleted-mutant from acetate and butyrate. Int J Hydrog Energy 36:13964–13971

    CAS  Google Scholar 

  • Kiritsakis A (1991) Olive oil. American Oil Chemists’ Society, Champaign

    Google Scholar 

  • Koku H, Eroglu I, Gündüz U, Yücel M, Türker L (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 27:1315–1329

    CAS  Google Scholar 

  • Laurinavichene TV, Tekucheva DN, Laurinavichius KS, Ghirardi ML, Seibert M, Tsygankov AA (2008) Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation. Int J Hydrog Energy 33:7020–7026

    CAS  Google Scholar 

  • Ljunggren M, Wallberg O, Zacchi G (2011) Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresour Technol 102:9524–9531

    CAS  PubMed  Google Scholar 

  • Lo YC, Chen CY, Lee CM, Chang JS (2011) Photo fermentative hydrogen production using dominant components (acetate, lactate, and butyrate) in dark fermentation effluents. Int J Hydrog Energy 36:14059–14068

    CAS  Google Scholar 

  • Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, de Vrije T, Claassen PAM (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:13206–13213

    Google Scholar 

  • McKinley LB, Harwood CS (2010) Carbon dioxide as a central redox cofactor recycling mechanism in bacteria. PNAS 107:11669–11675

    Google Scholar 

  • Mitsui A, Philips EJ, Kumazawa S, Reddy KJ, Ramachandran S, Matsunaga T, Haynes L, Ikemoto H (1983) Progress in research toward outdoor biological hydrogen production using solar energy, sea water, and marine photosynthetic microorganisms. Ann N Y Acad Sci 413:514–530

    CAS  Google Scholar 

  • Modaressi A, Wukovits W, Foglia D, Friedl A (2010) Effect of process integration on the exergy balance of a two-stage process for fermentative hydrogen production. J Clean Prod 18:S63–S71

    Google Scholar 

  • Önder O, Sunar SA, Selamoglu N, Daldal F (2010) A glimpse into the proteome of phototrophic bacterium Rhodobacter capsulatus. Adv Exp Med Biol 675:179–209

    PubMed Central  PubMed  Google Scholar 

  • Özgür E, Peksel B (2013) Biohydrogen production from barley straw hydrolysate through sequential dark and photofermentation. J Clean Prod 52:14–20

    Google Scholar 

  • Özgür E, Mars A, Peksel B, Lowerse A, Afşar N, Vrije T, Yücel M, Gündüz U, Claassen PAM, Eroglu I (2010a) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrog Energy 35:511–517

    Google Scholar 

  • Özgür E, Afşar N, Vrije T, Yücel M, Gündüz U, Claassen PAM, Eroglu I (2010b) Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus. J Clean Prod 18:S23–S28

    Google Scholar 

  • Özgür E, Uyar B, Öztürk Y, Yücel M, Gündüz U, Eroglu I (2010c) Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recy 54:310–314

    Google Scholar 

  • Özgür E, Uyar B, Gürgan M, Yücel M (2010d) Hydrogen production by Hup- mutant and wild type strains of Rhodobacter capsulatus on dark fermenter effluent of sugar beet thick juice in batch and continuous photobioreactors. In: Detlef S, Grube T (eds) Hydrogen production technologies, part-1, Proceedings of WHEC 2010, Essen. Forschunszentrum Jülich GmbH, Verlag, GmbH, pp 228–233

    Google Scholar 

  • Özkan E, Uyar B, Özgür E, Yücel M, Eroglu I, Gündüz U (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrog Energy 37:2044–2049

    Google Scholar 

  • Ozmihci S, Kargi F (2010) Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. Int J Hydrog Energy 35:6674–6680

    CAS  Google Scholar 

  • Özsoy B (2012) Hydrogen and poly-hydroxy butyric acid production and expression analyses of related genes in Rhodobacter capsulatus at different acetate concentrations. M.Sc. thesis, Graduate School of Natural and Applied Sciences, METU, Ankara, Turkey. http://etd.lib.metu.edu.tr/upload/12614076/index.pdf

  • Öztürk Y, Yücel M, Daldal F, Mandaci S, Gündüz U, Turker L, Eroglu I (2006) Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains. Int J Hydrog Energy 31:1545–1552

    Google Scholar 

  • Öztürk Y, Gökce A, Peksel B, Gürgan M, Özgür E, Gündüz U, Eroglu I, Yücel M (2012) Hydrogen production properties of Rhodobacter capsulatus with genetically modified redox balancing pathways. Int J Hydrog Energy 37:2014–2020

    Google Scholar 

  • Pekgoz G, Gündüz U, Eroglu I, Yücel M, Kovacs K, Rakhley G (2011) Effect of inactivation of genes involved in ammonium regulation on the biohydrogen production of Rhodobacter capsulatus. Int J Hydrog Energy 36:13536–13546

    Google Scholar 

  • Peksel B (2012) Proteome analysis of hydrogen production mechanism of Rhodobacter capsulatus grown on different growth conditions. M.Sc. thesis, Graduate School of Natural and Applied Sciences, METU, Ankara, Turkey (http://etd.lib.metu.edu.tr/upload/12614133/index.pdf)

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I – Use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    CAS  Google Scholar 

  • Rai PK, Singh SP, Asthana RK (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167:1540–1549

    CAS  PubMed  Google Scholar 

  • Ramos-Cormenzana A, Jimenez B, Pareja G (1996) Antimicrobial activity of olive mill wastewaters (alpechin) and biotransformed olive oil mill wastewater. Int Biodeter Biodegrad 38:283–290

    Google Scholar 

  • Ren N, Li J, Li B, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31:2147–2157

    CAS  Google Scholar 

  • Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060

    CAS  PubMed  Google Scholar 

  • Rocha JS, Barbosa MJ, Wijffels RH (2001) Hydrogen production by photosynthetic bacteria: culture media, yields and efficiencies. In: Miyake J, Matsunaga T, San Pietro A (eds) Biohydrogen II – an approach to environmentally acceptable technology. Elsevier Science Ltd., London, pp 3–32

    Google Scholar 

  • Sabbah I, Marsook T, Basheer S (2004) The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process Biochem 39:1947–1951

    CAS  Google Scholar 

  • Sasikala K, Ramana CV (1991) Photoproduction of hydrogen from waste water of a lactic acid fermentation plant by a purple non-sulfur photosynthetic bacterium, Rhodobacter sphaeroides O.U. 001. Indian J Exp Biol 29:74–75

    CAS  Google Scholar 

  • Seifert K, Waligorska M, Laniecki M (2010a) Hydrogen generation in photobiological process from diary wastewater. Int J Hydrog Energy 35:9624–9629

    CAS  Google Scholar 

  • Seifert K, Waligorska M, Laniecki M (2010b) Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 35:4085–4091

    CAS  Google Scholar 

  • Shi X, Yu H (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrog Energy 31:1641–1647

    CAS  Google Scholar 

  • Sigurbjornsdottir MA, Orlygsson J (2012) Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring. Appl Energy 97:785–791

    CAS  Google Scholar 

  • Singh SP, Srivastava SC, Pandley KD (1994) Hydrogen production by Rhodopseudomonas at the expense of vegetable starch, sugarcane juice and whey. Int J Hydrog Energy 19:437–440

    CAS  Google Scholar 

  • Stevens P, Vertonghen C, De Vos P, De Ley J (1984) The effect of temperature and light intensity on hydrogen production by different Rhodopseudomonas capsulata strains. Biotechnol Lett 6:277–282

    CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrog Energy 34:1780–1786

    CAS  Google Scholar 

  • Tichi MA, Tabita FR (2000) Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Arch Microbiol 174:322–333

    CAS  PubMed  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 178–214

    Google Scholar 

  • Tsagaraki E, Lazarides HN, Petrotos KB (2006) Olive mill wastewater treatment. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry. Springer, New York, pp 133–157

    Google Scholar 

  • Türkarslan S, Yigit DO, Aslan K, Eroglu I, Gündüz U (1998) Photobiological hydrogen production by Rhodobacter sphaeroides O.U.001 by utilization of waste water from milk industry. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 151–156

    Google Scholar 

  • Uyar B, Eroglu I, Yücel M, Gündüz U, Turker L (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrog Energy 32:4670–4677

    CAS  Google Scholar 

  • Uyar B, Schumacher M, Gebicki J, Modigell M (2009) Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent. Bioprocess Biosyst Eng 32:603–606

    CAS  PubMed  Google Scholar 

  • Vatsala TM, Ramasamy V (1987) Photo-hydrogen production from distillery waste. In: Veziroğlu TN (ed) Proceedings of the 8th Miami international conference on alternative energy sources, vol 2. Miami, Florida, pp 618–623

    Google Scholar 

  • Verrier D, Ray F, Albagnac G (1987) Two-phase methanization of solid vegetable wastes. Biol Waste 22:163–177

    CAS  Google Scholar 

  • Vignais PM, Magnin J-P, Willison JC (2006) Increasing biohydrogen production by metabolic engineering. Int J Hydrog Energy 31:1478–1483

    CAS  Google Scholar 

  • Visioli F, Romani A, Mulinacci N, Zarini S, Conte D, Vincieri FF, Galli C (1999) Antioxidant and other biological activities of olive mill waste waters. J Agric Food Chem 47:3397–3401

    CAS  PubMed  Google Scholar 

  • Wang X, Jin B (2009) Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum w5. J Biosci Bioeng 107:138–144

    CAS  PubMed  Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216

    CAS  PubMed  Google Scholar 

  • Yakunin AF, Hallenbeck PC (1998) Short-term regulation of nitrogenase activity by NH4 + in Rhodobacter capsulatus: multiple in vivo nitrogenase responses to NH4 + addition. J Bacteriol 180:6392–6395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Guo L, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. Bioresour Technol 101:2049–2052

    CAS  PubMed  Google Scholar 

  • Yesilada Ö, Sık S, Sam M (1999) Treatment of olive oil mill wastewater with fungi. Turk J Biol 23:231–240

    Google Scholar 

  • Yetis M, Gündüz U, Eroglu I, Yücel M, Turker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U.001. Int J Hydrog Energy 25:1035–1041

    CAS  Google Scholar 

  • Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22:389–395

    CAS  Google Scholar 

  • Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrog Energy 24:305–310

    CAS  Google Scholar 

  • Zong W, Yu R, Zhang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463

    CAS  Google Scholar 

  • Zürrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37:789–793

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by European Cooperation in Science and Technology (COST Action 841), European Commission – Research: The Sixth Framework Program for Research and Technological Development Sustainable Energy Systems EU FP6-SES IP HYVOLUTION (contract no. 019825), Turkish State Planning Organization (DPT) (BAP-08-11-DPT.2005K120600), Turkish Scientific Research Council (TÜBİTAK) (108T455) and Middle East Technical University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inci Eroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eroglu, I., Özgür, E., Eroglu, E., Yücel, M., Gündüz, U. (2014). Applications of Photofermentative Hydrogen Production. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_11

Download citation

Publish with us

Policies and ethics