Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 60))

  • 1214 Accesses

Abstract

Charge enhanced diffusion, which is a new discovery derived from the deposition behaviour of CNPs, will have a great scientific and technological impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adikaari A, Silva S (2005) Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon. J Appl Phys 97(11):114305. doi:http://dx.doi.org/10.1063/1.1898444

    Google Scholar 

  • Akedo J Aerosol deposition method for fabrication of nano crystal ceramic layer. In: Materials Science Forum, 2004. Trans Tech Publ, pp 43–48. doi:10.4028/www.scientific.net/MSF.449-452.43

  • Akedo J (2006) Aerosol deposition of ceramic thick films at room temperature: Densification mechanism of ceramic layers. J Am Ceram Soc 89(6):1834–1839. doi:10.1111/j.1551-2916.2006.01030.x

    Google Scholar 

  • Akedo J (2008) Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J Therm Spray Tech 17(2):181–198. doi:10.1007/s11666-008-9163-7

    Google Scholar 

  • Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B (1995) Experimental observation of fast diffusion of large antimony clusters on graphite surfaces. Phys Rev Lett 74(23):4694–4697

    Google Scholar 

  • Barnes MC, Jeon I-D, Kim D-Y, Hwang NM (2002) Generation of charged clusters during thermal evaporation of gold. J Cryst Growth 242(3–4):455–462. doi:http://dx.doi.org/10.1016/S0022-0248(02)01417-3

    Google Scholar 

  • Baski A, Fuchs H (1994) Epitaxial growth of silver on mica as studied by AFM and STM. Surf Sci 313(3):275–288

    Google Scholar 

  • Bertolino N, Garay J, Anselmi-Tamburini U, Munir Z (2001) Electromigration effects in Al-Au multilayers. Scripta Mater 44(5):737–742

    Google Scholar 

  • Bertolino N, Garay J, Anselmi-Tamburini U, Munir Z (2002) High-flux current effects in interfacial reactions in Au–Al multilayers. Philos Mag B 82(8):969–985

    Google Scholar 

  • Buchholz S, Fuchs H, Rabe JP (1991) Surface structure of thin metallic films on mica as seen by scanning tunneling microscopy, scanning electron microscopy, and low‐energy electron diffraction. J Vac Sci Technol B 9(2):857–861

    Google Scholar 

  • Bunshah RF (1983) Processes of the activated reactive evaporation type and their tribological applications. Thin Solid Films 107(1):21–38. doi:http://dx.doi.org/10.1016/0040-6090(83)90004-4

    Google Scholar 

  • Bustin WM, Dukek WG (1983) Electrostatic hazards in the petroleum industry. John Wiley and Sons, New York, USA

    Google Scholar 

  • Chapman B (1980) Sputtering Chapter 6. Glow discharge process:201

    Google Scholar 

  • Chidsey CE, Loiacono DN, Sleator T, Nakahara S (1988) STM study of the surface morphology of gold on mica. Surf Sci 200(1):45–66

    Google Scholar 

  • Chung Y-B, Park H-K, Lee D-K, Jo W, Song J-H, Lee S-H, Hwang N-M (2011) Low temperature deposition of crystalline silicon on glass by hot wire chemical vapor deposition. J Cryst Growth 327(1):57–62. doi:http://dx.doi.org/10.1016/j.jcrysgro.2011.05.004

    Google Scholar 

  • Chung Y-B, Lee S-H, Bae S-H, Park H-K, Jung J-S, Hwang N-M (2012) Effect of the initial structure on the electrical property of crystalline silicon films deposited on glass by hot-wire chemical vapor deposition. J Nanosci Nanotechno 12(7):5947–5951. doi:http://dx.doi.org/10.1166/jnn.2012.6415

    Google Scholar 

  • Crane J, Warwick M, Smith R, Furlan N, Binions R (2011) The application of electric fields to aerosol assisted chemical vapor deposition reactions. J Electrochem Soc 158(2):D62–D67

    Google Scholar 

  • DeRose J, Thundat T, Nagahara L, Lindsay S (1991) Gold grown epitaxially on mica: conditions for large area flat faces. Surf Sci 256(1):102–108

    Google Scholar 

  • Fuchita E, Tokizaki E, Ozawa E, Inoue H, Sakka Y, Kita E (2013) High-temperature phase in zirconia film fabricated by aerosol gas deposition and its change upon subsequent heat treatment. J Ceram Soc Jpn 121(1412):333–337. doi:10.2109/jcersj2.121.333

    Google Scholar 

  • Garay J, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater 51(15):4487–4495

    Google Scholar 

  • Holland TB, Löffler JF, Munir ZA (2004) Crystallization of metallic glasses under the influence of high density dc currents. J Appl Phys 95(5):2896–2899

    Google Scholar 

  • Hui S, Wang Z-J, Gao T-J (2007) Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet. T Nonferr Metal Soc 17(1):87–92

    Google Scholar 

  • Hwang NM (1999) Deposition and simultaneous etching of Si in the chemical vapor deposition (CVD) process: approach by the charged cluster model. J Cryst Growth 205(1–2):59–63. doi:http://dx.doi.org/10.1016/S0022-0248(99)00247-X

    Google Scholar 

  • Hwang J, Dubson M (1992) Atomically flat gold films grown on hot glass. J Appl Phys 72(5):1852–1857

    Google Scholar 

  • Hayashi C Gas deposition. In: Materials Science Forum, 1997. Trans Tech Publ, pp 153–180. doi:10.4028/www.scientific.net/MSF.246.153

  • Inukai J, Mizutani W, Saito K, Shimizu H, Iwasawa Y (1991) Gold substrates for scanning tunneling microscopy of adsorbed species. Jpn J Appl Phys 30(12R):3496

    Google Scholar 

  • Jaworek A (2007) Electrospray droplet sources for thin film deposition. J Mater Sci 42(1):266–297. doi:10.1007/s10853-006-0842-9

    Google Scholar 

  • Jaworek A, Sobczyk A, Krupa A, Lackowski M, Czech T (2009) Electrostatic deposition of nanothin films on metal substrate. Bull Pol Acad Sci-te 57(1):63–70. doi:10.2478/v10175-010-0106-3

    Google Scholar 

  • Jeon I-D, Barnes MC, Kim D-Y, Hwang NM (2003) Origin of positive charging of nanometer-sized clusters generated during thermal evaporation of copper. J Cryst Growth 247(3–4):623–630. doi:10.1016/S0022-0248(02)02058-4

    Google Scholar 

  • Jeon I-D, Kim D-Y, Hwang N-M (2005) Spontaneous generation of charged atoms or clusters during thermal evaporation of silver: Dedicated to Professor Dr. Duk Yong Yoon on the occasion of his 65th birthday. Z Metallkd 96(2):186–190

    Google Scholar 

  • Jiang Y, Tang G, Shek C, Zhu Y (2009) Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg–9Al–1Zn alloy strip. Appl Phys A 97(3):607–615

    Google Scholar 

  • Jones AC, Hitchman ML (eds) (2009) Chemical vapour deposition: precursors, processes and applications. Royal Society of Chemistry, London

    Google Scholar 

  • Kashu S, Mihara Y (1995) Preparation of PZT Deposited films by using an aerosol jet printing system and their electrical properties. J Jpn Soc Powder Metall 42:314–317

    Google Scholar 

  • Kashu S, Fuchita E, Manabe T, Hayashi C (1984) Deposition of ultra fine particles using a gas jet. Jpn J Appl Phys 23(12A):L910–L912

    Google Scholar 

  • Katakuse I, Ichihara T, Fujita Y, Matsuo T, Sakurai T, Matsuda H (1985) Mass distributions of copper, silver and gold clusters and electronic shell structure. Int J Mass Spectrom 67(2):229–236. doi:http://dx.doi.org/10.1016/0168-1176(85)80021-5

    Google Scholar 

  • Katakuse I, Ichihara T, Fujita Y, Matsuo T, Sakurai T, Matsuda H (1986) Mass distributions of negative cluster ions of copper, silver, and gold. Int J Mass Spectrom 74(1):33–41. doi:http://dx.doi.org/10.1016/0168-1176(86)85021-2

    Google Scholar 

  • Kawakami Y, Seto T, Ozawa E (1999) Characteristics of ultrafine tungsten particles produced by Nd:YAG laser irradiation. Appl Phys A 69(1):S249–S252. doi:10.1007/s003399900286

    Google Scholar 

  • Kim J-Y, Kim D-Y, Hwang N-M (2006) Spontaneous generation of negatively charged clusters and their deposition as crystalline films during hot-wire silicon chemical vapor deposition. Pure Appl Chem 78(9):1715–1722. doi:http://dx.doi.org/10.1351/pac199870040789

    Google Scholar 

  • Kim C-S, Youn W-K, Lee D-K, Seol K-S, Hwang N-M (2009) Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition. J Cryst Growth 311(15):3938–3942. doi:http://dx.doi.org/10.1016/j.jcrysgro.2009.05.035

    Google Scholar 

  • Koch R, Winau D, Führmann A, Rieder K (1992) Intrinsic stress of polycrystalline and epitaxial Ag, Cu and Au films on mica (001). Vacuum 43(5):521–523

    Google Scholar 

  • Lee S-H (2014) Microstructure control of silicon thin films through controlling charged nanoparticles generated during hot wire chemical vapor deposition. Ph.D Thesis Seoul National University, Seoul

    Google Scholar 

  • Lee BS, Barnes MC, Kim D-Y, Hwang NM (2002) Spontaneous generation of charged clusters of a few nanometers during thermal evaporation of copper. J Cryst Growth 234(2–3):599–602. doi:http://dx.doi.org/10.1016/S0022-0248(01)01747-X

    Google Scholar 

  • Lee S-S, Ko M-S, Kim C-S, Hwang N-M (2008) Gas phase nucleation of crystalline silicon and their role in low-temperature deposition of microcrystalline films during hot-wire chemical vapor deposition. J Cryst Growth 310(15):3659–3662. doi:http://dx.doi.org/10.1016/j.jcrysgro.2008.05.009

    Google Scholar 

  • Levlin M, Laakso A, Niemi H-M, Hautojärvi P (1997) Evaporation of gold thin films on mica: effect of evaporation parameters. Appl Surf Sci 115(1):31–38

    Google Scholar 

  • Li Y, Chen J, Ma J (2015) Properties of Cu2ZnSnS4 (CZTS) thin films prepared by plasma assisted co-evaporation. J Mater Sci: Mater Electron 26(9):6546–6551. doi:10.1007/s10854-015-3251-5

    Google Scholar 

  • Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 42(26):9406–9422

    Google Scholar 

  • Mizubayashi H, Okuda S (1989) Structural relaxation induced by passing electric current in amorphous Cu50 Ti50 at low temperatures. Phys Rev B 40(11):8057

    Google Scholar 

  • Morimoto R, Izumi A, Masuda A, Matsumura H (2002) Low-resistivity phosphorus-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing. Jpn J Appl Phys 41(2R):501

    Google Scholar 

  • Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777

    Google Scholar 

  • Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19

    Google Scholar 

  • Orchard H, Greer A (2005) Electromigration effects on compound growth at interfaces. Appl Phys Lett 86(23):231906

    Google Scholar 

  • Panjawi N, Naik A, Warwick ME, Hyett G, Binions R (2012) The preparation of titanium dioxide gas sensors by the electric field assisted aerosol CVD reaction of titanium isopropoxide in toluene. Chem Vapor Depos 18(4‐6):102–106

    Google Scholar 

  • Peineke C, Schmidt-Ott A (2008) Explanation of charged nanoparticle production from hot surfaces. J Aerosol Sci 39(3):244–252. doi:http://dx.doi.org/10.1016/j.jaerosci.2007.12.004

    Google Scholar 

  • Peineke C, Attoui MB, Schmidt-Ott A (2006) Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations. J Aerosol Sci 37(12):1651–1661. doi:http://dx.doi.org/10.1016/j.jaerosci.2006.06.006

    Google Scholar 

  • Poppa H, Heinemann K, Elliot AG (1971) Epitaxial orientation studies of gold on UHV-cleaved mica during early stages of nucleation and growth. J Vac Sci Technol 8(3):471–480

    Google Scholar 

  • Qin R, Samuel E, Bhowmik A (2011) Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels. J Mater Sci 46(9):2838–2842

    Google Scholar 

  • Rath JK, Stannowski B, van Veenendaal PATT, van Veen MK, Schropp REI (2001) Application of hot-wire chemical vapor-deposited Si:H films in thin film transistors and solar cells. Thin Solid Films 395(1–2):320–329. doi:http://dx.doi.org/10.1016/S0040-6090(01)01288-3

    Google Scholar 

  • Samuel EI, Bhowmik A, Qin R (2010) Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel. J Mater Res 25(06):1020–1024

    Google Scholar 

  • SchÜTz R, Hartnagel HL (1989) Brief communication. New molecular beam epitaxy technique: radiofrequency plasma-assisted evaporation epitaxy for low temperature InP growth. Int J Electron 67(2):233–234. doi:10.1080/00207218908921074

    Google Scholar 

  • Shaw G, Parkin IP, Pratt KF, Williams DE (2005) Control of semiconducting oxide gas-sensor microstructure by application of an electric field during aerosol-assisted chemical vapour deposition. J Mater Chem 15(1):149–154

    Google Scholar 

  • Shen Z, Peng H, Nygren M (2003) Formidable increase in the superplasticity of ceramics in the presence of an electric field. Adv Mater 15(12):1006–1009

    Google Scholar 

  • Spear KE, Dismukes JP (eds) (1994) Synthetic diamond: emerging CVD science and technology, vol 25. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  • Takagi T (1986) Ionized cluster beam technique for thin film deposition. Z Phys D Atom Mol Cl 3(2):271–278. doi:10.1007/BF01384816

  • Takagi T, Yamada I, Yanagawa K (1975) Ion Implantation in Semiconductors. Springer, US. doi:10.1007/978-1-4684-2151-4

    Google Scholar 

  • Takagi T, Yamada I, Sasaki A (1976) An evaluation of metal and semiconductor films formed by ionized-cluster beam deposition. Thin Solid Films 39:207–217. doi:http://dx.doi.org/10.1016/0040-6090(76)90638-6

    Google Scholar 

  • Yang D, Conrad H (2001) Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl. Intermetallics 9(10):943–947

    Google Scholar 

  • Zhao J, Garay JE, Anselmi-Tamburini U, Munir ZA (2007) Directional electromigration-enhanced interdiffususion in the Cu–Ni system. J Appl Phys 102(11):114902

    Google Scholar 

  • Zhou YZ, Zhang W, Guo J, He G (2004) Diffusive phase transformation in a Cu–Zn alloy under rapid heating by electropulsing. Phil Mag Lett 84(5):341–348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Moon Hwang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hwang, N. (2016). Implications and Applications. In: Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer Series in Surface Sciences, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7616-5_14

Download citation

Publish with us

Policies and ethics