Skip to main content

WQC Threshold Values for Representative Pollutants

  • Chapter
Water Quality Criteria Green Book of China
  • 312 Accesses

Abstract

In this chapter, cadmium (Cd), ammonia nitrogen, and nitrobenzene are taken as examples to verify the methodology for deriving aquatic life criteria that established in previous chapters. In addition, chlorophyll a, ammonia nitrogen, total nitrogen (TN), and total phosphorus (TP) are selected to verify the methodology for deriving ecological criteria. Moreover, detailed information on deriving sediment quality criteria for Cd, copper (Cu), lead (Pb), and zinc (Zn) are also presented in this chapter. Finally, chlorophyll a, TN, TP, and transparency are applied to validate the method for deriving nutrient criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Aquatic Life Criteria: Cadmium (Cd)

  • Attar EN, Maly EJ. Acute toxicity of cadmium, zinc, and cadmium-zinc mixtures to Daphnia magna. Arch Environ Contam Toxicol. 1982;11:291–6.

    CAS  PubMed  Google Scholar 

  • Baird DJ, Barber I, Bradley M, et al. A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna Straus. Ecotoxicol Environ Saf. 1991;21:257–65.

    Article  CAS  PubMed  Google Scholar 

  • Barata C, Baird DJ, Markich SJ. Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals. Aquat Toxicol. 1998;42:115–37.

    Article  CAS  Google Scholar 

  • Barata C, Markich SJ, Baird DJ, et al. The relative importance of water and food as cadmium sources to Daphnia magna Straus. Aquat Toxicol. 2002;61:143–54.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett L. Effects of copper, zinc and cadmium on Selenastrum capricornutum. Water Res. 1974;8:179–85.

    Article  CAS  Google Scholar 

  • Bertram PE, Hart BA. Longevity and reproduction of Daphnia pulex (de Geer) exposed to cadmium-contaminated food or water. Environ Pollut. 1979;19:295–305.

    Article  CAS  Google Scholar 

  • Biesinger KE, Christensen GM. Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. Fish Res Board Can. 1972a;29:1691–700.

    Article  CAS  Google Scholar 

  • Bitton G, Rhodes K, Koopman B. Ceriofast™: an acute toxicity test based on Ceriodaphnia dubia feeding behavior. Environ Toxicol Chem. 1996a;15(2):123–5.

    CAS  Google Scholar 

  • Bozeman JB, Koopman BG. Toxicity testing using immobilized algae. Aquat Toxicol. 1989;14:345–52.

    Article  CAS  Google Scholar 

  • Bringmann G. Determination of the biologically harmful effect of water pollutants by means of the retardation of cell proliferation of the blue algae microcystis. Gesund Ing. 1975;96:238–42.

    CAS  PubMed  Google Scholar 

  • Bringmann G, Kuhn R. Limiting values for the damaging action of water pollutants to bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test. Zeitschrift für Wasser und Abwasserforschung. 1977;10:87–98.

    CAS  Google Scholar 

  • Brown V, Shurben D, Miller W, et al. Cadmium toxicity to rainbow trout Oncorhynchus mykiss walbaum and brown trout Salmo trutta L. over extended exposure periods. Ecotoxicol Environ Saf. 1994;29:38–46.

    Article  CAS  PubMed  Google Scholar 

  • Canton JH, Slooff W. Toxicity and accumulation studies of cadmium (Cd2+) with freshwater organisms of different trophic levels. Ecotoxicol Environ Saf. 1982;6:113–28.

    Article  CAS  PubMed  Google Scholar 

  • Conway HL. Sorption of arsenic and cadmium and their effects on growth, micronutrient utilization, and photosynthetic pigment composition of Asterionella Formosa. Fish Res Board Can. 1978;35:286–94.

    Article  CAS  Google Scholar 

  • Crisinel A, Delaunay L, Rossel D, et al. Cyst-based ecotoxicological tests using Anostracans: comparison of two species of Streptocephalus. Environ Toxicol Water Qual. 1994;9(4):317–26.

    Article  CAS  Google Scholar 

  • Devi M, Thomas DA, Barber JT, et al. Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. Ecotoxicol Environ Saf. 1996;33:38–43.

    Article  CAS  PubMed  Google Scholar 

  • Diamond JM, Koplish DE, McMahon JI, et al. Evaluation of the water-effect ratio procedure for metals in a riverine system. Environ Toxicol Chem. 1997a;16(3):509–20.

    Article  CAS  Google Scholar 

  • Eaton JG, McKim J, Mand Holcombe GW. Metal toxicity to embryos and larvae of seven freshwater fish species-I. cadmium. Bull Environ Contam Toxicol. 1978;19:95–103.

    Article  CAS  PubMed  Google Scholar 

  • Elnabarawy MT, Welter AN, Rubidium RR. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environ Toxicol Chem. 1986a;5:393–8.

    Article  CAS  Google Scholar 

  • Ghosal TK, Kaviraj A. Combined effects of cadmium and composted manure to aquatic organisms. Chemosphere. 2002;46:1099–105.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh TK, Kotangale JP, Krishnamoorthi KP. Toxicity of selective metals to freshwater algae, ciliated protozoa and planktonic crustaceans. Front Ecol Environ. 1990;8(1):356–60.

    CAS  Google Scholar 

  • Giesy JPJ. Effects of naturally occurring aquatic organic fractions on cadmium toxicity to Simocephalus serrulatus (Daphnidae) and Gambusia affinis (Poeciliidae). Water Res. 1977;11:1013–20.

    Article  CAS  Google Scholar 

  • Giesy JP. Fate and biological effects of cadmium introduced into channel microcosms. EPA-600/3-79-039. Virginia: NTIS, Springfield; 1979.

    Google Scholar 

  • Guilhermino L, Lopes MC, Carvalho AP, et al. Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. Chemosphere. 1996;32(4):727–38.

    Article  CAS  PubMed  Google Scholar 

  • Hall WS, Paulson RL, Hall LWJ, et al. Acute toxicity of cadmium and sodium pentachlorophenate to daphnids and fish. Bull Environ Contam Toxicol. 1986;37:308–16.

    Article  CAS  PubMed  Google Scholar 

  • Hart BA, Schaife BD. Toxicity and bioaccumulation of cadmium in Chlorella pyrenoidosa. Environ Res. 1977;14:401–13.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama S, Yasuno M. Effects of cadmium on the periodicity of parturition and brood size of Moina macrocopa (Cladocera). Environ Pollut A. 1981;26:111–20.

    Article  CAS  Google Scholar 

  • Heumann HG. Effects of heavy metals on growth and ultrastructure of Cara vulgaris. Protoplasma. 1987;136:37–48.

    Article  CAS  Google Scholar 

  • Holdway DA, Lok K, Semaan M. The acute and chronic toxicity of cadmium and zinc to two hydra species. Environ Toxicol. 2001;16:557–65.

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson TC, Stokes PM. Heavy metal toxicity and algal bioassays. In: Barabos S, editor. Water quality parameters. ASTM STP 573. Philadelphia: American Society for Testing and Materials; 1975.

    Google Scholar 

  • Jop KM, Askew AM, Foster RB. Development of a water-effect ratio for copper, cadmium, and lead for the Great Works River in Maine using Ceriodaphnia dubia and Salvelinus fontinalis. Bull Environ Contam Toxicol. 1995;54:29–33.

    Article  CAS  PubMed  Google Scholar 

  • Karntanut W, Pascoe D. The toxicity of copper, cadmium and zinc to four different Hydra (cnidaria: hydrozoa). Chemosphere. 2002a;47:1059–64.

    Article  CAS  PubMed  Google Scholar 

  • Lee SI, Na EJ, Cho YO, et al. Short-term toxicity test based on algal uptake by Ceriodaphnia dubia. Water Environ Res. 1997;69(7):1207–10.

    Article  CAS  Google Scholar 

  • Liu Y, Yang R, Qiu J, et al. Complex toxicity of triadimefon and Cd towards aquatic organisms. J Agro-Environ Sci. 2005;24(6):1075–8 (in Chinese).

    CAS  Google Scholar 

  • Nakano Y, Abe K, Toda S. Morphological observation of Euglena gracilis grown in zinc-sufficient media containing cadmium ions. Agric Biol Chem. 1980;44:2305–16.

    Article  CAS  Google Scholar 

  • Naqvi SM, Howell RD. Toxicity of cadmium and lead to juvenile red swamp crayfish, Procambarus clarkii, and effects on fecundity of adults. Bull Environ Contam Toxicol. 1993;51:303–8.

    CAS  PubMed  Google Scholar 

  • Pascoe D, Cram P. The effect of parasitism on the toxicity of cadmium to the three-spined stickleback, Gasterosteus aculeatus L. J Fish Biol. 1977;10:467–72.

    Article  CAS  Google Scholar 

  • Pascoe D, Mattey DL. Studies on the toxicity of cadmium to the three-spined stickleback Gasterosteus aculeatus L. J Fish Biol. 1977;11:207–15.

    Article  CAS  Google Scholar 

  • Prasad PVD, Prasad PSD. Effect of cadmium, lead and nickel on three freshwater green algae. Water Air Soil Pollut. 1982;17:263–8.

    CAS  Google Scholar 

  • Rachlin JW, Warkentine B, Jensen TE. The growth responses of Chlorella saccharophila, Navicula incerta and Nitzschia closterium to selected concentrations of cadmium. Bull Tor Bot Club. 1982;109:129–35.

    Article  CAS  Google Scholar 

  • Redeker ES, Blust R. Accumulation and toxicity of cadmium in the aquatic oligochaete Tubifex tubifex: a kinetic modeling approach. Environ Sci Technol. 2004;38(2):537–43.

    Article  CAS  Google Scholar 

  • Reynoldson TB, Rodriguez P, Madrid MM. A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Muller, 1774) from the North American Great Lakes and Northern Spain. Hydrobiology. 1996;344:199–206.

    Article  Google Scholar 

  • Rosko JJ, Rachlin JW. The effect of cadmium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull Tor Bot Club. 1977;104:226–33.

    Article  CAS  Google Scholar 

  • Roux DJ, Kempster PL, Truter E, et al. Effect of cadmium and copper on survival and reproduction of Daphnia pulex. Water Saf. 1993;19(4):269–74.

    CAS  Google Scholar 

  • Sajwan KS, Ornes WH. Phytoavailability and bioaccumulation of cadmium in duckweed plants (Spirodela polyrhiza L. Schleid). J Environ Sci Health A. 1994;29(5):1035–44.

    Google Scholar 

  • Schafer H, Wenzel A, Fritsche U, et al. Long-term effects of selected xenobiotica on freshwater green algae: development of a flow-through test system. Sci Total Environ Suppl. 1993;1:735–40.

    Article  Google Scholar 

  • Schubauer-Berigan MK, Dierkes JR, Monson PD, et al. PH-dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegates. Environ Toxicol Chem. 1993a;12:1261–6.

    Article  CAS  Google Scholar 

  • Slooff WJ. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (sub)acute toxicity tests. Aquat Toxicol. 1983;4:113–28.

    Article  CAS  Google Scholar 

  • Spehar RL, Carlson AR. Derivation of site-specific water quality criteria for cadmium and the St. Louis River Basin, Duluth, Minnesota. PB 84–153196. Springfield: NTIS; 1984.

    Google Scholar 

  • Stackhouse RA, Benson WH. The influence of humic acid on the toxicity and bioavailability of selected trace metals. Aquat Toxicol. 1988;13:99–108.

    Article  CAS  Google Scholar 

  • Stanley RA. Toxicity of heavy metals and salts to Eurasian watermilfoil (Myriophyllum spicatum L.). Arch Environ Contam Toxicol. 1974;2:331–41.

    Article  CAS  PubMed  Google Scholar 

  • Stuhlbacher A, Bradley MC, Naylor C, et al. Induction of cadmium tolerance in two clones of Daphnia magna Straus. Comp Biochem Physiol C. 1992;101(3):571–7.

    Article  CAS  PubMed  Google Scholar 

  • Taraldsen JE, Norberg-King TJ. New method for determining effluent toxicity using duckweed (Lemna minor). Environ Toxicol Chem. 1990;9:761–7.

    Article  CAS  Google Scholar 

  • Thellen C, Blaise C, Roy Y, et al. Round robin testing with the Selenastrum capricornutum microplate toxicity assay. Hydrobiology. 1989;188(189):259–68.

    Article  Google Scholar 

  • Tilton SC, Foran CM, Benson WH. Effects of cadmium on the reproductive axis of Japanese medaka (Oryzias latipes). Comp Biochem Physiol C. 2003;136:265–76.

    Google Scholar 

  • USEPA. Update of ambient water quality criteria for cadmium (EPA-822-R-01-001). Washington, DC: Office of Water, USEPA; 2001.

    Google Scholar 

  • Versteeg DJ. Comparison of short- and long-term toxicity test results for the green alga, Selenastrum capricornutum. In: Wang W, Gorsuch JW, Lower WR, editors. Plants for toxicity assessment. ASTM STP 1091. Philadelphia. American Society for Testing and Materials; 1990.

    Google Scholar 

  • Wang W. Toxicity tests of aquatic pollutants by using common duckweed. Environ Pollut B. 1986;11:1–14.

    Article  CAS  Google Scholar 

  • Wigginton AJ, Birge WJ. Toxicity of cadmium to six species in two genera of crayfish and the effect of cadmium on molting success. Environ Toxicol Chem. 2007;26(3):548–54.

    Article  CAS  PubMed  Google Scholar 

  • Williams KA, Green DWJ, Pascoe D. Studies on the acute toxicity of pollutants to freshwater macroinvertebrates: 1: cadmium. Arch Hydrobiol. 1985;102(4):461–71.

    CAS  Google Scholar 

  • Yang Z, Chen L, Chen H. Study on joint toxicity of copper and cadmium to tadpole. Chi J Eco-Agric. 2003;11(1):102–3 (in Chinese).

    Google Scholar 

  • Zhan L, Tie B, Qin P, et al. Toxic effect of cadmium and acetochlor on Spirodela Oligorrhiza. J Saf Environ. 2005;5(3):5–8 (in Chinese).

    CAS  Google Scholar 

  • Zheng X, Long W, Guo Y, et al. Acute Toxicities of Cd2+ on Propsilocerus akamusi (Diptera: Chironomidae). J Agro-Environ Sci. 2008;27(1):86–91 (in Chinese).

    CAS  Google Scholar 

Aquatic Life Criteria: Ammonia

  • Andersen H, Buckley J. Acute toxicity of ammonia to Ceriodaphnia dubia and a procedure to improve control survival. Bull Environ Contam Toxicol. 1998;61(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  • Arthur JW, West CW, Allen KN, et al. Seasonal toxicity of ammonia to five fish and nine invertebrates species. Bull Environ Contam Toxicol. 1987;38(2):324–31.

    Article  CAS  PubMed  Google Scholar 

  • Bailey HC, Elphick JR, Krassoi R, et al. Joint acute toxicity of diazinon and ammonia to Ceriodaphnia dubia. Environ Toxicol Chem. 2001;20:2877–82.

    Article  CAS  PubMed  Google Scholar 

  • Belanger SE, Cherry DS, Farris JL, et al. Sensitivity of the Asiatic clam to various biocidal control agents. J Am Water Works Assoc. 1991;83(10):79–87.

    CAS  Google Scholar 

  • Black M. Water quality standards for North Carolina’s endangered mussels. Athens: Department of Environmental Health Science; 2001.

    Google Scholar 

  • Cowgill UM, Milazzo DP. The response of the three brood Ceriodaphnia test to fifteen formulations and pure compounds in common use. Arch Environ Contam Toxicol. 1991;21(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  • Dekker T, Greve GD, Laak TLT, et al. Development and application of a sediment toxicity test using the benthic cladoceran Chydorus sphaericus. Environ Pollut. 2006;140:231–8.

    Article  CAS  PubMed  Google Scholar 

  • Diamond JM, Mackler DG, Rasnake WJ, et al. Derivation of site-specific ammonia criteria for an effluent-dominated headwater stream. Environ Toxicol Chem. 1993;12(4):649–58.

    Article  CAS  Google Scholar 

  • Du H, Wei Q, Liu J, et al. Acute toxicity of phenol, copper, nitrite and total ammonia to juvenile Chinese sturgeon, Acipenser sinensis. J Dalian Fish Univ. 2007a;22(2):118–22 (in Chinese).

    CAS  Google Scholar 

  • Gerisch FM, Hopkins DL, Applegath SL, et al. The sensitivity of chronic end points used in Daphnia magna Straus life-cycle tests. In: Bahner RC,. Hansen DJ, editors. Aquatic toxicology and hazard assessment: eighth symposium, Fort Mitchell, KY, USA, Philadelphia, PA: ASTM; 1985.

    Google Scholar 

  • Gersich FM, Hopkins DL. Site-specific acute and chronic toxicity of ammonia to Daphnia magna Straus. Environ Toxicol Chem. 1986;5(5):443–7.

    Article  CAS  Google Scholar 

  • Gulyas P, Fleit E. Evaluation of ammonia toxicity on Daphnia magna and some fish species. Aquac Hung. 1990;6:171–83.

    Google Scholar 

  • Harrahy EA, Barman M, Geis S, et al. Effects of ammonia on the early life stages of northern pike (Esox lucius). Bull Environ Contam Toxicol. 2004;72:1290–6.

    Article  CAS  PubMed  Google Scholar 

  • Hasan MR, Macintosh DJ. Acute toxicity of ammonia to common carp fry. Aquaculture. 1986;54(1–2):97–107.

    Article  CAS  Google Scholar 

  • Hazel CR, Thomsen W, Meith SJ. Sensitivity of striped bass and stickleback to ammonia in relation to temperature and salinity. Calif Fish Game. 1971;57(3):138–53.

    CAS  Google Scholar 

  • Ip YK, Tay ASL, Lee KH, et al. Strategies for surviving high concentrations of environmental ammonia in the swamp eel Monopterus albus. Physiol Biochem Zool. 2004;77:390–405.

    Article  CAS  PubMed  Google Scholar 

  • Kumar NJ, Krishnamurthy KP. Evaluation of toxicity of ammoniacal fertilizer effluents. Environ Pollut A. 1983;30(1):77–86.

    Article  CAS  Google Scholar 

  • Mallet MJ, Sims I. Effects of ammonia on the early life stages of carp (Cyprinus carpio) and roach (Rutilus rutilus). In: Muller R, Lloyd R, editors. Sublethal and chronic effects of pollutants on freshwater fish. London: Fishing News Books; 1994.

    Google Scholar 

  • Manning TM, Wilson SP, Chapman JC. Toxicity of chlorine and other chlorinated compounds to some Australian aquatic organisms. Bull Environ Contam Toxicol. 1996;56(6):971–6.

    Article  CAS  PubMed  Google Scholar 

  • Mount DI. Ammonia toxicity tests with Ceriodaphnia acanthina and Simocephalus vetulus. Duluth: U.S. EPA; 1982.

    Google Scholar 

  • Nimmo DWR, Link D, Parrish LP, et al. Comparison of on-site and laboratory toxicity tests: derivation of site-specific criteria for un-ionized ammonia in a Colorado transitional stream. Environ Toxicol Chem. 1989;8(12):1177–89.

    Article  CAS  Google Scholar 

  • Parkhurst BR, Meyer JS, DeGraeve GM, et al. Reevaluation of the toxicity of coal conversion process waters. Bull Environ Contam Toxicol. 1981;26(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  • Rao TS, Rao MS, Prasad SBSK. Median tolerance limits of some chemicals to the fresh water fish Cyprinus carpio. Indian J Environ Health. 1975a;17(2):140–6.

    CAS  Google Scholar 

  • Reinbold KA, Pescitelli SM. Effects of exposure to ammonia on sensitive life stages of aquatic organisms. Project Report, Contract No. 68-01-5832. Champaign: Illinois Natural History Survey; 1982.

    Google Scholar 

  • Rubin AJ, Elmaraghy MA. Studies on the toxicity of ammonia, nitrate and their mixtures to the common guppy. Columbus: Water Resource Center, Ohio State University; 1976.

    Google Scholar 

  • Russo RC, Pilli A, Meyn EL. Memorandum to N.A. Jaworski. 1985.

    Google Scholar 

  • Sadler K. The toxicity of ammonia to the European eel (Anguilla anguilla L). Aquaculture. 1981;26:173–81.

    Article  CAS  Google Scholar 

  • Sarda N. Spatial and temporal heterogeneity in sediments with respect to pore water ammonia and toxicity of ammonia to Ceriodaphnia dubia and Hyalella azteca. M.S. thesis, Dayton: Wright State University; 1994.

    Google Scholar 

  • Scheller JL. The effect of dieoffs of Asian clams (Corbicula fluminea) on native freshwater mussels (unionidae). Blacksburg: Virginia Polytechnic Institute and State University; 1997.

    Google Scholar 

  • Schubauer-Berigan MK, Monson PD, West CW, et al. Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegates. Environ Toxicol Chem. 1995;14:713–7.

    Article  CAS  Google Scholar 

  • Stammer HA. The effect of hydrogen sulfide and ammonia on characteristic animal forms in the saprobiotic system (Der einfly von schwefelwasserstoff und ammoniak auf tierische leitformen des sparobiensystems). Vom Wasser. 1953;20:34–71.

    Google Scholar 

  • Thurston RV, Meyn EL. Acute toxicity of ammonia to five fish species from the northwest United States. Bozeman: Fisheries Bioassay Laboratory, Montana State University; 1984.

    Google Scholar 

  • Williams KA, Green DWJ, Pascoe D. Studies on the acute toxicity of pollutants to freshwater macroinvertebrates: 3. ammonia. Arch Biol. 1986;106(1):61–70.

    CAS  Google Scholar 

  • Willingham T. Acute and short-term chronic ammonia toxicity to fathead minnows (Pimephales promelas) and Ceriodaphnia dubia using laboratory dilution water and Lake Mead dilution water. Denver: USEPA; 1987.

    Google Scholar 

  • Zhao JH, Lam TJ, Guo J. Acute toxicity of ammonia to the early stage-larvae and juveniles of Eriocheir sinensis H. Milne-Edwards, 1853 (Decapoda: Grapsidae) reared in the laboratory. Aquacult Res. 1997;28:514–25.

    Article  Google Scholar 

Aquatic Life Criteria: Nitrobenzene

  • Canton JH, Slooff W, Kool HJ, et al. Toxicity, biodegradability and accumulation of a number of Cl/N-containing compounds for classification and establishing water quality criteria. Regul Toxicol Pharmacol. 1985;5:123–31.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhong C, Deng C. The preliminary experiment on acute toxicities of aniline, xylene and nitrobenzene to silver Carp. J Anhui Agric Sci. 2008;36:10908–9 (In Chinese).

    Google Scholar 

  • Juhnke I, Luedemann D. Results of the investigation of 200 chemical compounds for acute fish toxicity with the golden orfe test (ergebnisse der untersuchung von 200 chemischen verbindungen auf akute fischtoxizitat mit dem goldorfentest). Zeitschrift für Wasser- und Abwasser-Forschung. 1978;11:161–4.

    CAS  Google Scholar 

  • Liu Y, Fan X, Kan X, et al. Effect of bienzene, phenol and nitrobenzene on Limnodrilus hoffmeisteri acute toxicity and superoxide dismutase activity. Acta Hydrobioligica Sinica. 2008a;32:420–3 (In Chinese).

    Article  CAS  Google Scholar 

  • Lu G, Jin Q, Wang C. Quantitative structure-toxicity relationship for acute toxicity of nitrobenzenes to Daphnia carinata. J Hehai Univ. 2004;32:372–5 (In Chinese).

    Google Scholar 

  • Marchini S, Hoglund MD, Borderius SJ, et al. Comparison of the susceptibility of daphnids and fish to benzene derivatives. Sci Total Environ. 1993;134:799–808.

    Article  Google Scholar 

  • Ramos EU, Vermeer C, Vaes WHJ, et al. Acute toxicity of polar narcotics to three aquatic species (Daphnia magna, Poecilia reticulata and Lymnaea stagnalis) and its relation to hydrophobicity. Chemosphere. 1998;37:633–50.

    Article  CAS  Google Scholar 

  • Tonogai Y, Ogawa S, Ito Y, et al. Actual survey on MTL (median tolerance limit) values of environmental pollutants, especially on amines, nitriles, aromatic nitrogen compounds. J Toxicol Sci. 1982;7:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Shen Y, Lu L, et al. Acute toxicity of typical hazard chemicals to three kinds of aquatic organisms. Chin J Appl Environ Biol. 2003a;9:49–52.

    CAS  Google Scholar 

  • Wang J, Liu P, Zhao W, et al. Toxicity effects of nitrobenzene on tadpoles Rana amurensis growth and development. Chin Agric Sci Bull. 2009;25:472–5 (In Chinese).

    CAS  Google Scholar 

  • Yen JH, Lin KH, Wang S. Acute lethal toxicity of environmental pollutants to aquatic organisms. Ecotoxicol Environ Saf. 2002;52:113–6.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka Y, Ose Y, Sato T. Correlation of the five test methods to assess chemical toxicity and relation to physical properties. Ecotoxicol Environ Saf. 1986;12:15–21.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Fu J, Meng H, et al. Sub-acute toxicity of nitrobenzene to Oryzias latipes and Gobiocypris rarus. Sci China B. 2007;37:197–206 (In Chinese).

    Google Scholar 

Eco-criteria for the Taihu Lake and the Liaohe River

  • Chen R, Qian L, Shen J, et al. Water quality assessment of Taihu Lake after water crisis in 2007. Water Resour Power. 2012;2:32–4 (in Chinese).

    Google Scholar 

  • Dai Y, Feng L, Wen S. Analysis of variations in water quality of Liaohe River during agricultural irrigation period. Appl Technol Conserva Water Soil. 2011;1:42–4 (in Chinese).

    Google Scholar 

  • Duan M, Zhu L, Feng J, et al. Preliminary study on the ecological criteria calculation method based on the variation of plankton communities. Res Environ Sci. 2012;2:125–32 (in Chinese).

    Google Scholar 

  • Jiang X, Lu W, Zhang L. Research on the water quality simulation of Dongliao River based on WASP. China Rural Water Hydropower. 2011;12:26–30 (in Chinese).

    Google Scholar 

  • Li S, Ding X, Pan J, et al. The spatially and temporally dynamic variation of water quality in Tai Lake based on principle component analysis. Environ Sci Technol. 2012;3:44–7 (in Chinese).

    Google Scholar 

  • Su D, Wang T, Liu L, et al. Research on the spatio-temporal variation of pollutant discharged from industrial wastewater in the Liaohe River Basin. Ecol Environ Sci. 2010;19(12):2953–9 (in Chinese).

    Google Scholar 

  • USEPA. Biological assessments and criteria: crucial components of water quality programs. EPA-822-F-02-006. Washington, DC; 2002.

    Google Scholar 

  • USEPA. Biological criteria: technical guidance for streams and small rivers, revised edition. EPA/822/B-96/001. Washington, DC; 1996.

    Google Scholar 

  • USEPA. Biological monitoring and assessment: using multimetric indexes effectively. EPA-235-R97-001. Washington, DC; 1997.

    Google Scholar 

  • USEPA. Estuaries and coastal marine waters bioassessment and biocriteria technical guidance. EPA-822-B-00-024. Washington, DC; 2000.

    Google Scholar 

  • USEPA. Lake and reservoir bioassessment and biocriteria: technical guidance document. EPA 841-B-98-007. Washington, DC; 1998.

    Google Scholar 

  • USEPA. Nutrient criteria technical guidance manual: Estuarine and coastal marine waters. EPA-822-B01-003. Washington, DC; 1991.

    Google Scholar 

  • USEPA. Nutrient criteria technical guidance manual: lakes and reservoirs. EPA-822-B01-001. Washington, DC; 2000.

    Google Scholar 

  • USEPA. Nutrient criteria technical guidance manual: Rivers and streams. EPA-822-B00-002. Washington, DC; 2000.

    Google Scholar 

  • USEPA. Using stressor-response relationships to derive numeric nutrient criteria. EPA-820-S-10-001. Washington DC; 2010.

    Google Scholar 

  • Wu A, Yang X, Ma L, et al. Distribution characteristics of heavy metal elements in human hair from Liaohe drainage area. Rock Minerl Anal. 2007;36(4):305–8 (in Chinese).

    Google Scholar 

  • Yao E, Zhang H, Xu Y, et al. Assessment of phytoplanktonic diversity and present nutrition status in the inlets of east of Tai Lake in Autumn. Environ Sci Technol. 2010a;S1:418–22 (in Chinese).

    Google Scholar 

  • Zeng Q, Gu X, Zhou L, et al. Water quality pollution characteristics in East Taihu Lake. China Environ Sci. 2011;8:1355–60 (in Chinese).

    Google Scholar 

Sediment Quality Criteria for Heavy Metals

  • Araújo CVM, Diz FR, Tornero V, et al. Ranking sediment samples from three Spanish estuaries in relation to its toxicity for two benthic specie: the microalga Cylindrotheca closterium and the copepod Tisbe battagliai. Environ Toxicol Chem. 2010;29(2):393–400.

    Article  PubMed  CAS  Google Scholar 

  • Bat L, Akbulut M. Studies on sediment toxicity bioassays using Chironomus thummi K., 1911 larvae. Turkish J Zool. 2001;25(2):87–93.

    CAS  Google Scholar 

  • Burton JGA, Neguyen LTH, Janssen C, et al. Field validation of sediment zinc toxicity. Environ Toxicol Chem. 2005;24(3):541–53.

    Article  CAS  PubMed  Google Scholar 

  • Cairns MA, Nebeker AV, Gakstatte JH, et al. Toxicity of copper-spiked sediments to freshwater invertebrates. Environ Toxicol Chem. 1984;3(3):435–45.

    Article  CAS  Google Scholar 

  • Chapman KK, Benton MJ, Brinkhurst RO, et al. Use of the aquatic oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of copper and cadmium in a spiked-artificial-sediment toxicity test. Environ Toxicol. 1999;14(2):271–8.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency US. Comparative toxicity testing of selected benthic and epibenthic organisms for the development of sediment quality test protocols (EPA/600/R-99/011). Washington, DC: Office of Research and Development; 1999.

    Google Scholar 

  • Fan W, Chen J, Hong S, et al. Recent development in bio-toxicological assessment of heavy metal in aquatic sediments. Environ Sci Tech. 2002;25(1):36–9 (in Chinese).

    Google Scholar 

  • Guo M, Lin Y. Using micro-ecosystem to access the bioactivity of heavy metals in sediments. Acta Sci Circumst. 1998;18(3):325–30 (in Chinese).

    CAS  Google Scholar 

  • Guo Y, Zhou Q, Xie J. Toxicity of heavy metals in river sediments to aquatic organisms I. Toxicity of various forms of lead to fishes. Acta Hydrobiol Sinica. 1991;15(3):234–42 (in Chinese).

    Google Scholar 

  • Hong S. Investigation on sediment criteria for heavy metals in waterbody. Master thesis, Peiking University, Beijing; 2001.

    Google Scholar 

  • Hong S, Chen J, Cheng B. Research on suspended matter and sediment quality criteria for metals in Yellow River using equilibrium partitioning-biological effect approach. J Wuhan univ Technol. 2006;28(12):61–5 (in Chinese).

    Google Scholar 

  • Huo W, Chen J. Water-particulate distribution coefficient of heavy metal and application in sediment quality criteria in China river. Environ Sci Technol. 1997;18(4):10–3 (in Chinese).

    Google Scholar 

  • Hyne RV, Everett DA. Application of a benthic euryhaline amphipod, Corophium sp., as a sediment toxicity testing organism for both freshwater and estuarine systems. Arch Environ Contam Toxicol. 1998;34(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  • Ingersoll CG, Nelson MK. Testing sediment toxicity with Hyalella azteca (amphipoda) and Chironomus riparius (diptera). ASTM Spec Tech Publ. 1990;1096:93–109.

    Google Scholar 

  • Lee GF, Mariani GM. Evaluation of the significance of waterway sediment-associated contaminants on water quality at the dredged material disposal site. Aquat Toxicol Hazard Eval ASTM STP. 1977;634:196–213.

    Article  Google Scholar 

  • Ma T, Zhou K, Zhu C, et al. Biomarker responses of Bellamya aeruginosa to the chronic stress of cadmium contaminated sediment. Acta Sci Circumst. 2009;29(8):1750–6 (in Chinese).

    CAS  Google Scholar 

  • Ma TW, Gong SJ, Zhou K, et al. Laboratory culture of the freshwater benthic gastropod Bellamya aeruginosa (Reeve) and its utility as a test species for sediment toxicity. Environ Sci. 2010;22(2):304–13.

    Article  CAS  Google Scholar 

  • Malueg KW, Schuytema GS, Gakastatter JH, et al. Toxicity of sediment from three metal-contaminated areas. Environ Toxicol Chem. 1984;3(2):279–91.

    Article  CAS  Google Scholar 

  • Marking LL, Dawson VK, Allen JL, et al. Biological activity and chemical characteristics of dredge material from 10 sites on the upper Mississippi River. La Crosse: United States Fish and Wildlife Service; 1981.

    Google Scholar 

  • McGreer ER. Factors affecting the distribution of the bivalve, Macoma balfhicea (L.) on a mudflat receiving sewage effluent, Fraser River Estuary, British Columbia. Mar Environ Res. 1982;7(2):131–49.

    Article  CAS  Google Scholar 

  • Nowierski M, Dixon DG, Borman U. Effects of water chemistry on the bioavailability of metals in sediment to Hyalella azteca: Implications for sediment quality guidelines. Arch Environ Contam Toxicol. 2005;49(3):322–32.

    Article  CAS  PubMed  Google Scholar 

  • Qasim SR, Armstrong AT. Quality of water and bottom sediments in the Trinity River. Water Res Bull. 1980;16(3):522–31.

    Article  Google Scholar 

  • Roman YE, de Schamphelaere KAC. Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment. Sci Total Environ. 2007;387(1–3):128–40.

    Article  CAS  PubMed  Google Scholar 

  • Sae-Ma B, Meier PG, Landrum PF. Effect of extended storage time on the toxicity of sediment-associated cadmium on midge larvae (Chironomus tentans). Ecotoxicology. 1998;7(3):133–9.

    Article  CAS  Google Scholar 

  • Stanley JK, Kennedy AJ, Farrar JD, et al. Evaluation of reduced sediment volume procedures for acute toxicity tests using the estuarine amphipod Leptocheirus plumulosus. Environ Toxicol Chem. 2010;29(12):2769–76.

    Article  CAS  PubMed  Google Scholar 

  • Suedel BC, Deaver E, Rodgers JH. Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater organisms. Arch Environ Contam Toxicol. 1996;30(1):40–6.

    Article  CAS  Google Scholar 

  • Tatem HE. Bioaccumulation of polychlorinated biphenyls and metals from contaminated sediment by freshwater prawns, Macrobrachium rosenbergii and clams, Corbicula fluminea. Arch Environ Contam Toxicol. 1986;15(2):171–83.

    Article  CAS  PubMed  Google Scholar 

  • US EPA. Development of bioassay procedures for defining pollution of harbor sediments (EPA-600/S3-81-025). Duluth: Environmental Research Laboratory; 1981.

    Google Scholar 

  • Wang F. Particles in rivers in Eastern China-environmental chemistry of heavy metals. Ph.D. thesis, Peking University; 1994. (in Chinese).

    Google Scholar 

  • Yake B, Norton D, Stinson M. Application of the triad approach to freshwater sediment assessment: an initial investigation of sediment quality near Gas Works Park, Lake Union. Segment no. 04-08-01-04-08-03. Olympia: Water Quality Investigations Section Washington Department of Ecology; 1986.

    Google Scholar 

  • Zagatto PA, Gherardi-Goldstein E, Bertoletti E, et al. Bioassays with aquatic organisms: Toxicity of water and sediment from Cubatao River Basin. Water Sci Technol. 1987;19(11):95–106.

    CAS  Google Scholar 

  • Zhang L, Wang G, Yao D, et al. Environmental significance and research of heavy metals in offshore sediments. Mar Geol Lett. 2003;19(3):6–9 (in Chinese).

    CAS  Google Scholar 

Emergency Criteria/Standards for Heavy Metals

  • Abbasi SA, Nipaney PC, Soni R. Studies on environmental management of mercury (II), chromium (VI) and zinc (II) with respect to the impact on some arthropods and protozoans – toxicity of zinc (II). Inst Environ Stud. 1988;32:181–7.

    Article  CAS  Google Scholar 

  • Adams WJ, Heidolph BB. Short-Cut chronic toxicity estimates using Daphnia magna. In: Cardwell RD, Purdy R, Bahner RC, editors. Aquatic toxicology and hazard assessment: seventh symposium, Philadelphia, PA, ASTM STP 854; 1985. pp. 87–103.

    Google Scholar 

  • Adelman IR, Smith Jr LL, Siesennop GD. Acute toxicity of sodium chloride, pentachlorophenol, guthion, and hexavalent chromium to fathead minnows (Pimephales promelas) and Goldfish (Carassius auratus). J Fish Res Board Canada. 1976;33(2):203–8.

    Article  CAS  Google Scholar 

  • Alam MK, Maughan OE. The effect of malathion, diazinon, and various concentrations of zinc, copper, nickel, lead, iron, and mercury on fish. Biol Trace Elem Res. 1992;34(3):225–36.

    Article  CAS  PubMed  Google Scholar 

  • Alam MK, Maughan OE. Acute toxicity of heavy metals to common carp (Cyprinus carpio). J Environ Sci Health Part A Environ Sci Eng Toxicol. 1995;30(8):1807–16.

    Article  Google Scholar 

  • Apte SC, Batley GE, Bowles KC, et al. A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms. Environ Chem. 2005;2(1):320–30.

    Article  CAS  Google Scholar 

  • Arkhipchuk VV, Blaise C, et al. Malinovskaya.use of hydra for chronic toxicity assessment of waters intended for human consumption. Environ Pollut. 2006;142(2):200–11.

    Article  CAS  PubMed  Google Scholar 

  • Bailey HC, Liu DHW. Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism. In: Eaton JC, Parrish PR, Hendricks AC, editors. Aquatic toxicology and hazard assessment, 3rd symposium, Philadelphia, PA, ASTM STP 707; 1980. pp. 205–15.

    Google Scholar 

  • Bailey HC, Liu DHW. Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism[C]. In: Eaton JC, Parrish PR, Hendricks AC, editors. Aquatic toxicology and hazard assessment, 3rd symposium, ASTM STP 707, Philadelphia; 1980. pp. 205–15.

    Google Scholar 

  • Banks KE, Wood SH, Matthews C, et al. Joint acute toxicity of diazinon and copper to Ceriodaphnia dubia. Environ Toxicol Chem. 2003;22(7):1562–7.

    Article  CAS  PubMed  Google Scholar 

  • Barera Y, Adams WJ. Resolving some practical questions about daphnia acute toxicity tests. In: Bishop WE, editor. Aquatic toxicology and hazard assessment, 6th symposium, Philadelphia, PA, ASTM STP 802; 1983. pp. 509–518.

    Google Scholar 

  • Bascombe AD, Ellis JB, Revitt DM, et al. The development of ecotoxicological criteria in urban catchments. Water Sci Technol. 1990;22(10–11):173–9.

    Google Scholar 

  • Baudouin MF, Scoppa P. Acute toxicity of various metals to freshwater zooplankton. Bull Environ Contam Toxicol. 1974;12(6):745–51.

    Article  CAS  PubMed  Google Scholar 

  • Belanger SE, Cherry DS. Interacting effects of pH acclimation, pH, and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia (cladocera). J Crustac Biol. 1990;10(2):225–35.

    Article  Google Scholar 

  • Biesinger KE, Christensen GM. Effects of various metals on survival, growth, reproduction and metabolism of Daphnia magna. J Fish Res Board Canada. 1972b;29(12):1691–700.

    Article  CAS  Google Scholar 

  • Birge WJ, Black JA, Westerman AG, et al. The effects of mercury on reproduction of fish and amphibians, chapter 23. In: Nriagu O, editor. The biogeochemistry of mercury in the environment. Amsterdam: Elsevier/North-Holland Biomedical Press; 1979. p. 629–55.

    Google Scholar 

  • Bitton G, Rhodes K, Koopman B. CerioFAST: an acute toxicity test based on Ceriodaphnia dubia feeding behavior. Environ Toxicol Chem. 1996b;15(2):123–5.

    CAS  Google Scholar 

  • Borgmann U, Charlton CC. Copper complexation and toxicity to daphnia in natural waters. J Great Lakes Res. 1984;10(4):393–8.

    Article  CAS  Google Scholar 

  • Borgmann U, Ralph KM. Complexion and toxicity of copper and the free metal bioassay technique. Water Res. 1983;17(11):1697–703.

    Article  CAS  Google Scholar 

  • Bossuyt BTA, Janssen CR. Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environ Pollut. 2005;136(1):145–54.

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt BTA, Schamphelaere KACD, Janssen CR. Using the biotic ligand model for predicting the acute sensitivity of cladoceran dominated communities to copper in natural surface waters. Environ Sci Tech. 2004;38(19):5030–7.

    Article  CAS  Google Scholar 

  • Bossuyt BTA, Muyssen BTA, Janssen CR. Relevance of generic and site-specific species sensitivity distributions in the current risk assessment procedures for copper and zinc. Environ Toxicol Chem. 2005;24(2):470–8.

    Article  CAS  PubMed  Google Scholar 

  • Buhl KJ, Hamilton SJ. Comparative toxicity of inorganic contaminants released by placer mining to early life stages of salmonids. Ecotoxicol Environ Saf. 1990;20(3):325–42.

    Article  CAS  PubMed  Google Scholar 

  • Buhl KJ, Hamilton SJ. Relative sensitivity of early life stages of arctic grayling, coho salmon, and rainbow trout to nine inorganics. Ecotoxicol Environ Saf. 1991;22:184–97.

    Article  CAS  PubMed  Google Scholar 

  • Call DJ, Brooke LT, Ahmad N, et al. Aquatic pollutant hazard assessments and development of a hazard prediction technology by quantitative structure-activity relationships. Second quarterly report, USEPA Cooperative Agreement No.CR 809234-01-0, Ctr. for Lake Superior Environmental Studies, University of Wisconsin, Superior; 1981. 74 p. (Published in Part As 12448).

    Google Scholar 

  • Canton JH, Adema DMM. Reproducibility of short-term and reproduction toxicity experiments with Daphnia magna and comparison of the sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in short-term experiments. Int Rev Hydrobiol. 1978;59:135–48.

    Article  CAS  Google Scholar 

  • Carlson AR, Roush TH. Site-specific water quality studies of the straight river, minnesota: complex effluent toxicity, zinc toxicity, and biological survey relationships. EPA/600/3-85/005. Duluth: U.S.EPA; 1985.

    Google Scholar 

  • Chapman PM, Mitchell DG. Acute tolerance tests with the oligochaetes Nais communis (naididae) and Ilyodrilus frantzi (tubificidae). Hydrobiologia. 1986;137(1):61–4.

    Article  Google Scholar 

  • Chapman PM, Farrell MA, Brinkhurst RO. Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquat Toxicol. 1982;2(1):47–67.

    Article  CAS  Google Scholar 

  • Chen X, Xie J, Lu C, et al. Research on acute toxicity of Hg and Cr to Monopterus albus. Reservoir Fish. 2008;28(2):103–4 (in Chinese).

    Google Scholar 

  • Chen W, Qu J, Deng P, et al. Study on acute toxicity of Cu2+ and Pb2+ to the larvae of Rhodeus ocellatus. Jiangsu Agric Sci. 2010a;4:243–4 (in Chinese).

    Google Scholar 

  • Chen W, Guo Z, Deng P, et al. Acute toxicity of three heavy metal ions to rose bitterling Rhodeus ocellatus fry. Fish Sci. 2010b;29(2):109–11 (in Chinese).

    CAS  Google Scholar 

  • Cheng X, Zheng Y, Tang H, et al. Study on the joint toxicity of Cu2+, Zn2+ and Cd2+ to the juvenile of Megalobrama pellegrini. Freshw Fish. 2009;39(2):54–9 (in Chinese).

    Google Scholar 

  • Chin HC, Chou FF. Acute chromium toxicity of the freshwater mussel, Hyriopsis cumingii Lea. Nan-ching ta hsueh hsueh pao, tzu jan k’o hsueh. 1978;4:96–101 (CHI).

    Google Scholar 

  • Cooper NL, Bidwell JR, Kumar A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol Environ Saf. 2009;72(5):1523–8.

    Article  CAS  PubMed  Google Scholar 

  • Cui L. Studies on the toxic mechanism of waterborne Cu2+ on Sesarma dehaani. Master thesis. East China Normal University; 2008. (in Chinese).

    Google Scholar 

  • Das KK, Dastidar SG, Chakrabarty S, et al. Toxicity of mercury: a comparative study in air-breathing and non air-breathing fish. Hydrobiologia. 1980;68(3):225–9.

    Article  CAS  Google Scholar 

  • Das SSM, Smith VRP, Padma OPB, et al. Effect of copper and retting toxicity on Tubifex tubifex. Front Ecol Environ. 1993;11(1):128–9.

    CAS  Google Scholar 

  • De la Torre AI, Jimqnez JA, Carballo M, et al. Ecotoxicological evaluation of pig slurry. Chemosphere. 2000;41(10):1629–35.

    Article  PubMed  Google Scholar 

  • De March BGE. Acute toxicity of binary mixtures of five cations (Cu2+, Cd2+, Zn2+, Mg2+, and K+) to the freshwater amphipod Gammarus lacustris (Sars): alternative descriptive models. Can J Fish Aquat Sci. 1988;45(4):625–33.

    Article  Google Scholar 

  • De Schamphelaere KAC, Unamuno VIR, Tack FMG, et al. Reverse osmosis sampling does not affect the protective effect of dissolved organic matter on copper and zinc toxicity to freshwater organisms. Chemosphere. 2005a;58(8):653–8.

    Article  PubMed  CAS  Google Scholar 

  • De Schamphelaere KAC, Lofts S, Janssen CR. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environ Toxicol Chem. 2005b;24(5):1190–7.

    Article  PubMed  Google Scholar 

  • De Schamphelaere KAC, Bossuyt BTA, Janssen CR. Variability of the protective effect of sodium on the acute toxicity of copper to freshwater cladocerans. Environ Toxicol Chem. 2007;26(3):535–42.

    Article  PubMed  Google Scholar 

  • Diamond JM, Koplish DE, McMahon JI, et al. Evaluation of the water-effect ratio procedure for metals in a riverine system. Environ Toxicol Chem. 1997b;16(3):509–20.

    Article  CAS  Google Scholar 

  • Dobbs MG, Farris JL, Reash RJ, et al. Evaluation of the resident-species procedure for developing site-specific water quality criteria for copper in Blaine Creek, Kentucky. Environ Toxicol Chem. 1994;13(6):963–71.

    Article  CAS  Google Scholar 

  • Dorn PB, Rodgers Jr JH, Jop KM, et al. Hexavalent chromium as a reference toxicant in effluent toxicity tests. Environ Toxicol Chem. 1987;6(6):435–44.

    Article  CAS  Google Scholar 

  • Du H, Wei Q, Liu J, et al. Acute toxicity of phenol, copper, nitrite and total ammonia to juvenile Chinese sturgeon, Acipenser sinensis. J Dalian Fish Univ. 2007b;22(2):118–22 (in Chinese).

    CAS  Google Scholar 

  • Elnabarawy MT, Welter AN, Robideau RR. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environ Toxicol Chem. 1986b;5:393–8.

    Article  CAS  Google Scholar 

  • Erten-Unal M, Wixson BG, Gale N, et al. Evaluation of toxicity, bioavailability and speciation of lead, zinc and cadmium in mine/mill wastewaters. Chem Speciat Bioavailab. 1998;10(2):37–46.

    Article  CAS  Google Scholar 

  • Fantin AM, Franchini A, Trevisan P, et al. Histomorphological and cytochemical changes induced in the liver of goldfish Carassius carassius var. auratus by short-term exposure to lead. Acta Histochem. 1992;92(2):228–35.

    Article  CAS  PubMed  Google Scholar 

  • Fargasova A. Toxicity of metals on Daphnia magna and Tubifex tubifex. Ecotoxicol Environ Saf. 1994;27:210–3.

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Qi F, Luo H, et al. Acute toxicity of Cu, Hg and Cr and their joint toxicity to Misgurnus anguillicaudatus. Reservoir Fish. 2003;23(2):63–4 (in Chinese).

    Google Scholar 

  • Gentile S, Cardin J. Unpublished laboratory data. Narragansett: USEPA; 1982.

    Google Scholar 

  • Ghate HV, Mulherkar L. Effect of mercuric chloride on embryonic development of the frog Microhyla ornata. Indian J Exp Biol. 1980;18(10):1094–6.

    CAS  PubMed  Google Scholar 

  • Gopal V, Devi KM. Influence of nutritional status on the median tolerance limits (LC50) of Ophiocephalus striatus for certain heavy metal and pesticide toxicants. Indian J Environ Health. 1991;33(3):393–4.

    CAS  Google Scholar 

  • Guilhermino L, Diamantino TC, Ribeiro R, et al. Suitability of test media containing EDTA for the evaluation of acute metal toxicity to Daphnia magna straus. Ecotoxicol Environ Saf. 1997;38(3):292–5.

    Article  CAS  PubMed  Google Scholar 

  • He Z. Biotoxicity effect studies on heavy metals (Copper, Zinc and Mercury) in Spinibarbus sinensis. Master thesis. Southwest University; 2008. (in Chinese).

    Google Scholar 

  • Hockett JR, Mount DR. Use of metal chelating agents to differentiate among sources of acute aquatic toxicity. Environ Toxicol Chem. 1996;15(10):1687–93.

    Article  CAS  Google Scholar 

  • Hooftman RN, Adema DMM, Bommel JK-V. Developing a set of test methods for the toxicological analysis of the pollution degree of water bottoms. Report No. 16105. Netherlands Organization for Applied Scientific Research; 1989. p. 68.

    Google Scholar 

  • Hou L, Ma G. Acute toxicity of Cd and Zn to and their joint toxicity to Ctenopharyngodon idellus. Freshw Fish. 2002;32(3):44–6 (in Chinese).

    Google Scholar 

  • Hu C. Acute toxicity and safety assessment of Zn to crucian. J Xiaogan Univ. 2008;S1:113–5 (in Chinese).

    Google Scholar 

  • Hua T, Zhou Q. Joint toxic effects of Cd and Zn on grass carp (Ctenopharyngodon idellus) and SOD activity in livers. Acta Sci Circumst. 2009;29(3):600–6 (in Chinese).

    CAS  Google Scholar 

  • Huang B, Bie L. Relation between acute toxicity of Cu2+ on juvenile of Pseudorasbora parva and non-biological factors. Freshw Fish. 2006;36(2):34–8 (in Chinese).

    CAS  Google Scholar 

  • Huang B, Li J, Liu X. Acute toxicity of Cu2+ on Ranenigrom aculata tadpole. J Xinyang Norm Univ. 2005;18(4):407–9 (in Chinese).

    CAS  Google Scholar 

  • Huang F, Guo Z, Xu Z, et al. Study on acute toxicity of fenpyroximate and copper to tadpole. Yunnan Environ Sci. 2006;25(2):1–3 (in Chinese).

    Google Scholar 

  • Hyne RV, Pablo F, Julli M, et al. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia dubia. Environ Toxicol Chem. 2005;24(7):1667–75.

    Article  CAS  PubMed  Google Scholar 

  • James R, Pattu VJ, Devakiamma G, et al. Impact of sublethal levels of mercury on glycogen and selected respiratory enzymes in Heteropneustes fossilis and role of water hyacinth in reduction. Indian J Fish. 1991;38(4):249–52.

    Google Scholar 

  • James R, Sampath K, Sivakumar V, et al. Toxic effects of copper and mercury on food intake, growth and proximate chemical composition in Heteropneustes fossilis. J Environ Biol. 1995;16(1):1–6.

    CAS  Google Scholar 

  • Janssen CR, Persoone G. Rapid toxicity screening tests for aquatic biota. 1. methodology and experiments with Daphnia magna. Environ Toxicol Chem. 1993;12:711–7.

    CAS  Google Scholar 

  • Jia X, Dong A, Yang Y. Study and joint toxicities of copper, zinc and triazophos to Rana limnocharis boie tadpole. Res Environ Sci. 2005;18(5):26–9 (in Chinese).

    Google Scholar 

  • Jin Y, ZhuY HL. Acute toxicity of SDS, Cu2+ pollution and its effect on Na+, K+ and ATPase activity in the liver of Bufo gargarizans. Acta Agriculturae Zhejiangensis. 2010;22(1):81–6 (in Chinese).

    Google Scholar 

  • Jindal R, Verma A. Heavy metal toxicity to Daphnia pulex. Indian J Environ Health. 1996;32(3):289–92.

    Google Scholar 

  • Jop KM, Parkerton TF, Rodgers Jr JH, et al. Comparative toxicity and speciation of two hexavalent chromium salts in acute toxicity tests. Environ Toxicol Chem. 1987;6(9):697–703.

    Article  CAS  Google Scholar 

  • Karntanut W, Pascoe D. The toxicity of copper, cadmium and zinc to four different hydra (cnidaria: hydrozoa). Chemosphere. 2002b;47(10):1059–64.

    Article  CAS  PubMed  Google Scholar 

  • Kazlauskiene N, Burba A, Svecevicius G. Acute toxicity of five galvanic heavy metals to hydrobionts. Ekologija. 1994;1:33–6.

    Google Scholar 

  • Kazlauskiene N, Burba A, Svecevicius G. Acute toxicity of five galvanic heavy metals to hydrobionts. Ekologija. 2006;1:33–6.

    Google Scholar 

  • Khangarot BS, Ray PK. Sensitivity of toad tadpoles, Bufo melanostictus (Schneider), to heavy metals. Bull Environ Contam Toxicol. 1987;38(3):523–7.

    Article  CAS  PubMed  Google Scholar 

  • Khangarot BS, Ray PK. Sensitivity of freshwater pulmonate snails, Lymnaea luteola L, to heavy metals [J]. Bull Environ Contam Toxicol. 1988;41(2):208–13.

    Article  CAS  PubMed  Google Scholar 

  • Khangarot BS, Ray PK. Investigation of correlation between physicochemical properties of metals and their toxicity to the water flea Daphnia magna Straus. Ecotoxicol Environ Saf. 1989;18(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  • Khangarot BS, Ray PK. Acute toxicity and toxic interaction of chromium and nickel to common guppy Poecilia reticulata (Peters). Bull Environ Contam Toxicol. 1990;44(6):832–9.

    Article  CAS  PubMed  Google Scholar 

  • Khangarot BS, Sehgal A, Bhasin MK. “Man and biosphere” – studies on the Sikkim himalayas. Part 5: acute toxicity of selected heavy metals on the tadpoles of Rana hexadactyla. Acta Hydrochim Hydrobiol. 1985;13(2):259–63.

    Article  CAS  Google Scholar 

  • Khangarot BS, Ray PK, Chandra H. Daphnia magna as a model to assess heavy metal toxicity: comparative assessment with mouse system. Acta Hydrochim Hydrobiol. 1987;15(4):427–32.

    Article  CAS  Google Scholar 

  • Kirubagaran R, Joy KP. Toxic effects of three mercurial compounds on survival, and histology of the kidney of the catfish Clarias batrachus (L.). Ecotoxicol Environ Saf. 1988;15(2):171–9.

    Article  CAS  PubMed  Google Scholar 

  • Lalande M, Pinel-Alloul B. Acute toxicity of cadmium, copper, mercury and zinc to Chydorus sphaericus (cladocera) from three Quebec Lakes. Water Pollut Res J Canada. 1983;18:103–13.

    Google Scholar 

  • Lalande M, Pinel-Alloul B. Heavy metals toxicity on planktonic crustacean of the Quebec Lakes. Sci Technol Eau. 1984;17(3):253–9.

    CAS  Google Scholar 

  • Lam KL, Ko PW, Wong JKY, et al. Metal toxicity and metallothionein gene expression studies in common carp and tilapia. Mar Environ Res. 1998;46(1–5):563–6.

    Article  CAS  Google Scholar 

  • Larrain A, Riveros A, Bay-Schmith E, et al. Evaluation of three larval instars of the Midge Chironomus petiolatus as bioassay tools using a computationally intensive statistical algorithm. Arch Environ Contam Toxicol. 1997;33(4):407–14.

    Article  CAS  PubMed  Google Scholar 

  • Lee DR. Development of an invertebrate bioassay to screen petroleum refinery effluents discharged into freshwater. Ph.D. thesis, Virginia Polytechnic Institute; 1976.

    Google Scholar 

  • Lin A, Guan W, Fang Z. Acute toxicity of mercury, chrome and nickel to Tanichthys albonubes and their safety assessment. J Anhui Agric Sci. 2009;37(2):627–9 (in Chinese).

    CAS  Google Scholar 

  • Liu W, Wu X, Zhao J. Study on acute toxicity of Cu2+ to crucian carp and Japan marsh shrimp. Res Dev Market. 2008b;24(10):868–70 (in Chinese).

    CAS  Google Scholar 

  • Liu X, Shi C, Jia X. Acute toxicity of Cu2+ and Cd2+ on C. carpio var. color. J Hangzhou Norm Univ. 2009;8(4):304–7 (in Chinese).

    Google Scholar 

  • Liu X, Shi C, Cao H, et al. Joint Toxicity of Cu2+ and Atrazine on C.carpio var color. J Hangzhou Norm Univ. 2010;9(4):263–7 (in Chinese).

    CAS  Google Scholar 

  • Lv Y, Li X, Jia X. Study on the acute toxicity and joint toxicity of Cr6+, Mn7+ and Hg2+ on the Macrobrachium nipponense. J Shanghai Fish Univ. 2007;16(6):549–54 (in Chinese).

    CAS  Google Scholar 

  • Markich SJ, Batley GE, Stauber JL, et al. Hardness corrections for copper are inappropriate for protecting sensitive freshwater biota. Chemosphere. 2005;60:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Martin TR, Holdich DM. The acute lethal toxicity of heavy metals to peracarid crustaceans (with particular reference to fresh-water asellids and gammarids). Water Res. 1986;20(9):1137–47.

    Article  CAS  Google Scholar 

  • Mi J, Yuan H, Wang L. Study on the acute toxic effects of Cu, Cd, Cr and Pb on Sinopotamon henanense. J Anhui Agric sci. 2008;36(17):7273–4.

    CAS  Google Scholar 

  • Mishra R. Effect of dichromate on lipid and amino acid contents of liver and muscle of Clarias batrachus (L.). Environ Ecol. 1997;15(1):41–5.

    CAS  Google Scholar 

  • Mount DI. Aquatic surrogates. In surrogate species workshop report. Washington, DC: USEPA; 1982.

    Google Scholar 

  • Mount DI, Norberg TJ. A seven-day life-cycle cladoceran toxicity test. Environ Toxicol Chem. 1984;3(3):425–34.

    Article  CAS  Google Scholar 

  • Mudgall CF, Patil SS. Toxicity of lead and mercury to frogs Rana cyanophlyctis and Rana tigerina. Front Ecol Environ. 1988;6(2):506–7.

    CAS  Google Scholar 

  • Muyssen BT, Bossuyt BT, Janssen CR. Inter- and intra-species variation in acute zinc tolerance of field-collected cladoceran populations. Chemosphere. 2005;61(8):1159–67.

    Article  CAS  PubMed  Google Scholar 

  • Oikari A, Kukkonen J, Virtanen V. Acute toxicity of chemicals to Daphnia magna in humic waters. Sci Total Environ. 1992;117–118:367–77.

    Article  Google Scholar 

  • Paulose PV. Comparative study of inorganic and inorganic mercury poisoning on selected freshwater organism. J Environ Biol. 1988;9(2):203–6.

    CAS  Google Scholar 

  • Perez-Legaspi IA, Rico-Martinez R. Acute toxicity tests on three species of the genus Lecane (rotifera: monogononta). Hydrobiologia. 2001;446–447:375–81.

    Article  Google Scholar 

  • Pokethitiyook P, Upatham ES, Leelhaphunt O. Acute toxicity of various metals to Moina macrocopa. Nat Hist Bull Siam Soc. 1987;35(1–2):47–56.

    Google Scholar 

  • Rajan MT, Banerjee TK. Histopathological changes in the respiratory epithelium of the air-breathing organ (Branchial diverticulum) of the live fish Heteropneustes fossilis. J Freshw Biol. 1993;5(3):269–75.

    Google Scholar 

  • Rao IJ, Madhyastha MN. Toxicities of some heavy metals to the tadpoles of frog, Microhyla ornata (Dumeril & Bibron). Toxicol Lett. 1987;36(2):205–8.

    Article  CAS  PubMed  Google Scholar 

  • Rao TS, Rao MS, Prasad SBSK. Median tolerance limits of some chemicals to the fresh water fish “Cyprinus carpio”. Indian J Environ Health. 1975b;17(2):140–6.

    CAS  Google Scholar 

  • Rathore RS, Khangarot BS. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Muller to selected heavy metals. Ecotoxicol Environ Saf. 2002;53(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  • Rossini GDB, Ronco AE. Acute toxicity bioassay using Daphnia obtusa as a test organism. Environ Toxicol Water Qual. 1996;11(3):255–8.

    Article  Google Scholar 

  • Schubauer-Berigan MK, Dierkes JR, Monson PD, et al. pH-dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus. Environ Toxicol Chem. 1993b;12:1261–6.

    Article  CAS  Google Scholar 

  • Sharma MS, Selvaraj CS. Zinc, lead and cadmium toxicity to selected freshwater zooplankters. Pollut Res. 1994;13(2):191–201.

    CAS  Google Scholar 

  • Shrivastava S, Jain SK. Zeolite mediated lead accumulation in fish tissues. J Zool Syst Evol Res. 2000;14(1):65–8.

    Google Scholar 

  • Sinha TKP, Kumar K. Acute toxicity of mercuric chloride to Anabas testudineus (bloch). Front Ecol Environ. 1992;10(3):720–2.

    CAS  Google Scholar 

  • Slooff W, Canton JH, Hermens JLM. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (Sub)acute toxicity tests. Aquat Toxicol. 1983;4(2):113–28.

    Article  CAS  Google Scholar 

  • Snell TW, Moffat BD. A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environ Toxicol Chem. 1992;11(9):1249–57.

    Article  CAS  Google Scholar 

  • Song W, Xin R, Li K. Study on acute toxicity of Hg2+ to three aquatic organisms. Modern Agric Technol. 2009;18:264–5 (in Chinese).

    Google Scholar 

  • Spehar RL, Fiandt JT. Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species. Environ Toxicol Chem. 1986;5:917–31.

    Article  CAS  Google Scholar 

  • Sun H, Ding S, Chen D, et al. Toxicological effects of copper exposure on antioxidative function in Spinibarbus Sinensis. J Agro-Environ Sci. 2006;25(1):69–72 (in Chinese).

    CAS  Google Scholar 

  • Tan S, Deng X, Jiang W, et al. Acute toxicity of Cr 6+ and Hg2+ to Procambarus clarkia. Reservoir Fish. 2007;5:93–5 (in Chinese).

    Google Scholar 

  • Taylor EJ, Maund SJ, Pascoe D. Toxicity of four common pollutants to the freshwater macroinvertebrates Chironomus riparius meigen (Insecta: Diptera) and Gammarus pulex (L.). Arch Environ Contam Toxicol. 1991;21:371–6.

    Article  CAS  PubMed  Google Scholar 

  • Tsui MT, Wang WX, Chu LM. Influence of glyphosate and its formulation (roundup) on the toxicity and bioavailability of metals to Ceriodaphnia dubia. Environ Pollut. 2005;138(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  • Vardia HK, Rao PS, Durve VS. Effect of copper, cadmium and zinc on fish-food organisms, Daphnia lumholtzi and Cypris subglobosa. Proc Indian Acad Sci Anim Sci. 1988;97(2):175–80.

    Article  CAS  Google Scholar 

  • Vedamanikam VJ, Shazilli NAM. The effect of multi-generational exposure to metals and resultant change in median lethal toxicity tests values over subsequent generations. Bull Environ Contam Toxicol. 2008;80(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang A. Acute toxicity of 4 heavy metals on the tadpoles of Bufo viridis Laurenti. J Xinjiang Univ. 1990;7(1):60–4 (in Chinese).

    Google Scholar 

  • Wang S, Guo R, Qu Y, et al. Acute toxicity of Cu2+ to Rana chensinensis tadpole. Chin J Appl Ecol. 1998;9(3):309–12 (in Chinese).

    CAS  Google Scholar 

  • Wang Y, Zhang Y, Zhao D. Effects of heavy metals cadmium, lead and zinc on the survival of Carassius auratus and Misgurnus anguillicaudatus. J Gansu Sci. 2003b;15(1):35–8 (in Chinese).

    Google Scholar 

  • Wang R, Ma G, Fang Z. Safety assessment and acute toxicity of copper, cadmium and zinc to white clound mountain minnow Tanichthys albonubes. Fish Sci. 2006;25(3):117–20 (in Chinese).

    Google Scholar 

  • Wang L, Wu Y, Liao F, et al. Study on biotoxicity of Cu2+ to organisms of key link in aquatic ecosystems food chain. Guizhou Agric Sci. 2011;39(5):226–30 (in Chinese).

    CAS  Google Scholar 

  • Warnick SL, Bell HL. The acute toxicity of some heavy metals to different species of aquatic insects. J Water Pollut Control Fed. 1969;41(2 Pt.1):280–4.

    CAS  Google Scholar 

  • Wen R, Zheng Q, Fang Z. Acute toxicity of mercury and lead to grass carps and safety assessment. Anhui Agric Sci. 2007;35(16):4863–4 (in Chinese).

    Google Scholar 

  • Winner R. Food type related to copper sensitivity of daphnids. In: International conference on heavy metals in the environment; Ontario, Canada: Institute for Environmental Studies, University of Toronto; 1975.

    Google Scholar 

  • Wong CK. Effects of chromium, copper, nickel, and zinc on survival and feeding of the Cladoceran Moina macrocopa. Bull Environ Contam Toxicol. 1992;49:593–9.

    Article  CAS  PubMed  Google Scholar 

  • Wong CK, Pak AP. Acute and subchronic toxicity of the heavy metals copper, chromium, nickel, and zinc, individually and in mixture, to the freshwater copepod Mesocyclops pehpeiensis. Bull Environ Contam Toxicol. 2004;73(1):190–6.

    Article  CAS  PubMed  Google Scholar 

  • Wu B. Studies on the toxicity of the heavy metal ions Cd2+ and Pb2+ to the four species of aquatic organisms. Master thesis, Anhui Normal University; 2007.

    Google Scholar 

  • Wu Y, Xiong Y, Lin C. Evaluating the Biotoxicity effect of Copper by the Phototactic Behaviour of Daphnia carinata and LC50. J Yunnan Agric Univ. 2006;21(5):657–62 (in Chinese).

    CAS  Google Scholar 

  • Xu L, Ding H, Wang X, et al. Acute toxicity of Zn、Pb、Cu and their accumulation in Bellamya aeruginosad. Conference proceeding. The fifth symposium on zoology in Guangdong, Hunan, Jiangxi and Hubei Provinces, China. Guangzhou, China; 2008. (in Chinese).

    Google Scholar 

  • Xu J, Pan Y, Chi Z, et al. Toxic effects of mercury on Rana chensinensis tadpole. J Northeast Norm Univ. 2010;42(4):138–43 (in Chinese).

    Google Scholar 

  • Xu S, Wang D, Ye J, et al. Joint toxicity effect of four heavy metal ions on Moina macrocopa. J Biol. 2011;28(3):21–5 (in Chinese).

    Google Scholar 

  • Yan B. The toxicity effect of Ni, Hg and PCP to Chironomus larva. Master thesis. Tsingtao University of Science and Technology; 2006. (in Chinese).

    Google Scholar 

  • Yan B, Song Z. Toxicity and bioconcentration of Ni2+, Hg2+ and pentachlorophenol to Chironomus Plumosus Larva. J Qingdao Univ Sci Technol. 2006;27(5):411–4 (in Chinese).

    CAS  Google Scholar 

  • Yang Z. Study on toxicity of copper to tadpoles of toad. Environ Prot Sci. 2000;26(101):37–8 (in Chinese).

    CAS  Google Scholar 

  • Yang Z. Study of synergetic toxicity of copper and cadmium. Shanghai Environ Sci. 2001a;20(9):420–1 (in Chinese).

    Google Scholar 

  • Yang Z. Joint-toxicity of copper and hydragyrum on tadpole. Agro-environ Prot. 2001b;20(5):370–1 (in Chinese).

    Google Scholar 

  • Yang J. The biotoxicity of triazophos, sodium pentachlorophenate, zinc and cadmium to Daphnia carinata. Master thesis, Southwest University; 2006. (in Chinese).

    Google Scholar 

  • Yang L. Study on toxicity of heavy metals (Cd, Cu, Zn and Cr) to cucian. Master thesis. South China Normal University; 2003. (in Chinese).

    Google Scholar 

  • Yang Z. Studies on the toxic mechanism of waterborne Cu2+ on Eriocheir sinensis. Ph.D. thesis. East China Normal University; 2014. (in Chinese).

    Google Scholar 

  • Yang Y, Jia X. Joint toxicity of Cu2+, Zn2+ and Cd2+ to tadpole of Bufo bufo gargarizans. Chin J Appl Environ Biol. 2006;12(3):356–9 (in Chinese).

    CAS  Google Scholar 

  • Yang J, Song W. Study on acute toxicity and safe concentration of 3 heavy metal ions to Rhodens sinensis Gunther. J Anhui Agric Sci. 2010;38(23):12481–2 (in Chinese).

    CAS  Google Scholar 

  • Yao D, Wan L, Geng B, et al. Acute toxicity of Cu2+ to Rana japonica. J Fujian Norm Univ. 2004;20(4):117–20 (in Chinese).

    CAS  Google Scholar 

  • Yao Z, Zhang L, Zhuang P, et al. Effects of antioxidant enzyme in liver and acute toxicity of Cu2+ on juvenile Chinese sturgeon. J Fish Sci China. 2010b;17(4):731–8 (in Chinese).

    CAS  Google Scholar 

  • Ye S, Yu Z. Acute Toxicity of Cu2+, Pb2+, Cd2+ and Cr6+ to embryos and larvae of bighead carp Aristichthys nobilis. Fish Sci. 2009;28(5):263–7 (in Chinese).

    CAS  Google Scholar 

  • Yu F. The study of cadmium and lead toxicity on the Chinese mitten-handed crab, Eriocheir sinensis. Master thesis, East China Normal University; 2005. (in Chinese).

    Google Scholar 

  • Zang W, Xu X, Dai X, et al. Acute toxicity and accumulation of Zn2+ on young freshwater grouper (Cichlasoma managuense) and bullfrog (Rana catesbeiana) tadpole. Freshw Fish. 1992;6:12–4 (in Chinese).

    Google Scholar 

  • Zhang Q. Studies on toxicological effects of copper and cadmium in Bellamya purificata. Master thesis. Huazhong Agricultural University; 2008. (in Chinese).

    Google Scholar 

  • Zhao H. Studies on the toxic effect of metal ions and pesticides on rotifer Brachionus calyciflorus. Master thesis, Nanjing Normal University; 2006. (in Chinese).

    Google Scholar 

  • Zhao Y. Studies on the toxic effect of water-borne Hg2+ on Eriocheir sinensis. Ph.D. thesis, Nankai Univeristy; 2009. (in Chinese).

    Google Scholar 

  • Zhao J, Zeng Z. Acute toxicity of Cu2+, Hg2+ and Pb2+ to planarian (Dugesia japonica). Chin J Appl Environ Biol. 2004;10(6):750–3 (in Chinese).

    CAS  Google Scholar 

  • Zhao H, Yang J, Lu Z, et al. The Toxic Effect of Cu2+ on Rotifer Brachionus calyciflorus. J Nanjing Norm Univ. 2002;25(4):81–5 (in Chinese).

    CAS  Google Scholar 

  • Zhou Y, Zhou R, Yin W. Acute toxicity of Cu to the crass carp, silver carp and loach under different water hardness. J Jinan Univ. 1992;13(3):62–7 (in Chinese).

    Google Scholar 

  • Zhou Y, Zhou R, Xu L. Toxicity of copper to juvenile loach. Acta Hydrobiol Sin. 1993;17(3):240–5 (in Chinese).

    Google Scholar 

  • Zhou H, Wu Z, Yuan L, et al. Toxicity and accumulation of three heavy metals in larval carps. J Nanchang Univ. 2005;29(3):292–5 (in Chinese).

    Google Scholar 

  • Ziegenfuss PS, Renaudette WJ, Adams WJ. Methodology for assessing the acute toxicity of chemicals sorbed to sediments: testing the equilibrium partitioning theory. In: Poston TM, Purdy R, editors. Aquatic toxicology and environmental fate, 9th Volume, Philadelphia, PA, ASTM STP 921; 1986. pp. 479–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, Z. (2015). WQC Threshold Values for Representative Pollutants. In: Liu, Z. (eds) Water Quality Criteria Green Book of China. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7270-9_4

Download citation

Publish with us

Policies and ethics