Skip to main content

Plants for Remediation: Uptake, Translocation and Transformation of Organic Pollutants

  • Chapter
Plants, Pollutants and Remediation

Abstract

Phytoremediation exploits plant physiological processes to decontaminate environment or to improve food chain safety by phytostabilisation of toxic elements. These phytotechnologies are based on plants remarkable absorption, transportation and metabolic capabilities that allow to uptake and transform environmental organic pollutants into nontoxic compounds or carry out their complete mineralization. Uptake of organic pollutants may occur through roots and leaves. Several factors such as cell wall permeability, temperature, pH, soil humidity affect pollutants uptake through roots. Thickness of leaf cuticle, its waxy layer serves as a rate-limiting barrier for penetration of organic pollutants in leaf cells. Translocation of organic pollutants uptaken by roots and leaves is carried out via transpiration stream and the flow of assimilates. Entering in cells pollutants undergo enzymatic transformations: functionalization, conjugation and compartmentation. Oxidases, reductases, dehalogenases, esterases and transferases, participating in these transformation processes are characterized according to their catalytic properties and regulation. Prolonged process of transformation of organic pollutants in plants that implies mostly deep oxidation is reflected on the cell normal metabolic processes. Enzymes, involved in catabolic processes leading to energy generation are indirectly participating in the detoxification process. Reversibilty of plants ultrastructural deviations and changes in enzyme activities, i.e. ability to overcome pollutants toxicity and proceed their detoxification highly depends on pollutants concentration and exposure time. Genetic engineering applied for improvement of plant remediation capacity involve: overexpression of existing or introduction of genes of enzymes catalyzing pollutants degradation; introduction of genes encoding biosynthetic pathway of biosurfactants to increase bioavailability of contaminants, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Adamia G, Ghoghoberidze M, Graves D, Khatisashvili G, Kvesitadze G, Lomidze E, Ugrekhelidze D, Zaalishvili G (2006) Absorption, distribution and transformation of TNT in higher plants. Ecotoxicol Environ Saf 64:136–145

    Article  CAS  PubMed  Google Scholar 

  • Alderete LGS, Talano MA, Ibannez SG, Purro S, Agostini E (2009) Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J Biotechnol 139:273–279

    Article  CAS  Google Scholar 

  • Allnuff FCT, Ewy R, Renganathan M, Pan RS, Dilley KA (1991) Nigericin and hexylamine effects on localized proton gradients in thylacoids. Biochim Biophys Acta Bioenerg 1059:28–36

    Article  Google Scholar 

  • Andreopoulos-Renaud U, Glas J, Falgoux D, Schiedecker D (1975) Absorption D’un polyethyleneglycol par de jeunes plantes de haricot et de cotonnier. Dosage par chromatographie on phase gaze use sur exsudat de tige. Cr Acad Sci D 280:2333–2340

    CAS  Google Scholar 

  • Angermaier L, Simon H (1983) On nitroaryl reductase activities in several clostridia. Hoppe-Seylers Z Physiol Chem 364:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Audley BG (1979) Structure and properties of 2-chloroethylphosphonic acid (ethephon) metabolite from Hevea brasiliensis bark. Phytochemistry 18: 53–60

    Google Scholar 

  • Bataynen N, Kopacz SI, Lee CP (1986) The modes of action of long chain alkali compounds on the respiratory chain-linked energy transducing system in submitochondrial particles. Arch Biochem Biophys 250:476–487

    Article  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Bell SG, Harford-Cross CF, Wong LL (2001) Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng 14: 797–802

    Google Scholar 

  • Bell SG, Stevenson JA, Boyd HD, Campbell S, Riddle AD, Orton EL, Wong LL (2002) Butane and propane oxidation by engineered cytochrome P450cam. Chem Commun (Camb) 7: 490–491

    Google Scholar 

  • Berenbaum MR, Zangerl AR (1996) Physical-chemical diversity: adaptation or random variation? Recent Adv Phytochem 30:1–12

    CAS  Google Scholar 

  • Best EPH, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Screening of aquatic and wetland plant species for the phytoremediation of explosives-contaminated groundwater from the Iowa Army Ammunition Plant. Ann NY Acad Sci 829:179–194

    Article  CAS  PubMed  Google Scholar 

  • Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33:446–452

    Article  CAS  Google Scholar 

  • Bieseler B, Fedtke C, Neuefeind T, Etzel W, Prade L, Reinemer P (1997) Maize selectivity of FOE 5043: Degradation of active ingredient by glutathione-S-transferases. Pflanzenschutz-Nachrichten Bayer 50: 117–140

    Google Scholar 

  • Bond JA, Bradley BP (1997) Resistance to malathion in heat-shocked Daphnia Magna. Environ Toxicol Chem 16:705–712

    Article  CAS  Google Scholar 

  • Brazier M, Cole DJ, Edwards R (2002) O-Glucosyltransferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59:149–156

    Article  CAS  PubMed  Google Scholar 

  • Breaux EJ (1987) Initial metabolism of acetochlor in tolerant and susceptible seedlings. Weed Sci 35:463–468

    CAS  Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanolwater partition coefficients, water solubilities, bioconcentration factors, and the parachor. J Agric Food Chem 29:1050–1059

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA, Williams M (1983) Relationships between lipophilicity and the distribution of non- ionised chemicals in barley shoots following uptake by the roots. Pestic Sci 14:492–500

    Article  CAS  Google Scholar 

  • Bromilow RH, Chamberlain K, Evans AA (1990) Physicochemical aspects of phloem translocation of herbicides. Weed Sci 38:305–314

    CAS  Google Scholar 

  • Brown HM, Neighbors SM (1987) Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity. Pestic Biochem Physiol 29:112–120

    Article  CAS  Google Scholar 

  • Brown HM, Wittenbach VA, Forney DR, Strachan SD (1990) Basis for soybean tolerance to thifensulfuron methyl. Pestic Biochem Physiol 37:303–313

    Article  CAS  Google Scholar 

  • Brudenell AJP, Baker DA, Grayson BT (1995) Phloem mobility of xenobiotics, tabular review of physicochemical properties governing output of the Kleier model. J Plant Growth Regul 16:215–231

    Article  CAS  Google Scholar 

  • Brudenell AJP, Griffiths H, Rossiter JT, Baker DA (1999) The phloem mobility of glucosinolates. J Exp Bot 50:745–756

    Article  CAS  Google Scholar 

  • Bryant DW, McCalla DR, Leelsma M, Laneuville P (1981) Type I nitroreductases of Escherichia coli. Can J Microbiol 27:81–86

    Article  CAS  PubMed  Google Scholar 

  • Buadze O, Kvesitadze G (1997) Effect of low-molecular weight alkanes on the cell photosynthetic apparatus. Ecotoxicol Environ Saf 38:36–44

    Article  CAS  PubMed  Google Scholar 

  • Buadze O, Sadunishvili T, Kvesitadze G (1998) The effect of 1,2-benzanthracene and 3,4-benzpyrene on the ultrastructure on maize cells. Int Biodeterior Biodegrad 41:119–125

    Article  CAS  Google Scholar 

  • Bukovac MT, Petracek PD, Fader RG, Morse RD (1990) Sorption of organic compounds by plant cuticles. Weed Sci 38:289–298

    CAS  Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds: green liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Transformation and control of contaminants. Wiley-Interscience, Hoboken, pp 59–84

    Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Burrows WJ, Leworthy DP (1976) Metabolism of N,N-diphenylurea by cytokinin-dependent tobacco callus identification of the glucoside. Biochem Biophys Res Comm 70: 1109–1117

    Google Scholar 

  • Bylund JE, Dyer JK, Feely DE, Martin EL (1990) Alkaline and acid phosphatases from the extensively halotolerant bacterium Halomonas elongata. Curr Microbiol 20:125–131

    Article  CAS  Google Scholar 

  • Carringer RD, Rieck CE, Bush LP (1978) Metabolism of EPTC in corn (Zea mays). Weed Sci 26:157–163

    CAS  Google Scholar 

  • Cash GG (1998) Prediction of chemical toxicity to aquatic microorganism: ECOSAR vs. Microtox assay. Environ Toxicol Water Qual 132:211–216

    Article  Google Scholar 

  • Cassagne C, Lessire R (1975) Studies on alkane biosynthesis in epidermis of Allium porrum L. leaves. 4. Wax movement into and out of the epidermal cells. Plant Sci Lett 5:261–266

    Article  CAS  Google Scholar 

  • Chamberlain K, Patel S, Bromilow RH (1998) Uptake by roots and translocation to shoots of two morpholine fungicides in barley. Pestic Sci 54:1–7

    Article  CAS  Google Scholar 

  • Chandler JM, Basler E, Santelman PW (1974) Uptake and translocation of alachlor in soybean and wheat. Weed Sci 22:253–259

    CAS  Google Scholar 

  • Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorous nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chkanikov DI, Makeev AM, Pavlova NN, Artemenko EN, Dubovoi VP (1976) The role of 2,4-D metabolism in plant resistance to this herbicide (in Russian). Agrokhimiya 2:127–132

    Google Scholar 

  • Chrastilova Z, Mackova M, Novakova M, Macek T, Szekeres M (2007) Transgenic plants for effective phytoremediation of persistent toxic organic pollutants present in the environment. Abstracts/J Biotechnol 131:S38

    Google Scholar 

  • Chrikishvili D, Sadunishvili T, Zaalishvili G (2006) Benzoic acid transformation via conjugation with peptides and final fate of conjugates in higher plants. Ecotoxicol Environ Saf 64:390–399

    Article  CAS  PubMed  Google Scholar 

  • Coleman JOD, Mechteld MA, Kalff B, Davies TGE (1997) Detoxification of xenobiotics in plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo JC, Cabello MN, Arambarri AM (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure culture of imperfect and ligninolytic fungi. Environ Pollut 94:355–362

    Article  CAS  PubMed  Google Scholar 

  • Coupland D, Lutman PJW, Heath C (1990) Uptake, translocation, and metabolism of mecoprop in a sensitive and a resistant biotype of Stellaria media. Pestic Biochem Physiol 36:61–67

    Article  CAS  Google Scholar 

  • Cummins I, Edwards R (2004) Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides. Plant J 39:894–904

    Article  CAS  PubMed  Google Scholar 

  • Cummins I, Burnet N, Edwards R (2001) Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol Plant 113:477–485

    Article  CAS  Google Scholar 

  • Davidonis GH, Hamilton RH, Mumma RO (1978) Metabolism of 2,4-dichlorophenoxyacetic acid in soybean root callus and differentiated soybean root cultures as a function of concentration and tissue age. Plant Physiol 62: 80–86

    Google Scholar 

  • De Carvalho RF, Bromilow RH, Greenwood R (2007) Uptake and translocation of non-ionised pesticides in the emergent aquatic plant parrot feather Myriophyllum aquaticum. Pest Manag Sci 63:798–802

    Article  PubMed  CAS  Google Scholar 

  • DeRidder BP, Dixon DP, Beussman DJ, Edwards R, Goldsbrough PB (2002) Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol 130:1497–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devine MD, Hall LM (1990) Implication of sucrose transport mechanism for the translocation of herbicides. Weed Sci 38:299–304

    CAS  Google Scholar 

  • Dexter AG, Slife FW, Butler HS (1971) Detoxification of 2,4-D by several plant species. Weed Sci 19:721–729

    CAS  Google Scholar 

  • Didierjean L, Gondet L, Perkins R, Lau S-MC, Schaller H, O’Keefe DP, Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1–3004.10

    Article  Google Scholar 

  • Domir SC (1978) Translocation and metabolism of injected maleic hydrazide in silver maple and American sycamore seedlings. Physiol Plant 42:387–396

    Article  CAS  Google Scholar 

  • Dörr R (1970) Die Aufnahme von 3,4-Benzpyren durch Pflanzenwurzeln. Landwirtsch Forsch 23:371–376

    Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE (2007) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natl Acad Sci U S A 97:6287–6291

    Article  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenic plants and entophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Dowdy DL, McKone TE (1997) Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partition ratios and a molecular connectivity index. Environl Toxicol Chem 16:2448–2456

    Article  CAS  Google Scholar 

  • Droog FJN, Hooykaas PJJ, Libbenga KR, van der Zaal EJ (1993) Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol 21:965–972

    Article  CAS  PubMed  Google Scholar 

  • Dunford HB, Jones PA (2010) Peroxidases and Catalases: Biochemistry, Biophysics, Biotechnology and Physiology. 2nd edn. Wiley, New York

    Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1968a) Absorption and conversion of butane by higher plants (in Russian). Dokl Akad Nauk SSSR 182:214–216

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1968b) Oxidation of ethane, propane and pentane by higher plants (in Russian). Bull Georgian Acad Sci 50:661–666

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1975) Absorption and transformation of methane by plants (in Russian). Fiziol Rast 22:70–73

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A, Tsevelidze D (1969) The intermediate products of enzymatic oxidation of benzene and phenol (in Russian). Dokl Akad Nauk SSSR 184:466–469

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A (1974a) Absorption and transformation of benzene by higher plants (in Russian). Fiziologiya i Biochimiya Kulturnikh Rastenii 6:217–221

    Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A (1974b) Uptake of benzene by fruits from atmosphere (in Russian). Appl Biochem Microbiol 10:472–476

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A (1974c) Absorption and transformation of toluene by higher plants (in Russian). Appl Biochem Microbiol 10:673–676

    CAS  Google Scholar 

  • Durmishidze S, Djikiya A, Lomidze E (1979) Uptake and transformation of benzidine by plants in sterile conditions (in Russian). Dokl Akad Nauk SSSR 247:244–247

    CAS  Google Scholar 

  • Durst F (1991) Biochemistry and physiology of plant cytochrome P-450. In: Ruckpaul K (ed) Frontiers in biotransformation, vol 4. Academic-Verlag, Berlin, pp 191–232

    Google Scholar 

  • Edwards R, Dixon DP, Cummins I, Brazier-Hicks M, Skipsey M (2011) New perspectives on the metabolism and detoxification of synthetic compounds in plants. In: Schröder P, Collins CD (eds) Organic xenobiotics and plants: from mode of action to ecophysiology, plant ecophysiology, vol 8. Springer, Dordrecht New York, pp 125–148

    Chapter  Google Scholar 

  • Esteve-Núňez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Evert RF, Eichhorn SE (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Book  Google Scholar 

  • Eynard I (1974) Determination on foliage of surfactant solution by a radioisotope technique. Allionia 17:131–135

    Google Scholar 

  • Ezra G, Stephenson GR (1985) Comparative metabolism of atrazine and EPTC in proso millet (Panicum miliaceum L.) and corn. Pestic Biochem Physiol 24:207–212

    Article  CAS  Google Scholar 

  • Fant FA, de Sloovere A, Matthijse K, Marle C, el Fantroussi S, Werstraete W (2001) The use of amino compounds for binding 2,4,6-trinitrotoluene in water. Environ Pollut 111:503–507

    Article  CAS  PubMed  Google Scholar 

  • Feung C, Hamilton RH, Mumma RO (1976) Metabolism of 2,4-dichlorophenoxyacetic acid: 10. Identification of metabolites in rice root callus tissue cultures. J Agric Food Chem 24:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Fialho RC, Bucker J (1996) Changes in levels of foliar carbohydrates and myoinositol before premature leaf senescence of Populus-Nigra induced by a mixture of O3 and SO2. Can J Bot 74:965–970

    Article  Google Scholar 

  • Flocco CG, Lindblom SD, Smits EAHP (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304

    Article  CAS  PubMed  Google Scholar 

  • Fonné-Pfister R, Kreuz K (1990) Ring-methyl hydroxylation of chlortoluron by an inducible cytochrome P450-dependent enzyme from maize. Phytochemistry 29:2793–2796

    Article  Google Scholar 

  • Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K (2003) Preparation of plants containing bacterial enzyme for degradation of poly chlorinated biphenyls. Fresenius Environ Bull 12:309–313

    CAS  Google Scholar 

  • Frear DS, Swanson HR, Mansager ER, Wien RG (1978) Chloramben metabolism in plants: isolation and identification of glucose ester. J Agric Food Chem 26:1347–1354

    Article  CAS  Google Scholar 

  • Frear DS, Swanson HR, Mansager ER (1983) Acifluorfen metabolism in soybean: diphenylether bond cleavage and the formation of homoglutathione, cysteine, and glucose conjugates. Pestic Biochem Physiol 20:299–310

    Article  CAS  Google Scholar 

  • Frear DS, Swanson HR, Mansager ER (1985) Alternate pathways of metribuzin metabolism in soybean: formation of N-glucoside and homoglutathione conjugates. Pestic Biochem Physiol 23:56–65

    Article  CAS  Google Scholar 

  • French CE, Hosser SJ, DaviesGJ NS, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  PubMed  Google Scholar 

  • Führ F, Mittelstaedt W (1974) Versuche mit polyurethan-Hartschaum auf Basis von 14C-markiertem Diphenylmethan-diisocyanat (MDI) zu Fragen der Mineralisierung und Aufnahme durch Planzen. Ber Kernforschungsanlage Jülich 1062:30–42

    Google Scholar 

  • Führ F, Sauerbeck D (1967) The uptake of colloidal organic substances by plant roots as shown by experiments with 14C-labelled humus compounds. In: Report FAO/IAEA meeting, Viena. Pergamon Press, Oxford, pp 73–82

    Google Scholar 

  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles J, Rylott EL (2008) Detoxification of the explosive 2,4,6- trinitrotoluene in Arabidopsis: discovery of bifunctional O and C-glucosyltransferases. Plant J 56:963–974

    Article  CAS  PubMed  Google Scholar 

  • Gao JA, Garrison WA, Mazur C, Hoehamer CF, Wolfe NL (2000) Uptake and phytotransformation of organophosphorous pesticides by axenically cultivated aquatic plants. J Agric Food Chem 48:6121–6127

    Article  CAS  PubMed  Google Scholar 

  • Gellatly KS, Moorhead GBG, Duff SMG, Lefebvre DD, Plaxton WC (1994) Purification and characterization of a potato tuber acid phosphatase having significant phosphotyrosine phosphatase activity. Plant Physiol 106:223–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. Strain B1b. Appl Environ Microbiol 63:1933–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Google Scholar 

  • Gordeziani M, Durmishidze S, Khatisashvili G, Adamia G, Lomidze E (1987) The investigation of biosynthetic and detoxification ability of plant cytochrome P-450 (in Russian). Dokl Akad Nauk SSSR 295:1491–1493

    CAS  Google Scholar 

  • Gordeziani M, Khatisashvili G, Kvesitadze G (1991) Free and coupled with xenobiotic hydroxylation oxidation of NADPH (in Russian). Dokl Akad Nauk SSSR 320:467–470

    CAS  Google Scholar 

  • Grayson BT, Kleier DA (1990) Phloem mobility of xenobiotics. IV. Modeling of pesticide movement in plants. Pestic Sci 30:67–79

    Article  CAS  Google Scholar 

  • Greene DW, Bukovac MJ (1977) Foliar penetration of naphthalene-acetic acid enhancement by light and role of stomata. Am J Bot 64:96–104

    Article  CAS  Google Scholar 

  • Guengerich FP (2010) Cytochrome P450 enzymes. In: McQueen CA (ed) Comprehensive toxicology, vol 4: biotransformation. Elsevier, New York, pp 41–76

    Google Scholar 

  • Guillén F, Gómez-Toribio V, Martýnez MJ, Martýnez AT (2000) Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch Biochem Biophys 382:142–147

    Google Scholar 

  • Guillén F, Martýnez MJ, Muñoz C, Martýnez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339:190–199

    Article  PubMed  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  CAS  PubMed  Google Scholar 

  • Haderlie RC (1980) Absorption and translocation of buthidazole. Weed Sci 28:352–360

    CAS  Google Scholar 

  • Hallahan DL, Lau SM, Harder PA, Smiley DW, Dawson GW, Pickett JA, Christoffersen RF, O’Keefe DP (1994) Cytochrome P-450-catalysed monoterpenoid oxidation in catmint (Nepeta racemosa) and avocado (Persea americana) evidence for related enzymes with different activities. Biochim Biophys Acta 1201:94–100

    Article  CAS  PubMed  Google Scholar 

  • Hallmen U (1974) Translocation and complex formation of picloram and 2,4-D in rape and sunflower. Physiol Plant 32:78–83

    Article  CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JAH, Shanks JV (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediation 9:385–401

    Article  CAS  PubMed  Google Scholar 

  • Hansikova H, Frei E, Anzenbacher P, Stiborova M (1994) Isolation of plant cytochrome P450 and NADPH:cytochrome P450-reductase from tulip bulbs (Tulipa fosteriana). Gen Physiol Biophys 13:149–169

    CAS  PubMed  Google Scholar 

  • Harborne JB (1977) Introduction to ecological biochemistry. National Academic Press, London/New York/San Francisco

    Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1990) Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography. J Chromatogr 518:361–374

    Article  CAS  Google Scholar 

  • Hatzios KK, Penner D (1980) Site of uptake and translocation of 14C-buthidazole in corn (Zea mays) and redroot pigweed (Amaranthus retroflexus). Weed Sci 28:285–291

    CAS  Google Scholar 

  • Haynes CA, Koder RL, Miller A-F, Rodgers DW (2002) Structures of nitroreductase in three states. J Biol Chem 277:11513–11520

    Article  CAS  PubMed  Google Scholar 

  • Heggestad HE (1991) Origin of Bel-W3, Bel-C and Bel-B tobacco varieties and their use as indicators of ozone. Environ Pollut 74:264–291

    Article  CAS  PubMed  Google Scholar 

  • Hendrick LW, Meggitt WF, Penner D (1974) Basis for selectivity of phenmedipham and desmodipham on wild mustard, redroot pigweed, and sugar beet. Weed Sci 22:179–186

    CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hirose S, Kawahigashi H, Ozawa K, Shiota N, Inui H, Ohkawa H (2005) Transgenic rice containing human CYP2B6 detoxifies various classes of herbicides. J Agric Food Chem 53:3461–3467

    Article  CAS  PubMed  Google Scholar 

  • Hodgson RH, Hoffer BL (1977) Diphenamid metabolism in pepper and an ozone effect. 1. Absorption, translocation, and the extent of metabolism. Weed Sci 25:324–330

    Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Google Scholar 

  • Hoskin FCG, Walker JE, Mello CM (1999) Organophosphorous acid anhydrolase in slime mold, duckweed and mung bean: a continuing search for a physiological role and a natural substrate. Chem Biol Interact 119/120:399–404

    Google Scholar 

  • Hsu FC, Kleier DA (1990) Phloem mobility of xenobiotics. III. Sensitivity of unified model to plant parameters and application to patented chemical hybridizing agents. Weed Sci 38:315–323

    CAS  Google Scholar 

  • Hsu FC, Kleier DA, Melander WH (1988) Phloem mobility of xenobiotics. II. Bioassay testing of the unified model. Plant Physiol 86:811–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Huystee RB (1989) Role of carbohydrate moieties in peanut peroxidases. Biochem J 263:129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iimura Y, Ikeda S, Sonoki T, Hayakawa T, Kajita S, Kimbara K (2002) Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tool for phytoremediation. Appl Microbiol Biotechnol 59:246–251

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Wakai T, Gion K, Kim YS, Eun H (2008) Differential uptake for dioxinlike compounds by zucchini subspecies. Chemosphere 73:1602–1607

    Google Scholar 

  • Isaacson P (1986) Uptake and transpiration of 1,2-dibromoethane by leaves. Plant Soil 95:431–434

    Article  CAS  Google Scholar 

  • Isensee AR, Jones GE, Turner BC (1971) Root absorption and translocation of picloram by oats and soybeans. Weed Sci 19:727–736

    CAS  Google Scholar 

  • Jackson EG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104:16822–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson A, Shimabukuro RH (1984) Metabolism of diclofop-methyl in root-treated wheat and oat seedlings. J Agric Food Chem 32:742–748

    Article  CAS  Google Scholar 

  • Janes BE (1974) The effect of molecular size, concentration in nutrient solution, and exposure time on the amount and distribution of polyethylene glycol in pepper plants. Plant Physiol 54:226–236

    Google Scholar 

  • Jansen EF, Olson AC (1969) Metabolism of carbon-14-labelled benzene and toluene in avocado fruit. Plant Physiol 44:786–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenings JC, Coolbaugh RC, Nakata DA, West CA (1993) Characterization and solubilization of kaurenoic acid hydroxylase from Gibberella fujikura. Plant Physiol 101:925–930

    Google Scholar 

  • Jensen KIN, Stephenson GR, Hunt LA (1977) Detoxification of atrazine in three Gramineae subfamilies. Weed Sci 25:212–218

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66:524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DW, Foy CL (1972) Absorption and translocation of bioxone in cotton. Weed Sci 20:116–124

    CAS  Google Scholar 

  • Jones JP, O’Hare EJ, Wong LL (2001) Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochromeP450(cam)). Eur J Biochem 268:1460–1467

    Google Scholar 

  • Jung S, Lee HJ, Lee Y, Kang K, Kim YS, Grimm B (2008) Toxic tetrapyrrole accumulation in protoporphyrinogrn IX oxidase overexpressing transgenic rice plants. Plant Mol Biol 67:535–546

    Article  CAS  PubMed  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing glutathione S-transferase I fro chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kassel AG, Ghoshal D, Goyal A (2002) Phytoremediation of trichloroethylene using hybrid poplar. Physiol Mol Biol Plants 8:1–8

    Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005) Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 53:8557–8564

    Article  CAS  PubMed  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2008) Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J Mol Microbiol Biotechnol 15:212–219

    Article  CAS  PubMed  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230 10.1016/j.copbio.2009.01.010

    Google Scholar 

  • Kawamura K, Ng LL, Kaplan IR (1985) Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils. IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. Environ Sci Technol 19:1082–1086

    Google Scholar 

  • Khatisashvili G, Gordeziani M, Kvesitadze G, Korte F (1997) Plant monooxygenases: participation in xenobiotic oxidation. Ecotoxicol Environ Saf 36:118–122

    Article  CAS  PubMed  Google Scholar 

  • Khatisashvili G, Adamia G, Pruidze M, Kurashvili M, Varazashvili T, Ananiashvili T (2003) TNT uptake and nitroreductase activity of plants. In: 8th international FZK/TNO conference on contaminated soil. ConSoil 2003, Gent, Belgium, pp 2482–2485

    Google Scholar 

  • King MG, Radosevich R (1979) Tanoak (Lithocarpus densiflorus) leaf surface characteristics and absorption of triclopyr. Weed Sci 27:599–605

    CAS  Google Scholar 

  • Kirkwood RC (1999) Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic Sci 55:69–77

    Article  CAS  Google Scholar 

  • Kleier DA (1994) Phloem mobility of xenobiotics. V. Structural requirements for phloem-systemic pesticides. Pestic Sci 42:1–11

    Article  CAS  Google Scholar 

  • Kochs G, Grisebach H (1986) Enzymatic synthesis of isoflavonoids. Eur J Biochem 155:311–318

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1980) Cutin suberin and waves. In: Stumpf PK (ed) The biochemistry of plants: a comprehensive treatise, vol 4, Lipids: structure and function. National Academic Press, New York, pp 571–645

    Google Scholar 

  • Korte F, Behadir M, Klein W, Lay JP, Parlar H, Sceunert I (1992) Lehrbuch der ökologischen chemie. Grundlagen und Konzepte fur die ökologische Beurteilung von Chemikalien. Georg Thieme Verlag, Stuttgart/New York

    Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Review: organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kouji H, Masuda T, Matsunaka S (1990) Mechanism of herbicidal action and soybean selectivity of AKH-7088, a novel diphenyl ether herbicide. Pestic Biochem Physiol 37:219–226

    Article  CAS  Google Scholar 

  • Kovács M (1992) Herbaceous (flowering) plants. In: Kovács M (ed) Biological indicators in environmental protection. Ellis Horwood, New York

    Google Scholar 

  • Krell HW, Sandermann H (1985) Plant biochemistry of xenobiotics. Purification and properties of a wheat esterase hydrolyzing the plasticizers chemical, bis(2-ethylhexyl)phthalate. Eur J Biochem 143:57–62

    Article  Google Scholar 

  • Kristich MA, Schwarz OJ (1989) Characterization of 14C-naphthol uptake in excised root segments of clover (Trifolium pratense L.) and fescue (Festuca arundinaceae Screb.). Environ Monit Assess 13:35–44

    Article  CAS  PubMed  Google Scholar 

  • Kumar VN, Subrash C (1990) Influences of SO2 on seed germination and seedling growth of Eulalipsis binate (Rets) Hubbord. Geobios (India) 17:190–191

    Google Scholar 

  • Kumar S, Jin M, Weemhoff JL (2012) Cytochrome P450-mediated phytoremediation using transgenic plants: a need for engineered cytochrome P450 enzymes. J Pet Environ Biotechnol 3:127. doi:10.4172/2157-7463.1000127

    Article  CAS  Google Scholar 

  • Kurumata M, Takahashi M, Sakamotoa A, Ramos JL, Nepovim A, Vanek T (2005) Tolerance to and uptake and degradation of 2, 4, 6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch C 60:272–278

    Article  CAS  PubMed  Google Scholar 

  • Kutchan TM (1995) Alkaloid biosynthesis – the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kvesitadze G, Gordeziani M, Khatisashvili G, Sadunishvili T, Ramsden JJ (2001) Some aspects of the enzymatic basis of phytoremediation. J Biol Phys Chem 1:49–57

    Article  CAS  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification: basis of phytoremediation. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lamoureux GL, Rusnes DG (1989) Propachlor metabolism in soybean plants, excised soybean tissues, and soil. Pestic Biochem Physiol 34:187–204

    Article  CAS  Google Scholar 

  • Lan PT, Main R, Motoyama N, Dauterman WC (1983) Hydrolysis of malathion by rabbit liver oligomeric and monomeric carboxylesterases. Pestic Biochem Physiol 20:232–237

    Article  Google Scholar 

  • Lao S-H, Loutre C, Brazier M, Coleman JOD, Cole DJ, Edwards R, Theodoulou FL (2003) 3,4-Dichloroaniline is detoxified and exported via different pathways in Arabidopsis and soybean. Phytochemistry 63:653–661

    Article  CAS  PubMed  Google Scholar 

  • Laurent FMG (1994) Chloroaniline peroxidation by soybean peroxidases. Pestic Sci 40:25–30

    Article  CAS  Google Scholar 

  • Lawlor DW (1970) Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytol 69:501–506

    Article  CAS  Google Scholar 

  • Lay MM, Casida JE (1976) Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxification by elevating corn root glutathione and glutathione S-transferase activity. Pestic Biochem Physiol 6:442–446

    Article  CAS  Google Scholar 

  • Le Baron HM, McFariand JE, Simoneaux BJ, Ebert E (1988) Metolachlor. In: Kearney PC, Kaufman DD (eds) Herbicides: chemistry, degradation, and mode of action, vol 3. Dekker, New York, pp 335–381

    Google Scholar 

  • Leavitt JR, Penner D (1979) In vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J Agric Food Chem 27:533–536

    Article  CAS  Google Scholar 

  • Leece DR (1978) Foliar absorption in Prunus domestica L. I. Nature and development of the surface wax barrier. Aust J Plant Physiol 5:749–752

    Article  CAS  Google Scholar 

  • Levi PE, Hodgson E (1992) Metabolism of organophosphorous compounds by the flavin-containing monooxygenase. In: Chambers JE, Levi PE (eds) Organophosphorous: chemistry, fate, and effects. National Academic Press, San Diego, pp 141–145

    Chapter  Google Scholar 

  • Lingle SE, Suttle JC (1985) A model system for the study of 2,4-D translocation in leaf of spurge. Can J Plant Sci 65:369–377

    Article  CAS  Google Scholar 

  • Long JW, Basler E (1974) Patterns of phenoxy herbicide translocation in bean seedlings. Weed Sci 22:18–24

    CAS  Google Scholar 

  • Loutre C, Dixon DP, Brazier M, Slater M, Cole DJ, Edwards R (2003) Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J 34:485–493

    Article  CAS  PubMed  Google Scholar 

  • Lu Y (2003) Cupredoxins. In: McCleverty JA, Meyer TJ (eds) Comprehensive Coordination Chemistry II: From Biology to Nanotechnology. Vol 8: Lawrence QJ, Tolman WB (eds) Biocoordination Chemistry. Elsevier, New York, pp 91–122

    Google Scholar 

  • Ma T, Luo Y, Christie P, Teng Y, Liu W (2012) Removal of phthalic esters from contaminated soil using different cropping systems: a field study. Eur J Soil Biol 50:76–82

    Article  CAS  Google Scholar 

  • Martinova E (1993) An ATP-dependent glutathione-S-conjugate "export" pump in the vacuolar membrane of plants. Nature 364:247–249

    Google Scholar 

  • Mathur AK, Jhamaria SL (1975) Translocation studies of two systemic fungicides. Pesticides 9:40–46

    CAS  Google Scholar 

  • Mayer A (1987) Polyphenoloxidases in plants-recent progress. Phytochemistry 26:11–20

    Article  Google Scholar 

  • McFadden JJ, Frear DS, Mansager ER (1989) Aryl hydroxylation of diclofop by a cytochrome P-450 dependent monooxygenase from wheat. Pestic Biochem Physiol 34:92–100

    Article  CAS  Google Scholar 

  • McFadden JJ, Gronwald JW, Eberlein CV (1990) In vitro hydroxylation of benzaton by microsomes from naphtallic anhydride-treated corn shoots. Biochem Biophys Res Comm 168:206–211

    Article  CAS  PubMed  Google Scholar 

  • Merbach W, Schilling G (1977) Ursachen der Unempfindlichkeit von Beta vulgaris L. gegemiber Pyrazon, Phenmedipham und Benzthiazuron. Biochem Physiol Pflanz 171:187–190

    CAS  Google Scholar 

  • Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450. Enzymes Chem Rev 104:3947–3980

    Article  CAS  PubMed  Google Scholar 

  • Middleton W, Jarvis BC, Booth A (1978) The effect of ethanol on rooting and carbohydrate metabolism in stem cuttings of Phaseolus aureus Roxb. New Phytol 81:2790–2797

    Google Scholar 

  • Mithaishvili T, Scalla R, Ugrekhelidze D, Tsereteli B, Sadunishvili T, Kvesitadze G (2005) Degradation of aromatic compounds in plants grownunder aseptic conditions. Z Naturforsch C Biosci 60:97–102

    CAS  Google Scholar 

  • Mitton FM, Gonzalez M, Peña A, Miglioranza KS (2012) Effects of amendments on soil availability and phytoremediation potential of aged p, p’-DDT, p, p’-DDE and p, p’-DDD residues by willow plants (Salix sp.). J Hazard Mater 203–204:62–68

    Article  PubMed  CAS  Google Scholar 

  • Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507:194–203

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laiberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 2:151–162

    Article  CAS  Google Scholar 

  • Mougin C, Cabanne F, Canivenc M-C, Scalla R (1990) Hydroxylation and N-demethylation of chlortoluron by wheat microsomal enzymes. Plant Sci 66:195–203

    Article  CAS  Google Scholar 

  • Nakajima DJY, Suzuki J, Suzuki S (1995) Seasonal changes in the concentration of polycylic aromatic hydrocarbons in azalea leaves and inrelationship to the atmospheric concentration. Chemosphere 30:409–418

    Article  CAS  Google Scholar 

  • Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490

    Article  CAS  Google Scholar 

  • Nejad AR, van Meeteren U (2007) The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity. J Exp Bot 58:627–636

    Article  CAS  PubMed  Google Scholar 

  • Niku-Paavola ML, Viikari L (2000) Enzymatic oxidation of alkenes. J Mol Cat 10:435–444

    Article  CAS  Google Scholar 

  • Novakova M, Mackova M, Chrastilova Z, Viktorova J, Szekeres M, Demnerova K (2009) Cloning of the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol Bioeng 102:29–37

    Article  CAS  PubMed  Google Scholar 

  • Nwoko CO (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9:6010–6016

    CAS  Google Scholar 

  • O’Connor GA, Kiehl D, Eiceman GA, Ryan JA (1990) Plant uptake of sludge-borne PCBs. J Environ Qual 19:113–118

    Article  Google Scholar 

  • Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier HA (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill. cv. Pera) hairyroots increases phytoremediation of phenol. Plant Sci 169:1102–1111

    Article  CAS  Google Scholar 

  • O’Neill SD, Keith B, Rappaport L (1986) Transprot of gibberellin A1 in cowpea membrane vesicles. Plant Physiol 80:812–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz de Montellano PR (2010) Catalytic mechanisms of heme peroxidases. In: Torres E, Ayala M (eds) Biocatalysis based on heme peroxidases. Peroxidases as potential industrial biocatalysts. Springer, Berlin Heidelberg, pp 79–107

    Chapter  Google Scholar 

  • Palazzo AJ, Leggett DC (1986) Effect and disposition of TNT in a terrestrial plant. J Environ Qual 15:49–52

    Article  CAS  Google Scholar 

  • Paterson S, Mackay D, McFarlane C (1994) A model of organic chemical uptake by plants from soil and the atmosphere. Environ Sci Technol 28:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Pemadasa MA (1979) Stomatal responses to two herbicidal auxins. J Exp Bot 30:267–276

    Article  CAS  Google Scholar 

  • Penner D, Early RW (1973) Effect of alachlor, butylate and chlorbromuron on carbofuran distribution and metabolism in barley and corn. Weed Sci 21:360–366

    CAS  Google Scholar 

  • Peterson FJ, Mason RP, Horspian J, Holtzman JL (1979) Oxygen-sensitive and insensitive nitroreduction by Escherichia coli and rat hepatic microcosomes. J Biol Chem 254:4009–4014

    CAS  PubMed  Google Scholar 

  • Peterson MM, Horst GL, Shea PJ, Comfort SD (1998) Germination and seedling development of switchgrass and smooth bromegrass exposed to 2,4,6-trinitrotoluene. Environ Pollut 99:53–59

    Article  CAS  PubMed  Google Scholar 

  • Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieux C, Durst F, Werck-Reichhart D (1994) Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Eur J Biochem 224:835–842

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Ellis BE (1978) In vivo characterization of catechol ring- cleavage in cell cultures of Glycine max. Phytochemistry 17:187–193

    Article  CAS  Google Scholar 

  • Preuss A, Rieger PG (1995) Anaerobic transformation of 2,4,6-TNT and other nitroaromatic compounds. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 69–85

    Chapter  Google Scholar 

  • Pridham JB (1958) Metabolism of phenolic compounds by the broad bean Vicia faba. Nature 182:795–800

    Article  CAS  PubMed  Google Scholar 

  • Pruidze GK, Mchedlishvili NI, Omiadze NT, Gulua LK, Pruidze NG (2003) Multiple forms of phenol oxidase from Kolkhida tea leaves (Camellia sinensis L.) and Mycelia sterilia IBR 35219/2 and their role in tea production. Food Res Int 36:587–595

    Article  CAS  Google Scholar 

  • Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331

    Article  CAS  PubMed  Google Scholar 

  • Rigby NM, McDougall AJ, Needs PW, Selvendran RR (1994) Phloem translocation of a reduced oligogalacturonide in Ricinus communis L. Planta 193:536–541

    Article  CAS  Google Scholar 

  • Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O, Didierjean L, Werck-Reichhart D (1998) The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. Plant Physiol 118:1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrígez-López JN, Tudela J, Varón R, Fenoll LG, García-Carmona F, García-Cánovas F (1992) Analysis of a kinetic model for melanin biosynthesis pathway. J Biol Chem 267:3801–3810

    Google Scholar 

  • Roy S, Hanninen O (1994) Pentachloroohenol: uptake/elimination kinetics and metabolism in aquatic plant Eichornia crassipes. Environ Toxicol Chem 13:763–773

    Article  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Hrywna Y (1999) Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls. Appl Environ Microbiol 65:2163

    Google Scholar 

  • Ryan JA, Bell RM, Davidson JM, O’Connor GA (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 12:2299–2323

    Article  Google Scholar 

  • Sadunishvili T, Gvarliani M, Nutsubidze N, Kvesitadze G (1993) Enzymatic mechanism of ammonia excess detoxication in kidney bean. Fresenius Environ Bull 2:534–539

    CAS  Google Scholar 

  • Sadunishvili T, Kuprava N, Aplakov V, Betsiashvili M, Zaalishvili G, Mithaishvili T, Kvesitadze G (2006) Effect of nitrobenzene on ammonia assimilation enzymes and cell ultrastructure in maize and soybean. Proc Georgian Acad Sci Biol Ser B 4:16–22

    Google Scholar 

  • Salaün JP (1991) Metabolization de xenobiotiques par des monooxygenases a cytochrome P-450 chez les plantes. Oceanis 17:459–474

    Google Scholar 

  • Salaün JP, Helvig C (1995) Cytochrome P450-dependent oxidation of fatty acids. In: Durts F, O’Keef DP (eds) Drug metabolism and drug interactions. Freund Publishing House, London, pp 12–49

    Google Scholar 

  • Sánches-Ferrer A, Rodrígez-López JN, García-Cánovas F, García-Carmona F (1994) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11

    Article  Google Scholar 

  • Sandermann H (1987) Pestizid-Rückstände in Nahrungspflanzen. Die Rolle des pflanzlichen Metabolismus. Naturwissenschaften 74:573–578

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1988) Mutagenic activation of xenobiotics by plant enzymes. Mutat Res 197:183–194

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H, Scheel D, Trenck T (1983) Metabolism of environmental chemicals by plants. Copolymerization into lignin. J Appl Polymer Sci 37:407–420

    CAS  Google Scholar 

  • Sandermann H (1999) Plant metabolism of organic xenobiotics. Status and prospects of the ‘Green Liver’ concept. In: Altman A, Ziv M, Izhar S (eds) Plant biotechnology and in vitro biology in the 21st century. Current plant science and biotechnology agriculture, vol 36, Kluwer Academic, Dordrecht, pp 321–328

    Google Scholar 

  • Sargent JA, Blackman GE (1972) Studies on foliar penetration. 9. Patterns of penetration of 2,4-dichlorophenoxyacetic acid into the leaves of different species. J Exp Bot 23:830–839

    Article  CAS  Google Scholar 

  • Schmidt B, Joußen N, Bode M, Schuphan I (2006) Oxidative metabolic profiling of xenobiotics by human P450s expressed in tobacco cell suspension cultures. Biochem Soc Trans 34:1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Schmitt R, Kaul J, Trenck T, Schaller E, Sandermann H (1985) β-D-glucosyl and O-malonyl-β-D-glucosyl conjugates of pentachlorophenol in soybean and wheat: identification and enzymatic synthesis. Pestic Biochem Physiol 24:77–85

    Article  CAS  Google Scholar 

  • Schnoor JL, Dee PE (1997) Phytoremediation. Technology evaluation report TE-98-01. Ground-Water Remediation Technologies Analysis Center. Ser E. Iowa City

    Google Scholar 

  • Schoenmuth BW, Pestemer W (2004) Dendroremediation of trinitrotoluene (TNT) part 2: fate of radio-labelled TNT in trees. Environ Sci Pollut Res 11:331–339

    Article  CAS  Google Scholar 

  • Schönherr J, Bukovac MJ (1972) Penetration of stomata by liquids. Dependence on surface tension, wettability, and stomatal morphology. Plant Physiol 49:813–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Schönherr J, Bukovac MJ (1978) Foliar penetration of succinic acid-2,2-dimethylhydrazide: mechanism and rate limiting step. Physiol Plant 42:243–249

    Article  Google Scholar 

  • Schröder P, Collins C (2002) Conjugating enzymes involved in organic pollutant metabolism of organic organic pollutants in plants. Int J Phytoremediation 4:247–265

    Article  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    Article  CAS  PubMed  Google Scholar 

  • Schuler MA (1996) Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 15:235–284

    Article  CAS  Google Scholar 

  • Schultz ME, Burnside OC (1980) Absorption, translocation and metabolism of 2,4-D and glyphosate in hemp dogbane (Apocynum cannabinum). Weed Sci 28:13–19

    CAS  Google Scholar 

  • Seidel K, Kickuth R (1967) Exkretion von Phenol in der Phylosphäre von Scirpus lacustris L. Naturwissenschaften 52:517–525

    Article  Google Scholar 

  • Sens C, Sheidemann P, Werner D (1999) The distribution of 14C-TNT in different biochemical compartments of the monocotyledoneous Triticum aestivum. Environ Pollut 104:113–119

    Article  CAS  Google Scholar 

  • Sharma MP, Vanden Born WH (1970) Foliar penetration of picloram and 2,4-D in aspen and balsam poplar. Weed Sci 18:57–65

    CAS  Google Scholar 

  • Shen C, Tang X, Cheema SA, Zhang C, Khan MI (2009) Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-beta-cyclodextrins. J Hazard Mater 172:1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Shida T, Homma Y, Misaio T (1975) Absorption, translocation and degradation of N-lauoryl-L-valine in plants. 6. Studies on the control of plant diseases by amino acid derivatives. J Agric Chem Soc Jpn 49:409–418

    CAS  Google Scholar 

  • Shimabukuro RH, Hoffer BL (1991) Metabolism of diclofop-methyl in sensitive and resistant biotypes of Lolium rigidum. Pestic Biochem Physiol 39:251–260

    Article  CAS  Google Scholar 

  • Shimabukuro RH, Walsh WC, Jacobson A (1987) Aryl-O-glucoside of diclofop: a detoxification product in wheat shoots and wild oat suspension diclofop. J Agric Food Chem 35:393–399

    Article  CAS  Google Scholar 

  • Shimabukuro RH, Walsh WC, Hoffer BL (1989) The absorption, translocation and metabolism of difenopenten-ethyl in soybean and wheat. Pestic Biochem Physiol 33:57–68

    Article  CAS  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  PubMed  Google Scholar 

  • Shinohara A, Kamataki T, Ichimura Y, Opochi H, Okuda K, Kato R (1984) Drug oxidation activities of horse-redish peroxidase, myoglobin and cytochrome P-450cam reconstituted with synthetic hemes. Jpn J Pharmacol 45:107–114

    Article  Google Scholar 

  • Shiots N, Kodama S, Inui H, Ohkama H (2000) Expression of cytochrome P450 1A1 and P450 1A2 as fused enzymes with yeast NADPH-cytochrome P450 oxidoreductase in transgenic tobacco plants. Biosci Biotechnol Biochem 64:2025–2033

    Article  Google Scholar 

  • Shutte R, Golfmann GP (1975) Metabolism of herbicides: derivatives of diphenyl ether in oat. In: Mechanism of plant herbicide and synthetic growth regulators actions and their further fate in biosphere (in Russian). Materials of XI Symp, Pushchino, pp 129–133

    Google Scholar 

  • Sicbaldi F, Sacchi GA, Trevisan M, Del Re AAM (1997) Root uptake and xylem translocation of pesticides from different chemical classes. Pestic Sci 50:111–119

    Article  CAS  Google Scholar 

  • Siegel BZ (1993) Plant peroxidases – an organismic perspective. J Plant Growth Regul 12:303–312

    Article  CAS  Google Scholar 

  • Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci U S A 96:1750–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siminszky B (2006) Plant cytochrome P450-mediated herbicide metabolism. Phytochem Rev 5:445–458

    Article  CAS  Google Scholar 

  • Simonich SL, Hites RA (1994) Vegetation-atmosphere partioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943

    Article  CAS  PubMed  Google Scholar 

  • Söchtig H (1964) Beeinlussung des Stoffwechsels der Planzen durch Humus und seine Bestandteile und die Auswirkung auf Wachstum und Ertrag. Landbauforsch Völkenrode 14:9–15

    Google Scholar 

  • Solomon EI, Chen P, Metz M, Lee SK, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Angew Chem Int Ed 40:4570–4590

    Article  CAS  Google Scholar 

  • Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–142

    Article  CAS  PubMed  Google Scholar 

  • Stahl JD, Aust SD (1995) Biodegradation of 2,4,6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 117–134

    Chapter  Google Scholar 

  • Starov VM (2004) Surfactant solutions and porous substrates: spreading and imbibition. Adv Colloid Interface Sci 111:3–27

    Article  CAS  PubMed  Google Scholar 

  • Stiborova M, Anzenbacher P (1991) What are the principal enzymes oxidizing the xenobiotics in plants: cytochrome P-450 or peroxidase? Gen Physiol Biophys 10:209–216

    CAS  PubMed  Google Scholar 

  • Sugumaran M, Duggaraju R, Generozova F, Ito S (1999) Insect melanogenesis. II. Inability of Manduca phenoloxidase to act on 5,6-dihydroxyindole-2-carboxylic acid. Pigm Cell Res 12:118–125

    Article  CAS  Google Scholar 

  • Talekar NS, Lee EM, Sun LT (1977) Absorption and translocation of soil and foliar applied 14C-carbofuran and 14C-phorate in soybean and mung bean seeds. J Econ Entomol 70:685–688

    Article  CAS  Google Scholar 

  • Tanaka FS, Hoffer BL, Simabukuro RH (1990) Identification of the isomeric hydroxylated metabolites of methyl-2-[4-(2,4-dichlorophenoxy)phenoxy] propanoate (diclofop-methyl) in wheat. J Agric Food Chem 38:599–603

    Google Scholar 

  • Tateoka TN (1970) Studies on the catabolic pathway of protocatechuic acid in mung bean seedlings. Bot Mag (Tokyo) 83:49–54

    Article  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Schnoor JL (1998) Uptake and transformation of TNT by hybrid poplar trees. Environ Sci Technol 32:975–980

    Article  CAS  Google Scholar 

  • Tkhelidze P (1969) Oxidative transformation of benzene and toluene in vine grapes (in Russian). Bull Georg Acad Sci 56:697–700

    CAS  Google Scholar 

  • Trapp M, McFarlane C (1995) Plant contamination. Lewis Publisher, Boca Raton

    Google Scholar 

  • Trenck T, Sandermann H (1980) Oxygenation of benzo[a]pyrene by plant microsomal fractions. FEBS Lett 119:227–231

    Article  Google Scholar 

  • Tyree MT, Peterson CA, Edgington LV (1979) A simple theory regarding ambimobility of xenobiotics with special reference to the nematicide oxamyl. Plant Physiol 63:367–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida E, Ouchi T, Suzuki Y, Yoshida T, Habe H, Vamaguchi I (2005) Secretion of bacterial xenobiotic-degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Environ Sci Technol 39:7671–7677

    Article  CAS  PubMed  Google Scholar 

  • Ugrekhelidze D (1976) Metabolism of exogenous alkanes and aromatic hydrocarbons in plants (in Russian). Metsnieraba, Tbilisi

    Google Scholar 

  • Ugrekhelidze D, Durmishidze S (1984) Penetration and detoxification of organic xenobiotics in plants (in Russian). Metsniereba, Tbilisi

    Google Scholar 

  • Ugrekhelidze D, Kavtaradze L (1970) The question of metabolism of α-naphthol in higher plants (in Russian). Bull Georg Acad Sci 57:465–469

    CAS  Google Scholar 

  • Ugrekhelidze D, Phiriashvili V, Mithaishvili T (1986) Uptake of salicylic acid and aniline by pea roots (in Russian). Fiziol Rast 33:165–170

    CAS  Google Scholar 

  • Urlacher VB (2012) 7.13 Oxidation: stereoselective oxidations with cytochrome P450 monooxygenases. In: Turner NJ (ed) Comprehensive chirality. Vol 7: Synthetic methods VI: enzymatic and semi-enzymatic. Elsevier, New York, pp 275–294

    Google Scholar 

  • Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259

    Google Scholar 

  • Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 37:24–28

    Article  CAS  PubMed  Google Scholar 

  • Verkleij JAC, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguébel J-P, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22

    Article  CAS  Google Scholar 

  • Vias SC, Sinha OK, Josh LK (1976) Systemic uptake and translocation of bavistin and calixin in peanut (Arachis hypogaea L.). Pesticides 10:32–38

    Google Scholar 

  • Wang G-D, Chen X-Y (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme. In: Willey N (ed) Phytoremediation: methods and reviews. Methods in biotechnology, vol 23. Springer, Humana Press, Totowa pp 49–57

    Google Scholar 

  • Webber MD, Pietz RI, GranatoTC SML (1994) Plant uptake of PCBs and other organic contaminants from sludge-treated coal refuse. J Environ Qual 23:1019–1026

    Article  CAS  Google Scholar 

  • Welsch-Pausch K, McLachlan MS, Umlauf G (1995) Determination of the principal pathway of plychlorinated dibenzo-p-dioxins an dibenzofuranes to Lolium multiflorum. Environ Sci Technol 29:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123

    Article  CAS  PubMed  Google Scholar 

  • Wetzel A, Sandermann H (1994) Plant biochemistry of xenobiotics: isolation and characterization of a soybean O-glucosyltransferase of DDT metabolism. Arch Biochem Biophys 314:323–328

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White RH, Liebel RA, Hymowitz T (1990) Examination of 2,4-D tolerance in perennial Glycine species. Pestic Biochem Physiol 38:153–161

    Article  CAS  Google Scholar 

  • Whitehouse CJ, Bell SG, Tufton HG, Kenny RJ, Ogilvie LC, Wong LL (2008) Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem Commun (Camb) 28:966–968

    Google Scholar 

  • Wilson L, Williamson T, Gronowski J, Gentile GI, Gentile JM (1994) Characterization of 4-nitro-o-phenylendiamine activities by plant systems. Mutat Res 307:185–193

    Article  CAS  PubMed  Google Scholar 

  • Wolfe NL, Hoehamer CF (2003) Enzymes used by plants and microorganisms to detoxify organic compounds. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Transformation and control of contaminats. Wiley-Interscience, Hoboken, pp 159–188

    Google Scholar 

  • Xu F, Bell SG, Lednik J, Insley A, Rao Z, Wong LL (2005) The heme monooxygenase cytochrome P450cam can be engineered to oxidize ethane to ethanol. Angew Chem Int Ed Engl 44:4029–4032

    Google Scholar 

  • Yalpani N, Silverman P, Wilson MA, Kleier DA, Raskin I (1991) Salicylic acid is a system signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu MH, Sakurai S (1995) Diisopropylfluorylphosphate (DFP)-hydrolyzing enzymes in mung bean (Vigna radiata) seedlings. Environ Sci (Tokyo) 3:103–111

    CAS  Google Scholar 

  • Zaalishvili G, Lomidze E, Buadze O, Sadunishvili T, Tkhelidze P, Kvesitadze G (2000) Electron microscopic investigation of benzidine effect on maize root tip cell ultrastructure, DNA synthesis and calcium homeostasis. Int Biodeterior Biodegradion 46:133–140

    Article  CAS  Google Scholar 

  • Zaalishvili G, Sadunishvili T, Scala R, Laurent F, Kvesitadze G (2002) Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cells ultrastructure. Ecotoxicol Environ Saf 52:190–197

    Article  CAS  PubMed  Google Scholar 

  • Zenno S, Kobori T, Tanokura M, Saigo K (1998) Conversion of NfsA, the major Escherichia coli nitroreductase, to a flavin reductase with an activity similar to that of Frp, a flavin reductase in Vibrio harveyi, by a single amino acid substitution. J Bacteriol 180:422–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerlin A, Durst F (1992) Aryl hydroxylation of the herbicide diclofop by a wheat cytochrome P-450 monooxygenase. Plant Physiol 100:868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgi Kvesitadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., Kvesitadze, E. (2015). Plants for Remediation: Uptake, Translocation and Transformation of Organic Pollutants. In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_12

Download citation

Publish with us

Policies and ethics