Skip to main content

Fiber optic sensors in environmental monitoring

  • Chapter

Part of the book series: Optoelectronics, Imaging and Sensing ((OISS,volume 4))

Abstract

Fiber optics is best known today for its widespread and ever growing applications in communication networks around the world, and since the early 1980s, the application of fiber optics in measurement and sensor systems has begun to emerge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogue, R. (1994) Briefing: Integrated pollution control in the EU. Environmental Sensors, May 6–10, IOP Publishing, Bristol.

    Google Scholar 

  2. Klainer, S. M., Goswami, K., Dandge, D. K., Simon, S. J., Herron, N. R., Eastwood, D. L. and Eccles, L. A. (1991) Environmental monitoring applications of fibre optic chemical sensors. Fiber Optic Chemical Sensors, Vol. II (ed. O. S. Wolfbeis), pp. 83–122, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Norris, J. O. W. (1995) Multimodc optical fiber chemical sensors, in Optical Fiber Sensor Technology (eds. K. T. V. Grattan and B. T. Meggitt ), Chapman & Hall, London, pp. 161–196.

    Chapter  Google Scholar 

  4. MacCraith, B. D. (1998) Optical Fiber Chemical Sensor Systems and Devices. Chap. 2 in Optical Fiber Sensor Technology, Vol. 3 (eds. K. T. V. Grattan and B. T. Meggitt), Chapman & Hall, London, pp. 15–46.

    Google Scholar 

  5. Cooper, D. E. and Martinelli, R. U. (1992) Near-infrared diode lasers monitor molecular species. Laser Focus World, 28 (11), 133–146.

    Google Scholar 

  6. Inn, E. C. Y. and Tanaka, Y. (1953) Absorption coefficient of ozone in the ultraviolet and visible regions. Journal of the Optical Society of America, 43 (10), 870–873.

    Article  Google Scholar 

  7. Griggs, M. (1968) Absorption coefficients of ozone in the ultraviolet and visible regions. Journal of Chemical Physics, 49 (2), 857–859.

    Article  Google Scholar 

  8. Erley, D. S. and Blake, B. H. (1964) Infrared Spectra of Gases and Vapors. The Dow Chemical Company, Michigan.

    Google Scholar 

  9. Erley, D. S. and Blake, B. H. (1965) Infrared Spectra of Gases and Vapors. Vol. II. The Dow Chemical Company, Michigan.

    Google Scholar 

  10. Wolfbcis, O. S. (ed.) (1991) Fiber Optic Chemical Sensors, Vol. I and II. CRC Press, Boca Raton, FL.

    Google Scholar 

  11. Chernyak, V., Reisfeld, R., Gvishi, R. and Venezky, D. (1990) Oxazine-170 in sol-gel glass PMMA films as a reversible optical waveguide sensor for ammonia and acids. Sensors and Materials, 2 (2), 117–126.

    Google Scholar 

  12. Grattan, K. T. V. and Zhang, Z. Y. (1995) Fiber optic luminescence thermometry, in Optical Fiber Sensor Technology, 4, (K. T. V. Grattan and B. T. Meggitt (Eds)), Kluwer Academic, Dordrecht, The Netherlands, pp. 133–204.

    Google Scholar 

  13. Seitz, W. R. (1984) Chemical sensors based on fiber optics. Analytical Chemistry, 56 (1), 16–34.

    Google Scholar 

  14. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy. Plenum Press, New York.

    Book  Google Scholar 

  15. Schulman, S. G. (ed.) (1988) Molecular Luminescence Spectroscopy: Methods and Applications. Wiley, New York.

    Google Scholar 

  16. Grattan, K. T. V. and Zhang, Z. Y. (1995) Fiber Optic Fluorescent Thermometry. Chapman & Hall, London.

    Google Scholar 

  17. Klimant, I. and Leiner, M. J. P. (1992) Recent investigations in oxygen sensing. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 131.

    Google Scholar 

  18. MacCraith, B. D., O’Keeffe, G., McDonagh, C. and McEvoy, A. K. (1994) LED-based fibre optic oxygen sensor using sol-gel coating. Electronics Letters, 30 (11), 888–889.

    Article  Google Scholar 

  19. O’Keeffe, G., MacCraith, B. D., McEvoy, A. K. and McDonagh, C. M. (1994) Development of a LED-based phase fluorimetric oxygen sensor using evanescent wave excitation of a sol-gel immobilised dye. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 149.

    Google Scholar 

  20. Barnwell, C. N. (1983) Fundamentals of Molecular Spectroscopy. McGraw-Hill, London.

    Google Scholar 

  21. Fleischli, M. A. and Walder, F. T. (1992) Dedicated spectrometer aids Raman spectroscopic analysis. Laser Focus World. 28 (11), 149–153.

    Google Scholar 

  22. Niemczyk, T. M., Delgado-Lopez, M. and Newman, C. D. (1993) Multichannel Raman spectroscopy tackles industrial problems. Laser Focus World, 29 (3), 85–98.

    Google Scholar 

  23. Leugers, M. A. and McLachlan, R. D. (1988) Remote analysis by fiber optic Raman spectroscopy. Chemical, Biochemical and Environmental Applications of Fibers, The Society of Photo-Optical Instrumentation Engineers, 990, 89–94.

    Google Scholar 

  24. Schoen, C. L. (1994) Fiber probes permit remote Raman spectroscopy. Laser Focus World, 30 (5), 113–120.

    Google Scholar 

  25. Newbery, R., Mosier-Boss, P. and Lieberman, S. H. (1994) Raman spectroscopy for remote fibre optic sensing. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 103.

    Google Scholar 

  26. Angel, S. M. and Cooney, T. (1994) Chemical waste measurements using Raman fibre optic sensing. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 74.

    Google Scholar 

  27. Vo-Dinh, T., Stokes, D. L., Li, Y. S. and Miller, G. H. (1990) Fiber optic sensor probe for in-situ surface-enhanced Raman monitoring. Chemical, Biochemical and Environmental Fiber Sensors II, The Society of Photo-Optical Instrumentation Engineers, 1368, 203–209.

    Google Scholar 

  28. Mullen, K. I. and Carron, K. T. (1991) Surface enhanced Raman spectroscopy with abrasively modified fiber optic probes. Analytical Chemistry, 63 (19), 2196–2199.

    Article  Google Scholar 

  29. Mullen, K. I., Wang, D. X., Crane, L. G. and Carron, K. T. (1992) Determination of pH with surface-enhanced Raman fibre optic probes. Analytical Chemistry, 64 (8), 930–935.

    Article  Google Scholar 

  30. Vo-Dinh, T. (1994) SERS chemical sensors and biosensors: new tools for environmental and biomedical analysis. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 101.

    Google Scholar 

  31. Archenault, M., Ronot, C., Gagnaire, H., Goure, J. P. and Jeffrezic-Renault, N. (1992) Detection of chemical vapours with a specifically coated optical fibre sensor. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 97.

    Google Scholar 

  32. Butler, M. A. and Buss, R. J. (1992) Kinetics of the micromirror chemical sensor. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 49.

    Google Scholar 

  33. Gauglitz, G. (1992) Chemical and biochemical sensors based on interferometry at thin layers. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 12.

    Google Scholar 

  34. Ruddy, V. (1990) An effective attenuation coefficient for evanescent wave spectroscopy using multimode fibre. Fiber and Integrated Optics, 9, 142–150.

    Article  Google Scholar 

  35. Stewart, G. and Culshaw, B. (1994) Optical waveguide modelling and design for evanescent field chemical sensors. Optical and Quantum Electronics, 26, S249 - S259.

    Article  Google Scholar 

  36. Stewart, G., Norris, J., Clark, D. F. and Culshaw, B. (1991) Evanescent wave chemical sensors - a theoretical evaluation. International Journal of Optoelectronics, 6(3), 227-238.

    Google Scholar 

  37. Stewart, G., Culshaw, B., Muhammad, F., Murray, S., Pinchbeck, D., Norris, J., Cassidy, S., Wilkinson, M., Williams, D., Crisp, I., Van Ewyk, R. and McGhee, A. (1992) Evanescent wave methane detection using optical fibres. Electronics Letters, 28 (4), 2232–2234.

    Article  Google Scholar 

  38. Marcuse, D. (1988) Launching light into fiber cores from sources located in the cladding. Journal of Lightwave Technology, 6 (8), 1273–1279.

    Article  Google Scholar 

  39. Lieberman, R. A., Blyler, L. L. and Cohen, L. G. (1990) A distributed fiber optic sensor based on cladding fluorescence. Journal of Lightwave Technology, 18 (2), 212–220.

    Article  Google Scholar 

  40. Tai, H., Yamamoto, K., Uchida, M., Osawa, S. and Uehara, K. (1992) Long distance simultaneous detection of methane and acetylene by using diode lasers coupled with optical fibers. IEEE Photonics Technology Letters, 4 (7), 804–807.

    Article  Google Scholar 

  41. Peterson, J. I., Goldstein, S. R., Fitzgerald, R. V. and Buckhold, D. K. (1980) Fibre optic pH probe for physiological use. Analytical Chemistry, 52, 864–869.

    Article  Google Scholar 

  42. Peterson, J. I., Fitzgerald, R. V. and Buckhold, D. K. (1984) Fibre optic probe for in-vivo measurement of oxygen partial pressure. Analytical Chemistry, 56, 62.

    Article  Google Scholar 

  43. Brinker, C. J. and Scherer, C. W. (1990) Sol-Gel Science. Academic Press, Boston, MA.

    Google Scholar 

  44. McCulloch, S., Stewart, G., Guppy, R. M. and Norris, J. O. W. (1994) Characterisation of Ti02–5i02 sol-gel films for optical chemical sensor applications. International Journal of Optoelectronics, 9(3), 235 241.

    Google Scholar 

  45. Sharhari, M. (1998) Sol—gel fiber optic chemical sensors, in Optical Fiber Sensor Technology, 4, (eds. K. T. V. Grattan and B. T. Meggitt ), Kluwer Academic, Dordrecht, The Netherlands, pp. 47–65.

    Google Scholar 

  46. Uehara, K. and Tai, H. (1992) Remote detection of methane with a 1.6611M diode laser. Applied Optics, 31 (6), 809–814.

    Article  Google Scholar 

  47. Shimose, Y., Okamoto, T., Maruyama, A., Aizawa, M. and Nagai, H. (1991) Remote sensing of methane gas by differential absorption measurement using a wavelength tunable DFB LD. IEEE Photonics Technology Letters, 3 (1), 86–87.

    Article  Google Scholar 

  48. Stuart, A. D. and Samson, P. J. (1988) Optrode sensors for carbon monoxide and relative humidity. Proceedings 13th Australian Conference on Optical Fibre Technology, Hobart, Australia, Dec. 4–7, p. 117.

    Google Scholar 

  49. Goswami, K., Ejiofor, C., Saini, D. P. and Klainer, S. M. (1994) Detection of carbon monoxide: the fiber optic way. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 31.

    Google Scholar 

  50. Tai, H., Tanaka, H. and Yoshino, T. (1987) Fibre optic evanescent wave methane gas sensor using optical absorption for the 3.392 um line of a He—Ne laser. Optics Letters, 12 (6), 437–439.

    Article  Google Scholar 

  51. Chan, K., Ito, H. and Inaba, H. (1985) 10 km long fibre optic remote sensing of CH4 gas by near infrared absorption. Applied Physics B, 38, 11–15.

    Google Scholar 

  52. Stuart, A. D. (1992) Some applications of infrared optical sensing. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 25.

    Google Scholar 

  53. Weldon, V., Phelan, P. and Hegarty, J. (1993) Methane and carbon dioxide sensing using a DFB laser diode operating at 1.6411m. Electronics Letters, 29 (6), 560–561.

    Article  Google Scholar 

  54. Stewart, G., Culshaw, B., Tandy, C., Moudie, D. and Pride, R. (1998) Multi-point sensors for trace gas monitoring using derivative spectroscopy. European Workshop on Optical Fibre Sensors, Peebles Hydro, Scotland, UK, July 8–10, SPIE Vol. 3483, pp. 132–6.

    Article  Google Scholar 

  55. Riris, H., Carlisle, C. B., Warren, R. E. and Cooper, D. E. (1994a) Signal-to-noise ratio enhancement in frequency modulation spectrometers by digital signal processing. Optics Letters, 19, 144–146.

    Article  Google Scholar 

  56. Stewart, G., Jin, W. and Culshaw, B. (1997b) Prospects for fibre optic evanescent field gas sensors using absorption in the near-infrared. Sensors and Actuators, B3839, 42–47.

    Google Scholar 

  57. Narayanaswamy, R. and Sevilla, F. (1988) Optosensing of hydrogen sulphide through paper impregnated with lead acetate. Fresenius’ Zeitschrift für Analytische Chemie, 329, 789–792.

    Article  Google Scholar 

  58. Weldon, V., Phelan, P., Hegarty, J. and Tanbun-Ek, T. (1994) H2S and CO2 gas sensing using a 1.5711m DFB laser diode. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 26.

    Google Scholar 

  59. Wolfbeis, O. S. and Sharma, A. (1988) Fibre optic fluorosensor for sulphur dioxide. Analytica Chimica Acta, 208, 53.

    Article  Google Scholar 

  60. Sharma, A. and Wolfbeis, O. S. (1989) Fibre optic fluorosensor for sulphur dioxide based on energy transfer and exciplex quenching. Proceedings of The Society of Photo-Optical Instrumentation Engineers, 990, 116.

    Google Scholar 

  61. Fowles, M. and Wayne, R. P. (1981) Ozone monitor using an LED source. Journal of Physics E: Science Instruments, 14, 1143–1145.

    Article  Google Scholar 

  62. Riris, H., Carlisle, C. B., Carr, L. W., Cooper, D. E., Martinelli, R. U. and Menna, R. J. (1994b) Design of an open path near infra-red diode laser sensor: Application to oxygen, water and carbon dioxide vapour detection. Applied Optics, 33, 7059–7066.

    Article  Google Scholar 

  63. Klimant, I., Kuhl, M., Glud, R. N. and Holst, G. (1996) Optical measurement of oxygen and other environmental parameters in microscale: Strategies and biological applications. Proceedings 3rd European Conference on Optical Chemical Sensors and Biosensors, Zurich, Switzerland, March 31—April 3, p. 35.

    Google Scholar 

  64. Milanovich, F. P., Brown, S. B., Colston, B. W. and Daley, P. F. (1994) A fibre optic sensor system for remote long term monitoring of soil and groundwater contamination. Proceedings 10th Optical Fibre Sensors Conference (OFS 10), The Society of Photo-Optical Instrumentation Engineers, 2360, Glasgow, Scotland, Oct. 11–13, pp. 98–100.

    Google Scholar 

  65. Saini, D. P., Leclerc, R., Klainer, S. M., Himka, R. L., Arman, H., Dandge, D. K., Wolfbeis, O. S. and Kovacs, B. (1994) Petrosense CMS 5000: a fibre optic sensors sensing system for the continuous monitoring of hydrocarbons. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 39.

    Google Scholar 

  66. Sensfelder, E., Burck, J. and Ache, H.-J. (1996) Determination of hydrocarbons in water by evanescent wave absorption spectroscopy in the near-infrared region. Fresenius’ Zeitschrift für Analytische Chemie, 354, 848–851.

    Google Scholar 

  67. Reichert, J., Czolk, R., Morales-Bahnik, A., Sellien, W. and Ache, H. J. (1992) Optical chemical sensors for environmental analysis: ammonium, nitrate and heavy metal ion sensors. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 40.

    Google Scholar 

  68. Mohr, G. J., Kovacs, B. and Wolfbeis, O. S. (1994) Solid state nitrate sensor based on potential-sensitive fluorescent dyes. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 36.

    Google Scholar 

  69. Hobbs, J. R. (1994) Dye-based laser system probes soil contamination. Laser Focus World, 30 (11), 34–38.

    Google Scholar 

  70. Lieberman, S. H., Theriault, G. A., Wu, K. and Davey, M. (1994) Remote fiber optic spectroscopy for in-situ monitoring of chemical contamination in soils. Proceedings 2nd European Conference on Optical Chemical Sensors and Biosensors, Florence, Italy, April 19–21, p. 34.

    Google Scholar 

  71. Walt, D. R. (1992) A fibre optic sensor for measuring CO2 in seawater. Proceedings 1st European Conference on Optical Chemical Sensors and Biosensors, Graz, Austria, April 12–15, p. 71.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stewart, G. (1998). Fiber optic sensors in environmental monitoring. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2484-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2484-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4031-2

  • Online ISBN: 978-94-017-2484-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics