Skip to main content

QTLs for Root Growth and Drought Resistance in Rice

  • Chapter
Molecular Techniques in Crop Improvement

Abstract

Since the development of molecular markers first allowed the construction of saturated linkage maps, it was clear that quantitative trait loci (QTL) analysis could be usefully employed in analyzing the genetics of complex traits. By producing mapping populations based on crosses of parental varieties contrasting for the trait of interest, it should be possible to identify which parts of the genome can improve the trait, which parts influence component traits theoretically linked to main trait and approximately quantify the contribution of these component traits. Once achieved, the targeting of genomic regions for varietal improvement would be possible through marker assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbour MM, Farquhar GD 2000. Relative humidity-and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ 23: 473–485

    Article  CAS  Google Scholar 

  • Blum A 1993. Selection for sustained production in water-deficit environments. International Crop Science I. Crop Science Society of America, Madison, Wisconsin. USA

    Google Scholar 

  • Causse M, Fulton TM, Cho YG, Ahn SN. Chunwongse J, Wu K, Xiao J. Yu Z, Ronald PC. Harrington SB, Second GA, McCouch SR, Tanksley SD 1995. Saturated molecular map of the rice genome based on an inter specific backcross population. Genetics 138: 1251–1274

    Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ. O’Toole JC. Huang N. McCouch SR 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90: 969–981.

    Article  CAS  Google Scholar 

  • Cook A. Marriott CA, Seel W. Mullins CE 1997. Does the uniform packing of sand in a cylinder provide a uniform penetration resistance? A method for screening plants for responses to soil mechanical impedance. Plant Soil 190: 279–287

    Article  CAS  Google Scholar 

  • Courtois B, McLaren G, Sinha PK, Prasad K, Yadav R, Shen L 2000. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding 6: 55–66

    Article  CAS  Google Scholar 

  • Dingkuhn M. Cruz RT, O’Toole JC, Dorffling K 1989. Net photosynthesis. water use efficiency. leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Aust J Agri Res 40: 1171–1181.

    Google Scholar 

  • Dingkuhn M. Farquhar GD, De Datta SK. O’Toole JC 1991. Discrimination of 13C among upland rices having different water use efficiencies. Aust J Agri Res 42: 1 123–1 131.

    Google Scholar 

  • Ekanayake IJ, O’Toole JC. Garrity DP, Masajo TM 1985. Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25: 927–933

    Article  Google Scholar 

  • Farquhar GD. Ehleringer JR, Hubick K 1989. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40: 503–537

    Article  CAS  Google Scholar 

  • Farrar. JF 1992. The whole plant: carbon partitioning during development. In: Carbon partitioning with and between organs (Eds. Pollock O. Farrar, JF and Gordon AJ ), BIOS Scientific Publishers. pp I63–180

    Google Scholar 

  • Fukai S. Cooper M 1995. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Res 40: 67–86

    Article  Google Scholar 

  • Hemamalini GS, Shashidar HE, Hittalmani S 2000. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza saliva L.). Euphytica 112: 69–78

    Article  CAS  Google Scholar 

  • Horton P 2000. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Ex Bot 51: 475485

    Google Scholar 

  • Jackson, MB (1993). Are plant hormones involved in root to shoot communication? Advances in Botanical Research 19: 104–187

    Article  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y. Sue N, Wu J. Antonio BA, Shoura A. Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T. Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y. Yano M, Sasaki T, Minobe Y 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet 8: 365–372

    Google Scholar 

  • Lu C, Shen L, Tan Z. Xu Y, He P, Chen Y, Zhu L 1997. Comparative mapping of QTLs for agronomic traits of rice across environment by using a double-haploid population. Theor Appl Genet 94: 145–150

    Article  PubMed  CAS  Google Scholar 

  • Lilley JM. Ludlow MM 1996. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crop Res 48: 185–197

    Article  Google Scholar 

  • Lilley JM, Ludlow MM. McCouch SR, O’Toole JC 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice..1 Ex Bot 47: 1427–1436

    Google Scholar 

  • Mackill DJ, Nguyen HT, Zhang J 1999. Use of molecular markers in plant improvement programs for rainfed lowland rice. Field Crop Res 64: 177–185

    Article  Google Scholar 

  • Nguyen HT. Babu RC, Blum A 1997. Breeding for drought resistance in rice: Physiological and molecular genetics considerations. Crop Sci 37: 1426–1434

    Google Scholar 

  • O’Toole IC 1982. Adaptation of rice to drought-prone environments. In Drought resistance in crops with the emphasis on rice, pp 195–213. Manila: IRRI

    Google Scholar 

  • O’Toole IC, Cruz RT 1980. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol 65: 428–432.

    Article  PubMed  Google Scholar 

  • O’Toole IC. Cruz RT 1983. Genotypic variation in epicuticular wax of rice. Crop Sci 23: 393–394

    Google Scholar 

  • O’Tooe JC, Soemartono 1981. Evaluation of a simple technique for characterizing rice root systems in relation to drought resistance. Euphytica 30: 283–290.

    Google Scholar 

  • Price AH, Courtois B 1999. Mapping QTLs associated with drought resistance in rice: progress, problems and prospects. Plant Growth Reg 29: 123–133.

    Article  CAS  Google Scholar 

  • Price A, Steele K, Townend J, Gorham G, Audebert A, Jones M, Courtois. B 1999. Mapping root and shoot traits in rice: experience in UK, IRRI and WARDA. In: Ito O, O’Toole J, Hardy B editors. Genetic improvement of rice for water-limited environments. Manila ( Philippines ): International Rice Research Institute. p 257–273.

    Google Scholar 

  • Price AH, Steele KA, Moore BJ, Barraclough PB, Clark LJ 2000. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100: 49–56.

    Article  CAS  Google Scholar 

  • Price AH. Tomos AD 1997. Genetic dissection of root growth in rice (Oryza saliva L.). Il.Mapping quantitative trait loci using molecular markers. Theor Appl Genet 95:143–152.

    Article  CAS  Google Scholar 

  • Price AH. Virk DS. Tomos AD 1997. Genetic dissection of root growth in rice (Oryza sativa L.) 1: A hydroponic screen. Theor Appl Genet 95: 132–142

    Article  Google Scholar 

  • Price AH. Young EM, Tomos AD 1997. Quantitative trait loci associated with stomatal conductance. leaf rolling and heading date mapped in upland rice (Oryza saliva). New Phytol 137: 83–91

    Article  CAS  Google Scholar 

  • Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C 1997. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35: 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Ray.JD, Yu L, McCouch SR, Champoux MC, Wang G. Nguyen H 1996. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92: 627–636

    Article  CAS  Google Scholar 

  • Shen L, Courtois B, McNally K, McCouch S, Li Z 1999. Developing near-isogenic lines of IR64 introgressed with QTLs for deeper and thicker roots through marker assisted selection. In: Ito O. O’Toole J, Hardy B editors. Genetic improvement of rice for water-limited environments. Manila (Philippines): International Rice Research Institute. pp 275289.

    Google Scholar 

  • Singh K. Ishii T, Parco A, Huang N, Brar DS, Khush GS 1996. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa). Proc Nat Acad Sci USA 93: 6163–6168

    Article  PubMed  CAS  Google Scholar 

  • Thornley JHM 1972. A balanced quantitative model for root:shoot ratios in vegetative plants. Annal Bot 36: 431–441.

    Google Scholar 

  • Tripathy JN, Zhang J, Nguyen TT, Nguyen HT 2000. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100: 1197–1202

    Article  CAS  Google Scholar 

  • Turner NC. 1982. The role of shoot characteristics in drought resistance of crop plants. In: Drought resistance in crops with the emphasis on rice, ppl 15–134. Manila: IRRI

    Google Scholar 

  • Turner NC, O’Toole JC, Cruz RT, Namuco OS, Ahmad S. 1986a. Responses of seven diverse rice cultivars to water deficits I. Stress development, canopy temperature, leaf rolling and growth. Field Crop Res 13: 257–271.

    Google Scholar 

  • Turner NC, O’Toole JC, Cruz RT, Yamboa EB, Ahmad S, Namuco OS, Dingkuhn M 1986b. Responses of seven diverse rice cultivars to water deficits II. Osmotic adjustment, leaf elasticity, leaf extension, leaf death, stomatal conductance and photosynthesis. Field Crop Res 13: 273–286.

    Google Scholar 

  • Van der Werf A, Nagel O 1996. Carbon allocation to shoots and roots in relation nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant and Soil 185: 21–32

    Article  Google Scholar 

  • Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, Yuan L 1996. Genes from wild rice improve yield. Nature 384: 223–234

    Article  CAS  Google Scholar 

  • Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT 2000. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench ). Genome 43: 461–469

    Google Scholar 

  • Yadav R, Courtois B, Huang N, McLaren G 1997. Mapping genes controlling root morphology and root distribution on a double-haploid population of rice. Theor Appl Genet 94: 619–632.

    Article  CAS  Google Scholar 

  • Yoshida S. Hasegawa S 1982. The rice root system; its development and function. In: Drought resistance in crops with the emphasis on rice, pp 83–96. Manila: IRRI

    Google Scholar 

  • Yu L, Ray JD, O’Toole JC, Nguyen HT 1995. Use of wax-petrolatum layers to simulate compacted soil for screening rice ( Oryza sativa L.) root penetration ability. Crop Sci 35: 684–687

    Google Scholar 

  • Zhang J. Babu RC. Pantuwan G, Kamoshita A, Blum A, Sarkarung S. O’Toole JC, Nguyen HT 1999. Molecular dissection of drought tolerance in rice: from physio-morphological traits to field performance. In: Ito O. O’Toole J, Hardy B editors. Genetic improvement of rice for water-limited environments. Manila ( Philippines ): International Rice Research Institute. p 331–343.

    Google Scholar 

  • Zheng II, Babu R, Pathan M, Ali L, Huang N, Courtois B. Nguyen I IT 2000. Quantitative trait loci for root-penetration ability and root thickness in rice: Comparison of genetic backgrounds. Genome 43: 53–61.

    Google Scholar 

  • Zhu JH, Stephenson P, Laurie DA. Li W. Tang D. Gale MD 1999. Towards rice genome scanning by map-based AFLP fingerprinting Mol Gen Genet 261: 184–195

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Price, A. (2002). QTLs for Root Growth and Drought Resistance in Rice. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2356-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2356-5_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5982-6

  • Online ISBN: 978-94-017-2356-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics