Skip to main content

The Biosorption Process

An Innovation in Reclamation of Toxic Metals

  • Chapter
Mineral Processing and the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 43))

Abstract

The ability of microorganisms to remove metal ions from dilute aqueous solutions is a widely studied phenomenon. Numerous applications of biosorption, mainly in laboratory or in pilot-scale, but recently also industrially, make often use of non-living biomass, which does not require supply of nutrients and can be exposed to environments of high toxicity without problems. It was observed also that in most cases the non-living biomass showed greater binding capacities for cadmium, than the living one.

Selected experimental laboratory batch results, using actinomycetes, fungi and (dried and sterilized) activated sludge as biosorbents of metals will be presented in the following. An insight of cadmium (a priority pollutant) sorption was attempted and among others, the known Langmuir isotherm was used, describing sufficiently the process. The commercial future of biosorption as a toxic metal ions reclamation process, is connected with the practical solution of several engineering problems, such as the efficient separation of metal-loaded biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garcia-Frutos, F. J., (1993). Treatment of sulphuric pickling water from steel making by bio-oxidation with Thiobacillus ferrooxidans. In FEMS Symp., Metals - Microorganisms Relationships and Applications,Metz (France), preprint.

    Google Scholar 

  2. Smith, R. W. and Misra, M., (1993). Recent developments in the bioprocessing of minerals. Miner. Process. Extract. Metall. Rev., 12, 37–60.

    Article  Google Scholar 

  3. Torma, A. E., (1991). New trends in biohydrometallurgy. In R. W. Smith and M. Misra (eds.), Mineral Bioprocessing, T.M.S., Warrendale (USA), pp. 43–55.

    Google Scholar 

  4. Sawidis, T. H. and Voulgaropoulos, A. N., (1986). Seasonal bioaccumulation of iron, cobalt and copper in marine algae from Thermaikos Gulf of the northern Aegean Sea, Greece. Mar. Environ. Res., 19, 39–47.

    Article  Google Scholar 

  5. Ramelow, G. J., Fralick, D. and Zhao, Yan-fu, (1992). Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios, 72, 81–93.

    Google Scholar 

  6. Brady, D., Stoll, A. and Duncan, J. R., (1994). Biosorption of heavy metal cations by non-viable yeast biomass. Environ. Technol., 15, 429–438.

    Article  Google Scholar 

  7. Hughes, M. N. and Poole, R. K., (1989). Metals and Microorganisms, Chapman and Hall, London, pp. 328–395.

    Google Scholar 

  8. Wood, J. M. and Wang, H.-K., (1983). Microbial resistance to heavy metals. Environ. Sci. Technol., 17, 582A–590A.

    Google Scholar 

  9. Volesky, B., (1987). Biosorbents for metal recovery, TIBTECH, 5, 96–101.

    Article  Google Scholar 

  10. Tsezos, M., (1990). Engineering aspects of metal binding by biomass. In H. L. Ehrlich and C. L. Brierley (eds.), Microbial Mineral Recovery, McGraw-Hill, New York, pp. 325–339.

    Google Scholar 

  11. Brierley, J. A., Goyak, G. M. and Brierley, C. L., (1986). Considerations for commercial use of natural products for metals recovery. In H. Eccles and S. Hunt (eds.), Immobilisation of Ions by Bio-sorption, Ellis Horwood, Chichester, pp. 105–120.

    Google Scholar 

  12. Gadd, G. M., (1988). Accumulation of metals by microorganisms and algae. In H. J. Rehm (ed.), Biotechnology, vol. 6b, VCH Publishers, Weinheim, pp. 401–433.

    Google Scholar 

  13. Golab, Z. and Smith, R. W., (1992). Accumulation of lead in two fresh water algae. Minerals Engg., 5, 1003–1010.

    Article  Google Scholar 

  14. Wilde, E. W. and Benemann, J. R., (1993). Bioremoval of heavy metals by the use of microalgae. Biotech. Adv., 11, 781–812.

    Article  Google Scholar 

  15. Brierley, C. L., Brierley, J. A. and Davidson, M. S., (1989). Applied microbial processes for metals recovery and removal from wastewater. In T. J. Beveridge and R. Doyle (eds.), Metals Ions and Bacteria, J. Wiley and Sons, Chishester, pp. 359–382.

    Google Scholar 

  16. Norberg, A. and Persson, H., (1984). Accumulation of heavy-metals ions by Zoogloea ramigera. Biotechnol. Bioeng., 26, 239–246.

    Article  Google Scholar 

  17. Kefala, M. I., Ekateriniadou, L. V., Zouboulis, A. I., Matis, K. A. and Kyriakidis, D. A., (1994). Cadmium biosorption and toxicity to laboratory-grown X. campestris. In D. L. Pyle (ed.), Proc. 3rd Intl. Conf., Separations for Biotechnology, Soc. Chem. Ind., Reading (UK), pp. 249–254.

    Google Scholar 

  18. Kefala, M. I., Zouboulis, A. I., Matis, K. A. and Kyriakidis, D. A., (1995). Cadmium removal from dilute aqueous solutions by biosorption and flotation. In A. Angelakis, T. Asano, E. Diamadopoulos and G. Tchobanoglous (eds.), Proc. 2nd Intern. Symp., Wastewater Reclamation and Reuse, I.A.W.Q., Iraklio (Crete, GR), pp. 301–309.

    Google Scholar 

  19. Hancock, I. C., (1986). The use of Gram-positive bacteria for the removal of metals from aqueous solution. In R. Thompson (ed.), Trace Metal Removal from Aqueous Solution, Spec. Publ. No. 61, Royal Soc. Chem., London, pp. 25–43.

    Google Scholar 

  20. Loosdrecht van, M. C. M., Lyklema, J., Norde, W., Schraa, G. and Zehnder, A. J. B., (1987). Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol., 53, 1898–1901.

    Google Scholar 

  21. Smith, R. W., Misra, M. and Chen, S., (1993). Adsorption of a hydrophobic bacterium onto hematite: implications in the froth flotation of the mineral. J. Ind. Microbiol., 11, 63–67.

    Article  Google Scholar 

  22. Weber, Jr., W. J. (ed.), (1972). Physicochemical Processes for Water Quality Control, Wiley-Interscience, New York, pp. 207–210.

    Google Scholar 

  23. Hancock, I. C., (1994). The removal and recovery of cadmium by biosorption, flotation and electrolysis. In 2nd Europ. Recycling Workshop, Report EUR 16155 EN, Brussels, pp. 37–42.

    Google Scholar 

  24. Crist, R. H., Martin, J. R., Carr, D., Watson, J. R., Clarke, H. J. and Crist, D-L. R., (1994). Interaction of metals and protons with algae. Part 4. Ion exchange vs adsorption models and a reassessment of Scatchard plots; ion exchange rates and equilibria compared with calcium alginate. Environ. Sci. Technol., 28, 1859–1866.

    Article  Google Scholar 

  25. Gadd, G. M. and White, C., (1993). Microbial treatment of metal pollution - a working biotechnology(?), TIBTECH, 11, 353–359.

    Article  Google Scholar 

  26. Tsezos, M. and Deutschmann, A. A., (1992). The use of a mathematical model for the study of the important parameters in immobilized biomass biosorption. J. Chem. Technol. and Biotechn., 53, 1–12.

    Article  Google Scholar 

  27. Jackson, P. J., Torres, A. P., and Delhaize, E., (1992). Method for removal of metal atoms from aqueous solution using suspended plant cells. US Patent 5,120, 441.

    Google Scholar 

  28. Matis, K. A., Zouboulis, A. I., and Lazaridis, N.K. Removal and Recovery of Metals From Dilute Solutions: Applications of Flotation Techniques, in the present book, p. 163.

    Google Scholar 

  29. Matis, K. A. (ed.), (1995). Flotation Science and Engineering. Marcel Dekker, New York.

    Google Scholar 

  30. Matis, K. A. and Zouboulis, A. I., (1994). Flotation of cadmium-loaded biomass. Biotechnol. Bioeng., 44, 354–360.

    Article  Google Scholar 

  31. Zouboulis, A. I. and Matis, K. A., (1994). Removal of cadmium from dilute solutions by flotation. Water Sci. Tech., 31 (3–4), 315–326.

    Google Scholar 

  32. Diets, L. (1994). Use of metal-resistant bacteria in bioremediation: design of bioreactors for the treatment of polluted soils and effluents and of mixed wastes. In NATO Advanced Research Workshop, Biotechnologies for Radioactive and Toxic Wastes Management and Site Restoration,Mol (Belgium), reprint.

    Google Scholar 

  33. Sadowski, Z., Golab, Z. and Smith, R. W., (1991). Flotation of Streptomyces pilosus after lead accumulation. Biotechnol. Bioeng. 37, 955–959.

    Article  Google Scholar 

  34. Matis, K. A., Zouboulis, A. I., and Hancock, I. C., (1994a). Biosorptive flotation in metal ions recovery. Sep. Sci. Technol., 29, 1005–1071.

    Article  Google Scholar 

  35. Matis, K. A., Zouboulis, A. I. and Hancock, I. C., (1994b). Waste microbial biomass for cadmium ion removal: application of flotation for downstream separation. Bio-resource Technol., 49, 253–259.

    Article  Google Scholar 

  36. Kari, F. G. and Giger, W., (1996). Speciation and fate of ethylenediamine-tetraacetate (EDTA) in municipal wastewater treatment. Water Res., 30, 122–134.

    Article  Google Scholar 

  37. Tobin, J. M., White, C. and Gadd, G. M., (1994). Metal accumulation by fungi: applications in environmental biotechnology. J. Ind. Microbiol., 13, 126–130.

    Article  Google Scholar 

  38. Fourest, E. and Roux, J.-C., (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appt. Microbiol. Biotechn., 37, 399–403.

    Article  Google Scholar 

  39. Avery, S. V. and Tobin, J. M., (1993). Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appt. Environ. Microbiol., 59, 2851–2856.

    Google Scholar 

  40. Zouboulis, A. I. and Matis, K. A., (1993). Flotation as a bioseparation process for fungi removal. Biotechnol. Techniques, 7, 867–872.

    Article  Google Scholar 

  41. Kasan, H. C., (1993). The role of waste activated sludge and bacteria in metal-ion removal from solution. Crit. Rev. Environ. Sci. Tech., 23, 79–117.

    Article  Google Scholar 

  42. Sreekrishnan, T. R. and Tyagi, R. D., (1994). Heavy metal leaching from sewage sludges: a techno-economic evaluation of the process options. Environ. Tech., 15, 531–543.

    Article  Google Scholar 

  43. Solari, P., Zouboulis, A. I, Matis, K. A. and Stalidis, G.A., (1996). Removal of toxic metals by biosorption onto non-living sewage sludge. Sep. Sci. Tech., 31 (8), 1075–1092.

    Article  Google Scholar 

  44. Gourdon, R., (1993). Development of a countercurrent biosorption system for the treatment of industrial metallic effluents. In FEMS Symp., Metals - Microorganisms Relationships and Applications,Metz (France), preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zouboulis, A.I., Matis, K.A. (1998). The Biosorption Process. In: Gallios, G.P., Matis, K.A. (eds) Mineral Processing and the Environment. NATO ASI Series, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2284-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2284-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5034-2

  • Online ISBN: 978-94-017-2284-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics