Skip to main content

Hydrophobic Agglomeration of Fine Particles

  • Chapter
Mineral Processing and the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 43))

Abstract

This is a review of hydrophobic agglomeration methods to be used for fine particles in water suspensions. The hydrophobic interaction as a consequence of the hydrogen-bonding energy of water molecules, in the vicinity of hydrophobic particles, is discussed. The pattern of the growth of agglomerates is essentially determined by hydrodynamic forces. The thermodynamic model of both the surfactant salts and the oil droplets adhesion is based on the free energy balances. The role of binding liquid in spherical agglomeration of natural hydrophobic minerals is described. The spherical agglomeration of salt-type mineral suspensions is achieved at the critical surfactant concentration, which corresponds to the precipitation and adhesion of surfactant salt. The solubility differences of surfactant salts permit the selective separation of barite from carbonate suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capes, E.C. (1980) Principles and applications of size enlargenet in liquid systems, in P. Somasundaran (ed.), Fine Particles Processing, AIME, New York, pp. 1442–1462.

    Google Scholar 

  2. Warren, L.J. (1975) Slime coating and shear flocculation in the scheelite-sodium oleate system, Trans. IMM 84, C99-C 104.

    Google Scholar 

  3. Warren, L.J. (1975) Shear flocculation of ùltrafine scheelite in sodium oleate solution, J. Coll. Interface Sci., 50, 307–318.

    Article  Google Scholar 

  4. Warren,L.J. (1982) Flocculation of strirred suspensins of cassiterite and tourmaline, Colloids Surfaces 5, 301–319.

    Article  Google Scholar 

  5. Warren, L.J. (1992) Shear flocculation in J.S.Laskowski and J.Ralston (eds.) Colloid Chemistry in Mineral Processing, Elsevier, New York, pp. 309–329.

    Google Scholar 

  6. Szczypa, J., Neczaj-Hruzewicz, J., Janusz, W. and Sprycha, R. (1980) New technique for coal fine dewatering, in P. Somasundaran (ed.) Fine Particles Processing, AIMe, New York, pp. 1676–1686.

    Google Scholar 

  7. Szczypa, J., Neczaj-Hruzewicz, J. and Janusz, W. (1977) Some studies on utylization of flotation wasts by spherical agglomeration, Environ. Protect. Eng., 3, 91–97.

    Google Scholar 

  8. Szczypa, J., Neczaj-Hruzewicz, J, Janusz„ W. and Sprycha,R. (1975) Method of agglomeration of flocculated precipitates and a device for agglomeration of flocculated precipitates, Polish Patent No. 87–479.

    Google Scholar 

  9. Sirianni, A.F., Capes, C.E. and Puddington, I.E. (1969) Recent experience with the spherical agglomeration process, Can. J. Chem. Engng, 39, 166–172.

    Article  Google Scholar 

  10. Formand, J.R., Smith, H.M. and Puddington, I.E. (1968) Spherical agglomeration of solid in liquid suspension, Canadian J. Chem. Engng, 39, 94–98.

    Google Scholar 

  11. Tanford, C. (1980) Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley Interscience, New York.

    Google Scholar 

  12. Privalov, P.L. and Gill, S.J. (1989) The hydrophobic effect: a reappraisal, Pure Appl. Chem. 61, 1097–1104.

    Article  Google Scholar 

  13. Van Oss, C.J., Good, R.J. and Chaudhury, M.K. (1987) Determination of the hydrophobic interaction energy–Application to separation process, Sep. Sci. Technol., 22, 1–24.

    Article  Google Scholar 

  14. Van Oss, C.J. (1994) Interfacial Forces in Aqueous Media, Marcel Dekker, New York, 186–204.

    Google Scholar 

  15. Laskowski, J.S. and Kithener, J.A. (1969) The hydrophilic-hydrophobic transition on silica, J Coll. Interface Sci., 29, 670–675.

    Article  Google Scholar 

  16. Israelachvili, J. N. and Adams, G.E. (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm, J.Chem. Soc. Faraday Trans. I., 74, 975–1001.

    Article  Google Scholar 

  17. Israelachvili, J.N. (1985) Intermolecular and Surface Forces, Academic Press, London, 97–107.

    Google Scholar 

  18. Blake, T. D. and Kitchener, J.A. (1972) Stability of aqueous films on hydrophobic methylated silica, J Chem. Soc. Faraday Trans., 68, 1435–1442.

    Article  Google Scholar 

  19. Wood, J. and Sharma, R. (1995) How long is the long-range hydrophobic attraction, Langmuir, 11, 4797–4802.

    Article  Google Scholar 

  20. Lyklema, J. (1994) Adsorption of ionic surfactants on clay minerals and new insights in hydrophobic interaction, Progr. Colloid Polymer. Sci., 95, 91–97.

    Article  Google Scholar 

  21. Petela, R. (1991) Prediction of the product size in the agglomeration of coal particles in a water-oil emulsion, Fuel, 70, 509–517.

    Article  Google Scholar 

  22. Van Oss, C.J., Chaudhury, M.K. and Good, R.J. (1987) Monopolar surfaces, Advan. Coll. Interface Sci., 28, 35–64.

    Article  Google Scholar 

  23. Botsaris, G.D. and Glazman, Y.M., (1989) Interfacial Phenomena in Coal Technology, Marcel Dekker, New York, pp. 115–155.

    Google Scholar 

  24. Yu, A.B., Standish, N. and Lu, L. (1995) Coal agglomeration and its effect on bulk density, Powder Tech., 82, 177–189.

    Article  Google Scholar 

  25. Briker, Y., Szymocha, K., Pawlak, W., Kramer, J. and Ignasiak, B. (1991) Feasibility of aglofloat process for deashing and desulphurization of high-sulphur coals, P.R. Dugan, D.R. Quigley and Y.A. Attia, Processing and Utylization of High-Sulphur Coals IV, Elsevier, Amsterdam, pp. 357–374.

    Google Scholar 

  26. Sadowski, Z., Venkatadri, R., Druding, J. M., Markuszewski, R. and Wheelock, D.T. (1988) Behavior of oxidized coal during oil agglomeration, Coal Preparation, 6, 17–34.

    Article  Google Scholar 

  27. Kawashima, Y., Honda, T., Takeuchi, I-I., Takenaka, Y.H. and Lin, S. Y. (1986) Spherical agglomeration of calcium carbonate dispersed in aqueous medium containing sodium oleate, Powder Tech., 46, 61–66.

    Article  Google Scholar 

  28. Sadowski, Z. (1994) A study on hydrophobic agglomeration of calcite aqueous suspensions, Powder Tech., 80, 93–98.

    Article  Google Scholar 

  29. Capes, C.E. (1980) Particle Size Enlargement, Elsevier, Amsterdam, pp. 161–176.

    Google Scholar 

  30. Sadowski, Z. (1994) Fundamental aspects of spherical agglomeration of salt-type minerals, H. Demirel and S. Ersayin (eds.) Progress in Mineral Processing Technology, A.A. Balkena, Rotterdam, pp. 433–437.

    Google Scholar 

  31. Sadowski, Z. (1994) Hydrophobic agglomeration of salt-type mineral suspension, T. Yelcin (ed.) Innovation in Mineral Processing, ACME, Sudbury, pp. 209–219.

    Google Scholar 

  32. Sadowski, Z. (1996) Spherical agglomeration of flotation tailings, 6th International Mineral Processing Symposium, Izmir, Turkey, accepted for presentation.

    Google Scholar 

  33. Drzyma, J., Markuszewski, R. and Wheelock, T.D. (1986) Selective oil agglomeration of graphite in the presence of pyrite, Coal Preparation, 3, 89–98.

    Article  Google Scholar 

  34. Capes, E.C. and Germanin, R.L. (1980) Selective oil agglomeration in fine coal beneficiation, in Y.A. Liu and T.D. Wheelock (Eds.), Physical methods of cleaning coal, Marcel Dekker, New York, pp. 314–343.

    Google Scholar 

  35. Capes, C.E., Mcllhinney, A.E. and Coleman, R.D. (1970) Beneficiation and balling of coal, Trans. AIME, 247, 71–84.

    Google Scholar 

  36. Sirianni, A.F., Caleman, R.D, Goodhue, E.C. and Puddington, I.E. (1968) Separation studies of iron ore bodies containing apatite by spherical agglomeration methods, Trans. Can. Inst. Mining Met.,.71, 149–153.

    Google Scholar 

  37. Sadowski, Z. (1995) Selective spherical agglomeration of fine salt-type mineral particles in aqueous solution, Colloids Surfaces, 96, 277–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sadowski, Z. (1998). Hydrophobic Agglomeration of Fine Particles. In: Gallios, G.P., Matis, K.A. (eds) Mineral Processing and the Environment. NATO ASI Series, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2284-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2284-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5034-2

  • Online ISBN: 978-94-017-2284-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics