Skip to main content

Optical Spectroscopy in Photosynthetic Antennas

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 13))

Summary

This chapter describes the main techniques of optical spectroscopy that are used to study the structure and operation of photosynthetic antenna systems. We outline the physical basis of optical absorption, fluorescence, linear and circular dichroism, exciton interactions and resonance energy transfer, and indicate the types of information that measurements of these phenomena can provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Bx, By, Qx, Qy :

characteristic absorption bands of chlorophylls and pheophytins

CD:

circular dichroism

CT:

charge-transfer

FTIR:

Fourier transform infrared

HOMO:

highest occupied molecular orbital

IR:

infrared

LD:

linear dichroism

LUMO:

lowest unoccupied molecular orbital

References

  • Alden RG, Johnson E, Nagarajan V and Parson WW (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodo-pseudomonas sphaeroides. J Phys Chem B 101: 4667–4680

    Article  CAS  Google Scholar 

  • Amesz J and Hoff AJ (1996) Biophysical Techniques in

    Google Scholar 

  • Photosynthesis. Kluwer Academic Publishers, Dordrecht Atkins PW (1993) Molecular Quantum Mechanics. Oxford

    Google Scholar 

  • University Press, New York Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R and Valkunas L (2001) Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80: 2409–2421

    Article  Google Scholar 

  • Becker M, Nagaraj an V and Parson WW (1991) Properties of the excited singlet states of bacteriochlorophyll-a and bacterio-pheophytin-a in polar solvents. J Am Chem Soc 113: 6840–6848

    Article  CAS  Google Scholar 

  • Beekman LMP, Steffen M, van Stokkum IHM, Olsen JD, Hunter CN, Boxer SG and van Grondelle R (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 1. LH1 antenna complex and the B820 subunit from Rhodospirillum rubrum. J Phys Chem B 101: 7284–7292

    Article  CAS  Google Scholar 

  • Bixon M and Jortner J (1968) Intramolecular radiationless transitions. J Chem Phys 48: 715–726

    Article  CAS  Google Scholar 

  • Braiman MS and Rothschild KJ (1988) Fourier transform infrared techniques for probing membrane protein structure. Annu Rev Biophys Biophys Chem 17: 541–570

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Vermeglio A, Garrigos M and Paillotin G (1981) Orientation of the chromophores in the antenna system of Rhodopseudomonas sphaeroides. In: Akoyunoglu G (ed) Photosynthesis III. Structure and Molecular Organization of the Photosynthetic Apparatus, pp 445–459. Balaban International Science Services, Philadelphia Breton J, Nabedryk E, Allen JP and Williams JC (1997) Electrostatic influence of QA reduction on the IR vibrational mode of the lOa-ester C=0 of HA demonstrated by mutations at residues Glu LI04 and Trp LI00 in reaction centers from Rhodobacter sphaeroides. Biochem 36: 4515–4525

    Google Scholar 

  • Bublitz G and Boxer SG (1997) Stark spectroscopy: Applications in chemistry, biology and materials science. Annu Rev Phys Chem 48: 213–242

    Article  PubMed  CAS  Google Scholar 

  • Chynwat V and Frank HA (1995) Application of the energy gap law to S1 energies and dynamics of carotenoids. Chem Phys 194: 237–244

    Article  CAS  Google Scholar 

  • Czarnecki K, Cua A, Kirmaier C, Holten D and Bocian DF (1999) Relationship between altered structure and photochemistry in mutant reaction centers in which bacterio-chlorophyll replaces the photoactive bacteriopheophytin. Biospectrosc 5: 346–357

    Article  CAS  Google Scholar 

  • Deng H and Callender R (1999) Raman spectroscopic studies of the structures, energetics, and bond distortions of substrates bound to enzymes. Methods Enzymol 308: 176–201

    Article  PubMed  CAS  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21: 836–850

    Article  CAS  Google Scholar 

  • Ebrey TG and Clayton RK (1969) Polarization of fluorescence from bacteriochlorophyll in castor oil, in chromatophores and as P870 in photosynthetic reaction centers. Photochem Photobiol 10: 109–117

    Article  PubMed  CAS  Google Scholar 

  • Forster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry, Part III, pp 93–137. Academic Press, New York

    Google Scholar 

  • Frank HA, Bautista JA, Josue JS and Young AJ (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochem 39: 2831–2837

    Article  CAS  Google Scholar 

  • Gelbart WM, Freed KF and Rice SA (1970) Internal rotation and the breakdown of the adiabatic approximation: Many-phonon radiationless transitions. J Chem Phys 52: 2460–2473

    Article  CAS  Google Scholar 

  • Gobets B, Kennis JTM, Ihalainen J A, Brazzoli M, Croce R, van Stokkum IHM, Bassi R, Dekker JP, van Amerongen H, Fleming GR and van Grondelle R (2001) Excitation energy transfer in dimeric light harvesting complex I: A combined streak-camera/ fluorescence upconversion study. J Phys Chem B 105: 10132–10139

    Article  CAS  Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6: 138–163

    Article  CAS  Google Scholar 

  • Griffiths PR and deHaseth JA (1986) Fourier Transform Infrared Spectrometry, Wiley, New York

    Google Scholar 

  • Hanson LK (1991) Molecular orbital theory of monomer pigments. In: Scheer H (ed) Chlorophylls, pp 993–1014. CRC Press, Boca Raton

    Google Scholar 

  • Haugland RP, Yguerabide J and Stryer L (1969) Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc Natl Acad Sci USA 63: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Hayes JM, Matsuzaki S, Ratsep M and Small GJ (2000) Red chlorophyll a antenna states of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Phys Chem B 104: 5625–5633

    Article  CAS  Google Scholar 

  • Hu X and Spiro TG (1997) Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Biochem 36: 15701–15712

    Article  CAS  Google Scholar 

  • Itoh H and l’Haya Y (1964) The electronic structure of naphthalene. Theor Chim Acta 2: 247–257

    Article  Google Scholar 

  • Ivancich A, Artz K, Williams JC, Allen JP and Mattioli TA (1998) Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor. Biochem 37: 11812–11820

    Article  CAS  Google Scholar 

  • Jankowiak R, Zazubovich V, Ratsep M, Matsuzaki S, Alfonso M, Picorel R, Seibert M and Small GJ (2000) The CP43 core antenna complex of Photosystem II possesses two quasi-degenerate and weakly coupled Qy trap states. J Phys Chem B 104: 11805–11815

    Article  CAS  Google Scholar 

  • Jimenez R, Dikshit SN, Bradforth SE and Fleming GR (1996) Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem 100: 6825–6834

    Article  CAS  Google Scholar 

  • Jordanides XJ, Scholes GD and Fleming GR (2001) The mechanism of energy transfer in the bacterial photosynthetic reaction center. J Phys Chem B 105: 1652–1669

    Article  CAS  Google Scholar 

  • King BA, McAnaney TB, deWinter A and Boxer SG (2000) Excited state energy transfer pathways in photosynthetic reaction centers. 3. Ultrafast emission from the monomeric bacteriochlorophylls. J Phys Chem B 104: 8895–8902

    Article  CAS  Google Scholar 

  • King BA, de Winter A, McAnaney T and Boxer SG (2001) Excited state energy transfer pathways in photosynthetic reaction centers 4. Asymmetric energy transfer in the heterodimer mutant. J Phys Chem B 105: 1856–1862

    Article  CAS  Google Scholar 

  • Knox RS and Gulen D (1993) Theory of polarized fluorescence from molecular pairs. Forster transfer at large electronic coupling. Photochem Photobiol 57: 40–43

    Article  CAS  Google Scholar 

  • Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102: 5378–5386

    Article  CAS  Google Scholar 

  • Kühn O and Sundström V (1997) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J Chem Phys 107: 4154–4164

    Article  Google Scholar 

  • Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd Edition. Plenum Press, New York

    Book  Google Scholar 

  • Lapouge K, Naveke G, Gall A, Ivancich A, Seguin J, Scheer H, Sturgis JN, Mattioli TA and Robert B (1999) Conformation of bacteriochlorophyll molecules in photosynthetic proteins from purple bacteria. Biochem 38: 11115–11121

    Article  CAS  Google Scholar 

  • Levine IN (1999) Quantum Chemistry. Prentice Hall, Upper Saddle River, NJ Lippert E and Macomber JD ( 1995 ) Dynamics During Spectroscopic Transitions. Springer-Verlag, Berlin

    Google Scholar 

  • Manneback C (1951) Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules. Physica 17: 1001–1010

    Article  CAS  Google Scholar 

  • Mäntele W (1993) Infrared vibrational spectroscopy of the photosynthetic reaction center. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center II, pp 240–284. Academic Press, San Diego Mataga N and Kubota T (1970) Molecular Interactions and

    Google Scholar 

  • Electronic Spectra. Marcel Dekker, New York Matsuzaki S, Zazubovich V, Ratsep M, Hayes JM and Small GJ (2000) Energy transfer kinetics and low energy vibrational structure of the three lowest energy Qy states of the Fenna- Matthews-Olson antenna complex. J Phys Chem B 104: 9564–9572

    Article  Google Scholar 

  • Matsuzaki S, Zazubovich V, FraserNJ, Cogdell RJ and Small GJ (2001) Energy transfer dynamics in LH2 complexes of Rhodopseudomonas acidophila containing only one B800 molecule. J Phys Chem B 105: 7049–7056

    CAS  Google Scholar 

  • Mattioli TA, Lin X, Allen JP and Williams JC (1995) Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochem 34: 6142–6152

    Article  CAS  Google Scholar 

  • McHale JL (1999) Molecular Spectroscopy. Prentice Hall, Upper

    Google Scholar 

  • Saddle River, NJ Nagarajan V and Parson WW (2000) Femtosecond fluorescence depletion anisotropy: application to the B850 antenna complex of Rhodobacter sphaeroides. J Phys Chem B 104: 4010–4013

    Article  Google Scholar 

  • Nagarajan V, Johnson ET, Williams JC and Parson WW (1999) Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J Phys Chem B 103: 2297–2309

    Article  CAS  Google Scholar 

  • Nakanishi K, Berova N and Woody RW, eds (1994) Circular Dichroism: Principles and Applications. VCH, New York

    Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WH, Fowler GJ, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochem 36: 12625–12632

    Article  CAS  Google Scholar 

  • Parson WW and Warshel A (1987) Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis. J Am Chem Soc 109: 6152–6163

    Article  CAS  Google Scholar 

  • Pieper J, Irrgang KD, Ratsep M, Voigt J, Renger G and Small GJ (2000) Assignment of the lowest Qy state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: A hole-burning study. Photochem Photobiol 71: 574–581

    Article  PubMed  CAS  Google Scholar 

  • Polivka T, Herek JL, Zigmantas D, Akerlund H-E and Sundstrom V (1999) Direct observation of the (forbidden) SI state in carotenoids. Proc Natl Acad Sci USA 96: 4914–917

    Article  PubMed  CAS  Google Scholar 

  • Polivka T, Zigmantas D, Frank HA, Bautista JA, Herek JL, Koyama Y, Fujii R and Sundstrom V (2001) Near-infrared time-resolved study of the S-1 state dynamics of the carotenoid spheroidene. J Phys Chem B 105: 1072–1080

    Article  CAS  Google Scholar 

  • Ramsay GD and Eftink MR (1994) Analysis of multidimensional spectroscopic data to monitor unfolding of proteins. Meth Enzymol 240: 615–645

    Article  PubMed  CAS  Google Scholar 

  • Ratsep M, Johnson TW, Chitnis PR and Small GJ (2000) The red-absorbing chlorophyll a antenna states of Photosystem I: A hole-burning study of Synechocystis sp. PCC 6803 and its mutants. J Phys Chem B 104: 836–847

    Article  Google Scholar 

  • Reinot T, Zazubovich V, Hayes JM and Small GJ (2001) New insights on persistent nonphotochemical hole burning and its application to photosynthetic complexes. J Phys Chem B 105: 5083–5098

    Article  CAS  Google Scholar 

  • Ross RT (1975) Radiative lifetime and thermodynamic potential of excited states. Photochem Photobiol 21: 401–406

    Article  CAS  Google Scholar 

  • Sauer K (1995) Biochemical Spectroscopy, Academic Press, San Diego

    Google Scholar 

  • Schatz GC and Ratner MA (1993) Quantum Mechanics in Chemistry, Prentice Hall, Englewood Cliffs NJ Scherz A and Parson WW (1984) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766: 666–678

    Google Scholar 

  • Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104: 1854–1868

    Article  CAS  Google Scholar 

  • Scholes GD, Gould IR, Cogdell RJ and Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila. J Phys Chem B 103: 2543–2553

    Article  CAS  Google Scholar 

  • Scholes GD, Jordanides XJ and Fleming GR (2001) Adapting the Forster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J Phys Chem B 105: 1640–1651

    Article  CAS  Google Scholar 

  • Siebert F (1995) Infrared spectroscopy applied to biochemical and biological problems. Methods Enzymol 246: 501–526

    Article  PubMed  CAS  Google Scholar 

  • Siebrand W (1967a) Radiationless transitions in polyatomic molecules. I. Calculations of Franck-Condon factors. J Chem Phys 46: 440–447

    Article  CAS  Google Scholar 

  • Siebrand W (1967b) Radiationless transitions in polyatomic molecules. II. Triplet-ground-state transitions in hydrocarbons. J Chem Phys 47: 2411–2422

    Article  CAS  Google Scholar 

  • Sosnick TR, Fang X and Shelton VM (2000) Application of circular dichroism to study RNA folding transitions. Meth Enzymol 317: 393–409

    Article  PubMed  CAS  Google Scholar 

  • Stewart DH, Cua A, Chisholm DA, Diner BA, Bocian DF and Brudvig GW (1998) Identification of histidine 118 in the D1 polypeptide of Photosystem II as the axial ligandto chlorophyll Z. Biochem 37: 10040–10046

    Article  CAS  Google Scholar 

  • Strickler S J and Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37: 814–822

    Article  CAS  Google Scholar 

  • Struve WS (1989) Fundamentals of Molecular Spectroscopy.Wiley Interscience, New York

    Google Scholar 

  • Stryer L and Haugland RP (1967) Energy transfer: A spectroscopic ruler. Proc Natl Acad Sci USA 58: 719–726

    Article  PubMed  CAS  Google Scholar 

  • Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252–260

    Article  CAS  Google Scholar 

  • Trinkunas G, Herek JL, Polivka T, Sundstrom V and Pullerits T (2001) Exciton derealization probed by excitation annihilation in the light-harvesting antenna LH2. Phys Rev Lett 86: 4167–4170

    Article  PubMed  CAS  Google Scholar 

  • Warshel A and Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J Am Chem Soc 109: 6143–6152

    Article  CAS  Google Scholar 

  • Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ, van Grondelle R and van Amerongen H (2000) Electron-phonon coupling in the Fenna-Matthews-Olson Complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104: 5825–5831

    Article  CAS  Google Scholar 

  • Westerhuis WHJ, Vos M, van Grondelle R, Amesz J and Niederman RA (1998) Altered organization of light-harvesting complexes in phospholipid-enriched Rhodobacter sphaeroides chromatophores as determined by fluorescence yield and singlet-singlet annihilation measurements. Biochim Biophys Acta 1366: 317–329

    Article  CAS  Google Scholar 

  • Wilson EB, Decius JC and Cross PC (1955) Molecular Vibrations. McGraw-Hill, New York

    Google Scholar 

  • Wu HM, Ratsep M, Young CS, Jankowiak R, Blankenship RE and Small GJ (2000) High-pressure and Stark hole-burning studies of chlorosome antennas from Chlorobium tepidum. Biophys J 79: 1561–1572

    Article  Google Scholar 

  • Wynne K and Hochstrasser R (1993) Coherence effects in the anisotropy of optical experiments. Chem Phys 171: 179–188

    Article  CAS  Google Scholar 

  • Zhou H and Boxer SG (1998a) Probing excited-state electron transfer by resonance Stark spectroscopy. 1. Experimental results for photosynthetic reaction centers. J Phys Chem B 102: 9139–9147

    Article  CAS  Google Scholar 

  • Zhou H and Boxer SG (1998b) Probing excited-state electron transfer by resonance Stark spectroscopy. 2. Theory and application. J Phys Chem B 102: 9148–9160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parson, W.W., Nagarajan, V. (2003). Optical Spectroscopy in Photosynthetic Antennas. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics