Skip to main content

Biodegradable Polymers in Medicine

  • Chapter
Degradable Polymers

Abstract

Biomaterials are substances that are used in prostheses or in medical devices designed for treatment, augmentation, or replacement any tissue, organ or function of the body. Both natural and synthetic materials are used as biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bronzino, J.D. (1995) The Biomedical Engineering Handbook, CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Bruck, S.D. (1980) Properties of Biomaterials in the Physiological Environment, CRC Press, Boca Raton, FL.

    Google Scholar 

  3. Chu, C.C. (1983) Survey of clinically important wound closure biomaterials, in M. Szycher (ed.), Biocompatible Polymers, Metals, and Composites, Technomic Publ. Co., Lancaster, PA„pp-477–523.

    Google Scholar 

  4. Davis, S.S., Ilium, L., McVie, J.G. and Tomlinson, E. (1985) Microspheres and Drug Therapy, Elsevier, Amsterdam.

    Google Scholar 

  5. Hastings, G.W. (1992) Cardiovascular Biomaterials, Springer-Verlag, London.

    Book  Google Scholar 

  6. Horncastle, J. (1995) Wound dressings. Past, present and future, Med. Device Technol. 6, 30–36.

    CAS  Google Scholar 

  7. Kronenthal, R.L., Oser, Z., Martin, E. (1975) Polymers in Medicine and Surgery, Plenum Press, New York.

    Book  Google Scholar 

  8. Kroschwitz J.I. (1990) Concise Encyclopedia of Polymer Science and Engineering, A Wiley-Interscience Publ., New York, pp. 872–873.

    Google Scholar 

  9. Lanza, R.P., Langer, R. and Chick, W.L. (1997) Principles of Tissue Engineering, Acad. Press, San Diego, CA.

    Google Scholar 

  10. Liu, D.M. and Dixit, V. (1999) Porous Materials for Tissue Engineering Zurich, Trans Tech.Publications, Zurich.

    Google Scholar 

  11. Park, J.B. and Lakes, R.S. (1992) Biomaterials: An Introduction, Plenum Press, New York.

    Book  Google Scholar 

  12. Patrick, C.W., Mikos, A.G. and McIntire, L.V. (1998) Frontiers in Tissue Engineering, Pergamon Press, New York.

    Google Scholar 

  13. Pi§kin, E. and Chang, T.M.S. (1982) The Past, Present and Future of Artificial Organs, Meteksan, Ankara, Turkey.

    Google Scholar 

  14. PiOkin E. and Hoffman, A.S. (1986) Polymeric Biomaterials, Martin Nijhoff Publishers, Dordrecht.

    Google Scholar 

  15. PiOkin, E. (1992) Biologically Modified Polymeric Biomaterial Surfaces, Elsevier, Booking, UK.

    Google Scholar 

  16. Ratner, B.D., Hoffman, A.S., Schoen F.J. and Lemons J.E. (1996) Biomaterials Science: An Introduction to Materials in Medicine, Acad. Press, San Diego, CA.

    Google Scholar 

  17. Sayer, P.N. (1987) Modern Vascular Grafts, McGraw-Hill, New York.

    Google Scholar 

  18. Skalak, R. and Fox, C.F. (1998) Tissue Engineering, Riss AL, New York.

    Google Scholar 

  19. Szycher, M. (1991) High Performance Biomaterials, Technomic Publ., Lancaster PA.

    Google Scholar 

  20. Szycher, M. (1996) “High Performance Biomaterials”A Comprehensive Guide to Mechanical Pharmaceutical Applications, Technomic Publ. Co., Lancaster, Pennsylvania.

    Google Scholar 

  21. Vert, M., Cristel, P. and Chabot, F. (1984) Macromolecular Biomaterials, CRC Press, Baco Raton, FL.

    Google Scholar 

  22. Williams, D.F. and Lyman, D.J. (1982) Blood Compatibility, CRC Press, Boca Raton, FL.

    Google Scholar 

  23. Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Greser, J.D. and Schwartz, E.D. (1995) Encyclopedic Handbook of Biomaterials Bioengineering, New York, Marcel Dekker.

    Google Scholar 

  24. Amass, W., Amass, A. and Tighe, B. (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies, Polym. Internat. 47, 89–144.

    Article  CAS  Google Scholar 

  25. Atala A., Mooney, D.J. and Arbor A. (1997) Synthetic Biodegradable Polymer Scaffold: Tissue Engineering, Birkhauser, Boston MA.

    Google Scholar 

  26. Barenberg, S.A., Brash, J.L., Narayan, R. and Redpath, A.E. (1990) Degradable Materials. Perspectives, Issues and Opportunities, CRC Press, Boca Raton, FL.

    Google Scholar 

  27. Barrows, T.H. (1986) Degradable implant materials: A review of synthetic absorbable polymers and their application, Clin. Mater. 1, 233–257.

    Article  Google Scholar 

  28. Barrows, T.H. (1991) Synthetic bioabsorbable polymers, in M. Szycher (ed.), High Performance Biomaterials, Technomic Publ., Lancaster PA, pp. 243–257.

    Google Scholar 

  29. Benicewicz, B.C. and Hopper, P.K. (1991) Polymers for absorbable surgical sutures-Part II. J. Bioact.Comp. Polym. 6, 64–95.

    Article  CAS  Google Scholar 

  30. Chandra, R. and Rustgi, R. (1998) Biodegradable polymers, Progr. Polym. Sci. 23, 1273–1335.

    Article  CAS  Google Scholar 

  31. Chasm, M. and Langer, R. (1990) Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York.

    Google Scholar 

  32. Chu, C.C. (1995) Biodegradable polymeric biomaterials: An overview, in J.D. Bronzino (ed.), The Biomedical Engineering Handbook, CRC Press, Boca Raton, FL, pp. 611–626.

    Google Scholar 

  33. Coury, A.J. (1996) Chemical and biochemical degradation of polymers, in B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons (eds.), Biomaterials Science: An Introduction to Materials in Medicine, Acad. Press, San Diego, CA, pp. 243260.

    Google Scholar 

  34. Domb, A.J., Kost, J. and Wiseman, D. M. (1997) Handbook for Biodegradable Polymers, Harwood Acad. Publ., Singapore.

    Google Scholar 

  35. Engelberg, I. and Kohn, J. (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study, Biomater. 12, 292304.

    Google Scholar 

  36. Fambri, L., Migliaresi, C., Kesenci, K. and Pi§kin, E. (2001) Biodegradable Polymers, in R. Barbucci (ed.), Integrated Biomaterials Science, Kluwer Acad., Plenum Publ., New York, pp. 119–187.

    Google Scholar 

  37. Feijen, J. (1986) Biodegradable polymers for medical purpose, in E. Pi§kin and A.S. Hoffman, (eds.), Polymeric Biomaterials, Martinus Nijhoff Publ., Dordrecht, pp. 62–77.

    Chapter  Google Scholar 

  38. Gilding, D.K. (1981) Biodegradable polymers, in D.F. Williams (ed.), Biocompatibility of Clinical Implant Materials, vol. 2, CRC Press, Boca Raton, FL, pp. 209–232.

    Google Scholar 

  39. Goupil, D. (1996) Sutures, in B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons (eds.), Biomaterials Science: An Introduction to Materials in Medicine, Acad. Press, San Diego, CA, pp. 356–360.

    Google Scholar 

  40. Hayashi, T. (1994) Biodegradable polymers for biomedical use, Prog. Polym. Sci., 19, 663–702.

    Article  CAS  Google Scholar 

  41. Heller, J., Sparer R.V. and Zentner, G.M. (1990) Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York.

    Google Scholar 

  42. Hollinger, J.O. (1995) Biomedical Applications of Synthetic Biodegradable Polymers, CRC Press, Boca Raton, FL.

    Google Scholar 

  43. Kimura, Y. (1993) Biodegradable polymers, in T. Tsuruta, T. Hayashi, K. Kataoka, K. Ishihara and K. Kimura (eds.), Biomedical Applications of Polymeric Materials. Boca Raton FL, CRC Press, 1993.

    Google Scholar 

  44. Kopecek, J. and Ulbrich, K. (1983) Biodegradation of biomedical polymers, Prog. Polym. Sci. 9, 1–58.

    Article  CAS  Google Scholar 

  45. Leung, K.S., Hung, L.K. and Leung P.C.L. (1995) Biodegradable Implants in Fracture Fixation, World Scientific Publ. Co., Singapore.

    Google Scholar 

  46. Li, S. and Vert, M. (1999) Biodegradable polymers: Polyesters, in E. Mathiowitz (ed.), Encyclopedia of Controlled Drug Delivery, John Wiley, New York, Vol. I, pp. 71–93.

    Google Scholar 

  47. MacGreger, E. A. and Greenwood, C. T. (1980) Polymers in Nature, John Wiley Sons, New York, NY.

    Google Scholar 

  48. Middleton, J.C. and Tipton, A.J. (2000) Synthetic biodegradable polymers as orthopedic devices, Biomater. 21, 2335–2346.

    Article  CAS  Google Scholar 

  49. Ottenbrite, R.M., Huang, S.J. and Park K. (1996) Hydrogels and Biodegradable Polymers for Bioapplications, ACS Symp. Ser. 627, Am. Chem. Soc., Washington DC.

    Google Scholar 

  50. Parikh, M., Gross, R.A. and McCarthy, S.P. (1992) The effect of crystalline morphology on enzymatic degradation kinetics, Proc. ACS Div., Polym. Mat. Sci. Eng. 66, 408–409.

    CAS  Google Scholar 

  51. Park, K., Shalaby, W.S.W. and Park, H. (1993) Biodegradable Hydrogels for Drug Delivery, Technomic Publ. Co., Lancaster PA.

    Google Scholar 

  52. Pietrzak, W.S., Verstynen, B.S. and Sarver, D.R. (1997) Bioabsorbable fixation devices: status for the craniomaxillo faxial surgeon. J. Craniofaxial Surg. 2, 92–96.

    Article  Google Scholar 

  53. Piskin, E. (1994) Biodegradable polymers as biomaterials, J. Biomater. Sci. Polym. Ed. 6, 795–775.

    Google Scholar 

  54. Planck, H., Dauner, M. and Renaldy, M. (1990) Medical Textiles for Implantation, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  55. Privalova, L.G. and Zaikov, G.E. (1990) Surgical sutures, Polym. Plast. Technol. Eng. 29, 445–467.

    Article  Google Scholar 

  56. Schacht, E.H. (1990) Using biodegradable polymers in advanced drug delivery systems, Med.Dev.Techn. 1, 15–21.

    CAS  Google Scholar 

  57. Schindler, A., Jeffcoat, R., Kimmel, G.L., Pitt, C.G., Wall, M.E. and Zwiedinger, R. (1997) Biodegradable polymers for sustain drug delivery, Contemp. Topics. Polym. Sci., 2, 251–289.

    Google Scholar 

  58. Shalaby, S.W. (1988) Bioabsorbable polymers, in J. Swarbrick and J.C. Boylan (eds.), Encyclopedia of Pharmaceutical Technology, Marcel Dekker Inc., New York, pp. 465–476.

    Google Scholar 

  59. Shalaby, S.W. and Johnson, R.A. (1994) Synthetic absorbable polyesters, in S.W. Shalaby (ed.), Biomedical Polymers. Designed-to-Degrade Systems, Hanser Publ., Munich, Germany, pp. 1–34.

    Google Scholar 

  60. Sinha, V.R. and Khosla, L. (1998) Bioabsorbable polymers for implantable therapeutic systems, Drug Dev. Ind. Pharm. 24, 1129–1138.

    Article  CAS  Google Scholar 

  61. Smith, R., Oliver, C. and Williams, D.F. (1987a) The enzymatic degradation of polymers in vivo, J. Biomed. Mater. Res. 21, 991–1003.

    Article  CAS  Google Scholar 

  62. St. Pierre, T. and Chiellini, E. (1986) Biodegradability of synthetic polymers used for medical and pharmaceutical applications: Part I–Principles of hydrolysis, J. Bioact. Compat. Polym. 1, 467–497.

    Google Scholar 

  63. Tokiwa, Y. and Suzuki, T. (1977) Hydrolysis of polyesters by lipases, Nature 270, 76–78.

    Article  CAS  Google Scholar 

  64. Vainionpaa, S., Rokkanen and Tormala, P. (1989) Surgical applications of biodegradable polymers in human tissue, Prog. Polym. Sci. 14, 679–716.

    Article  CAS  Google Scholar 

  65. Vert, M. (1989) Bioresorbable polymers for temporary therapeutic applications. Die Angewan Makromol. Chem. 166/167, 155–168.

    Google Scholar 

  66. Williams, D.F. (1990a) Biodegradation of medical polymers, in D.F. Williams (ed.), Concise Encyclopedia Medical and Dental Materials, Pergamon Press, Oxford, pp. 69–74.

    Google Scholar 

  67. Zaikov, G.E. (1985) Quantitative aspects of polymer degradation in the living body, JMS-Rev. Macromol. Chem. Phys. 25, 551–597.

    Article  Google Scholar 

  68. Zhang, X., Wyss, U.P., Pichora, D. and Goosen, M.F.A. (1993) Biodegradable polymers for orthopedic applications: synthesis and processability of poly(Llactide) and poly(lactide-co-e-caprolactone), Pure Appl.Chem. A30, 933–947.

    Google Scholar 

  69. Bergsma, J.E., de Bruijn, W.C., Rozema, F.R., Bos, R.R.M. and Boering, G. (1995) Late degradation tissue response to poly(L-lactide) bone plates and screws, Biomater. 16, 25–31.

    Article  CAS  Google Scholar 

  70. Britritto, M.M., Bell, J.P., Brenckle, S., Huang, S.J. and Knox, J.R. (1979) Synthesis and biodegradation of polymers derived from a—hydroxy acids, J. Appl. Polym. Sci., Appl. Polym. Symp. 35, 405–414.

    Google Scholar 

  71. Carothers, W.H., Dorough, G.L. and Van Natta, F.J. (1932) Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters, J. Am. Chem. Soc. 54, 761–772.

    Article  CAS  Google Scholar 

  72. Christel, P., Chabot, F., Leray, J.L., Morin, C. and Vert, M. (1982) Biodegradable composites for internal fixation, in D.G. Winter, D.F. Gibbons and J. Plench Jr. (eds.), Advances in Biomaterials, Vol. 3, John Wiley and Sons, New York, pp.271280.

    Google Scholar 

  73. Chu, C.C. (1981) Hydrolytic degradation of polyglycolic acid: Tensile strength and crystallinity study, J. Appl. Polym. Sci. 26, 1727–1734.

    CAS  Google Scholar 

  74. Chu, C.C. and Williams, D.F. (1983) The effect of gamma irradiation on the enzymatic degradation of polyglycolic acid absorbable sutures, J. Biomed. Mater. Res. 17, 1029–1040.

    Article  CAS  Google Scholar 

  75. Chu, C.C., Zhang, L. and Coyne, L.D. (1995) Effect of gamma irradiation and irradiation temperature on hydrolytic degradation of synthetic absorbable sutures, J. Appl. Polym. Sci. 56, 1275–1294.

    Article  CAS  Google Scholar 

  76. Chujo, K., Kobayashi, H., Suzuki, J., Tokuhara, S. and Tanabe, M. (1967) Ring-opening polymerization of glycolide, Die Makrom. Chemie 100, 262–266.

    Article  CAS  Google Scholar 

  77. Cohn, D. and Younes, H. (1988) Biodegradable PEO/PELA block copolymers, J. Biomed. Mater.Res. 22, 993–1009.

    Article  CAS  Google Scholar 

  78. Ferguson, S., Wahl, D. and Gogolewski, S. (1996) Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/Dlactide), and poly(L/DL-lactide, J. Biomed. Mater. Res. 30, 543–551.

    Article  CAS  Google Scholar 

  79. Frazza, E.J. and Schmitt, E.E. (1971) A new absorbable suture, J. Biomed. Mater. Res. Symp. 1, 43–58.

    Article  Google Scholar 

  80. Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M. and Nakamura, T. (2000) Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures, Biomater. 21, 889–898.

    Article  CAS  Google Scholar 

  81. Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M. and Nakamura, T. (2000) Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures, J. Biomed. Mater. Res. 50, 410–419.

    Article  CAS  Google Scholar 

  82. Fukuzaki, H., Yoshida, M., Asano, M. and Kumakura, M. (1989) Synthesis of copoly(D,L-lactic acid) with relatively low molecular weight and in vitro degradation, Eur. Polym. J. 25, 1019–1026.

    Article  CAS  Google Scholar 

  83. Gilding, D.K. and Reed, A.M. (1979) Biodegradable polymers for use in surgery-polyglycolic/polylactic acid homo-and copolymers, Polym. 20, 1459–1464.

    Article  CAS  Google Scholar 

  84. Goodman, I. (1988) Polyesters, in H.F. Mark, N.M. Bikales, C.G. Overberger and G. Menges (eds.), Encyclopedia of Polymers Science and Engineering,2nd Ed., John Wiley Sons, New York, Vol. 12, pp. 1–75.

    Google Scholar 

  85. Grijpma, D.W. and Pennings, A.J. (1994) Copolymers of L-lactide: 2. Mechanical properties, Macromol. Chem. Phys. 195, 1649–1663.

    Article  CAS  Google Scholar 

  86. Hyon, S.H., Jamshidi, K. and Ikada Y. (1984) Melt spinning of poly-L-lactide and hydrolysis of the fiber in vitro, in S. Shalaby, A.S. Hoffmann, B.D. Ratner and T.A. Horbett (eds.), Polymers as Biomaterials, Plenum Press, New York, pp. 5165.

    Google Scholar 

  87. Johns, D.B., Lenz, R.W. and Leucke, A. (1984) Lactones, in K.J. Ivin and T. Saegusa (eds.), Ring-Opening Polymerisation, Vol.I, Elsevier Appl. Sci. Publ. Ltd., pp. 461–521.

    Google Scholar 

  88. Grijpma, D.W., Zondervan, G.J. and Pennings, A.J. (1991) High-molecular-weight copolymers of L-lactide and epsilon-caprolactone as biodegradable elastomeric implant materials, Polym. Bull. 25, 327–333.

    Article  CAS  Google Scholar 

  89. Honda, M., Yada, T., Ueda, M. and Kimata, K. (2000) Cartilage formation by cultured chondrocytes in a new scaffold made of poly(L-lactide-epsiloncaprolactone) sponge, J. Oral Maxil. Surg. 58, 767–775.

    Article  CAS  Google Scholar 

  90. Karjalainen, T., Hiljanen, M., Malin, M. and Seppala, J. (1996) Biodegradable lactone copolymers. III. Mechanical properties of s-caprolactone and lactide copolymers after hydrolysis in vitro, J. Appl. Polym. Sci. 59, 1299–1304.

    Article  CAS  Google Scholar 

  91. Kricheldorf, H.R., Jonte, J.M. and Berl, M. (1985) Polylactones.3.Copolymerization of glycolide with L,L-Lactide and other lactones, Makromol. Chem. 12, 25–38.

    Article  CAS  Google Scholar 

  92. Kulkarni R.K., Pani K.C., Neuman C. and Leonard F. (1966) Polylactic acid for surgical implants, Arch. Surg. 93, 839–843.

    Article  CAS  Google Scholar 

  93. Kulkarni, R.K., Moore, E.G., Hegyeli, A.F. and Leonard, F. (1971) Biodegradable poly(lactic acid) polymers, J. Biomed. Mater. Res. 5, 169–181.

    Article  CAS  Google Scholar 

  94. Leenslag, J.W., Kroes, M.T., Pennings, A.J. and Van der Lei, B. (1988) A compliant, biodegradable vascular graft: Basic aspects of its construction and biological performance, New Polym. Mater. 1, 111–126.

    Google Scholar 

  95. Lewandrowski, K.U., Gresser, J.D., Wise, D.L., Trantolo, D.J. and Hasirci, V. (2000) Tissue responses to molecularly reinforced polylactide-co-glycolide implants, J. Biomater. Sci. Polym. Ed. 11, 401–414.

    Article  CAS  Google Scholar 

  96. Lewis, D. H. (1990) Controlled release of bioactive agents from lactide/glycolide polymers, in M. Chasin and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, pp. 1–41.

    Google Scholar 

  97. Maquet V., Martin D., Malgrange B., Frazen R., Schoenen J., Moonen G. and Jerome R. (2000) Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds, J. Biomed. Mater. Res. 52, 639–651.

    Article  CAS  Google Scholar 

  98. Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A. and Weiss, L.E. (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed Mater. Res. 47, 324–335

    Article  CAS  Google Scholar 

  99. Matsusue, Y., Yamamuro, T., Oka, M., Shikinami, Y., Hyon, S.H. and Ikada, Y. (1992) In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods, J. Biomed. Mater. Res. 26, 1553–1567.

    Article  CAS  Google Scholar 

  100. Migliaresi, C., Cohn, D., De Lollis, A. and Fambri, L. (1991a) Dynamic mechanical and calorimetric analysis of compression molded PLLA of different molecular weights, J. Appl. Polym. Sci. 43, 83–95.

    Article  CAS  Google Scholar 

  101. Migliaresi, C., De Lollis, A., Fambri, L. and Cohn, D. (199 lb) The effect of the thermal treament on the crystallinity of different molecular weight PLLA biodegradable polymers, Clinical Mater. 8, 111–118.

    Google Scholar 

  102. Migliaresi, C., Fambri, L. and Cohn, D. (1994) A study on the in vitro degradation of poly(lactic acid), J. Biomater. Sci. Polym. Edn. 5, 591–606.

    Article  CAS  Google Scholar 

  103. Nakamura, T., Shimizu, Y., Matsui, T., Okumura, N., Hyon, S.H. and Nishiya, A. (1992) A novel bioabsorbable monofilament surgical suture made from (scaprolactone, L-lactide) copolymer, in H. Planck, M. Dauner and M. Renardy (eds.), Degradation Phenomena on Polymeric Biomaterials, Springer-Verlag, Berlin-Heidelberg, pp. 153–162.

    Chapter  Google Scholar 

  104. Pegoretti, A., Fambri, L. and Migliaresi, C. (1997) In vitro degradation of poly(Llactic acid) fibers produced by melt spinning, J. Appl. Polym. Sci. 64, 213–223.

    Article  CAS  Google Scholar 

  105. Pietrzak, W.S., Sarver, D.R. and Verstynen, M.L. (1997) Bioabsorbable polymer science for the practicing surgeon, J. Craniofacial Surg. 8, 87–91.

    Article  CAS  Google Scholar 

  106. Pitt, C.G., Jeffcoat, A.R., Zweidinger, R.A. and Schindler, A. (1979) Sustained drug-delivery systems. I. The permeability of poly(£-caprolactone), poly(DL-lactic acid) and their copolymers, J. Biomed. Mat. Res. 13, 497–507.

    Article  CAS  Google Scholar 

  107. Pitt, C.G., Gratzl, M.M., Kimmel G.L., Surles, J. and Schindler, A. (1981) Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(£-caprolactone), and their copolymers in vivo, Biomater. 2, 215–220.

    Article  CAS  Google Scholar 

  108. Pitt, C.G. and Schindler, A. (1984) Long-Acting Contraceptive Delivery Systems, Harper and Row, Philadelphia.

    Google Scholar 

  109. Pitt, C.G. (1990) Poly-s-caprolactone and its copolymers, in M. Chasin and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker Inc., New York, pp. 71–120.

    Google Scholar 

  110. Sinclair, R.G. (1977) Copolymers of L-lactide and epsilon caprolactone, US Patent, 3 057 537.

    Google Scholar 

  111. Sanz, L.E., Patterson, J.A., Kamath, R., Willett, G., Ahmed, S.W. and Butterfield, A.B. (1988) Comparison of Maxon suture with Vicryl, chromic catgut, and PDS sutures in fasciai closure in rats, Obstet. Gynecol. 71, 418–422.

    CAS  Google Scholar 

  112. Schmitt, E.E. and Polistina, R.A. (1967) Surgical sutures, US Patent, 3, 297, 033.

    Google Scholar 

  113. Ural, E., Kesenci, K., Fambri, L., Migliaresi, C. and Pi§kin, E. (2000) Poly(D,Lcactide/epsilon-caprolactone)/hydroxyapatite composites, Biomater. 21, 2147–2154.

    Article  CAS  Google Scholar 

  114. Tormala, P., Vasenius, J., Vainionpaa, S., Laiho, J., Pohjonen, T. and Rokkanen, P. (1991) Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study, J. Biomed. Mater. Res. 25, 1–22.

    Article  CAS  Google Scholar 

  115. Tunç, D.C. (1995) Orientruded polylactide based body-absorbable osteosynthesis devices: a short review, J. Biomater. Sci. Polym. Ed. 7, 375–380.

    Google Scholar 

  116. Vanhoorne, P., Dubois, P., Jerome, R. and Teyssie Ph. (1992) Macromolecular engineering of polylactones and polylactides.7. structural-analysis of copolyesters of epsilon-caprolactone and L-caprolactone or D,L-lactide initiated by AL(OIPR)3,Macromol. 25, 37–44.

    CAS  Google Scholar 

  117. Wang, N., Wu, X.S., Lujan-Upton, H., Donahue, E. and Siddiqui, A. (1997) Synthesis, characterization, biodegradation and drug delivery application of biodegradable lactic/glycolic acid oligomers: I. Synthesis and characterization, J.Biomat. Sci., Polym.Ed., 8, 905–917.

    CAS  Google Scholar 

  118. Verheyen, C.C.P.M., de Wijn, J.R., van Blitterswijk, C.A. and de Groot K. (1992) Evaluation of hydroxylapatite/poly-(L-lactide) composites: Mechanical behavoiour, J. Biomed. Mater. Res. 26, 1277–1296.

    Article  CAS  Google Scholar 

  119. Vert, M. and Guerin, P. (1991) Biodegradable aliphatic polyesters of the poly(hydroxy acid)-type for temporary therapeutic applications, in M.A. Barbosa (ed.), Biomaterial Degradation: Fundamental Aspects and Related Clinical Phenomena, Elsevier, Amsterdam, pp. 35–51.

    Google Scholar 

  120. Vion, J.M., Jerome, R. and Teyssie, P. (1986) Synthesis, characterization and miscibility of caprolactone random copolymers, Macromol. 19, 1828–1838.

    Article  CAS  Google Scholar 

  121. Wehrenberg, R.H. (1981) Polylactic acid polymers: strong, degradable thermoplastics, Mater. Eng. 94, 63–66.

    CAS  Google Scholar 

  122. Williams, D.F. (1981) Enzymatic hydrolysis of polylactic acid, Eng. in Med. 10,57.

    Google Scholar 

  123. Zhang, X., Wyss, U.P., Pichora, D. and Goosen, M.F.A. (1994) An investigation of poly(lactic acid) degradation, J. Bioact. Compat. Mater. 9, 80–100.

    Article  CAS  Google Scholar 

  124. Zhu, K.J., Xiangzhou, L. and Shilin, Y. (1990) Preparation, characterization and properties of polylactide(PLA)-poly(ethylene glycol) (PEG) copolymers: a potential drug carrier, J. Appl. Polym. Sci. 39, 1–9.

    Article  CAS  Google Scholar 

  125. Benoit, M.A., Gillard, B.B. (1999) Preparation and characterization of protein-loaded poly(epsilon-caprolactone) microparticles for oral vaccine delivery, J. Int J. Pharm. 184, 73–84.

    Article  CAS  Google Scholar 

  126. Cai, Q., Bei, J., Wang, S.G. (2000) Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide and epsilon-caprolactone, J. Biomater. Sci. Polym. Ed. 11, 273–288.

    Article  CAS  Google Scholar 

  127. Das, G.S., Rao, G.H.R., Wilson, R.F. and Chandy, T. (2000) Colchicine encapsulation within poly(ethylene glycol)-coated poly(lactic acid)/poly(epsiloncaprolactone) microspheres-controlled release studies, Drug Del. 7, 129–38.

    Article  CAS  Google Scholar 

  128. Dendunnen, W.F.A., Vanderlei, B., Robinson, P.H., Holwerda, A., Pennings, A.J. and Schakenraad, J.M. (1995) Biological performance of a degradable poly(lactic acid-epsilon-caprolactone) nerve guide–influence of tube dimensions, J. Biomed. Mater. Res. 29, 757–766.

    Article  CAS  Google Scholar 

  129. Eliaz, R.E. and Kost, J. (2000) Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins, J. Biomed. Mater. Res. 50, 388–396.

    Article  CAS  Google Scholar 

  130. Gogolewski, S., Pineda, L. and Busing, C.M. (2000) Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process?, Biomater. 21, 2513–2520.

    Article  CAS  Google Scholar 

  131. Perez, M.H., Zinutti, C. and Lamprecht, A. (2000) The preparation and evaluation of poly(epsilon-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug, J. Control Rel. 65, 429–438.

    Article  Google Scholar 

  132. Aime, S., Botta, M., Garino, E., Crich, S.G., Giovenzana, G., Pagliarin, R., Palmisano, G. and Sisti, M. (2000) Non-covalent conjugates between cationic polyamino acids and Gd-III chelates: A route for seeking accumulation of MRIcontrast agents at tumor targeting sites, Chem-Eur J. 6, 2609–2617.

    Article  CAS  Google Scholar 

  133. Aprahamian, M., Lambert, A. and Balboni, G. (1987) A new reconstituted connective-tissue matrix preparation, biochemical, structural and mechanical studies, J. Biomed. Mater. Res. 21, 965–977.

    Article  CAS  Google Scholar 

  134. Arem, A. (1985) Collagen modifications, Clin. Plast. Surg. 12, 209–220.

    CAS  Google Scholar 

  135. Arnold, L. J., Dagan, A. and Kaplan, N.O. (1983) Targeted Drugs, John Wiley and Sons Ltd., New York.

    Google Scholar 

  136. Averbatch, B.L. (1978) in: Proc. 1st Int. Conf. Chitin/Chitosan, MIT, Cambrigde, pp. 199.

    Google Scholar 

  137. Banaszczyk, M.G., Lollo, C.P., Kwoh, D.Y., Phillips, A.T., Amini, A., Wu, D.P., Mullen, P.M., Coffin, C.C., Brostoff, S.W. and Carlo, D.J. (1999) Poly-L-lysinegraft-PEG-comb-type polycation copolymers for gene delivery, J. Macromol. Sci. Pure 36, 1061–1084.

    Google Scholar 

  138. Birchall, A.C. and North, M. (1998) Synthesis of highly branched block copolymers of enantiomerically pure amino acids, Chem. Commun. 1335–1336.

    Google Scholar 

  139. Caponetti, G., Hrkach, J.S., Kriwet, B., Poh, M., Lotan, N., Colombo, P., Langer, R. (1999) Micro particles of novel branched copolymers of lactic acid and amino acids: Preparation and characterization, J. Pharma Sci. 88, 136–141.

    Article  CAS  Google Scholar 

  140. Constancis, A., Meyrueix, R., Bryson, N., Huille, S., Grosselin, J., GulikKrzywicki, T. and Soula, G. (1999) Macromolecular colloids of diblock poly(amino acids) that bind insulin, J. Colloid and Inter. Sci. 217, 357–368.

    Article  CAS  Google Scholar 

  141. Hayashi, T., Nakanishi, E., Iizuka, Y., Oya, M. and Iwatsuki, M. (1995) Preparation and properties of copoly(N-hydroxyalkyl-D,L-glutamine) membranes, Eur. Polym. J. 31, 453–458.

    Article  CAS  Google Scholar 

  142. Hoes, C.J.T. and Feijen, J. (1989) Drug Carrier Systems, John Wiley and Sons Ltd., London, pp. 57–109.

    Google Scholar 

  143. Huang, S.J. and Leong, K.W. (1989) Biodegradable polymers. Polymers derived from gelatin and lysin esters, Polym. Preprints 20, 552–554.

    Google Scholar 

  144. Kohn, J. (1990) Pseudo poly(amino acids) in M. Chasin and R Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcell Dekker, New York, Chapter 6, pp.195–229.

    Google Scholar 

  145. Marck, K.W., Wildevuur C.H., Sederel W.L., Bantjes, A. and Fejen, J. (1977) Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid and L-aspartic acid esters, J. Biomed. Mater. Res. 11, 405–422.

    Article  CAS  Google Scholar 

  146. Miller, A.G. (1964) Degradation of synthetic polypeptides. III., Degradation of polylysine by proteolytic enzymes in 0.20 M sodium chloride, J. Am. Chem. Soc. 86, 3818–3822.

    Google Scholar 

  147. Nikiforov, T.T. and Jeong, S. (1999) Detection of hybrid formation between peptide nucleic acids and DNA by fluorescence polarization in the presence of polylysine, Anal. Biochem. 275, 248–253.

    Article  CAS  Google Scholar 

  148. Nukui, M., Hoes, K., Vandenberg, H. and Feijen, J. (1991) Association of macromolecular prodrugs consisting of adriamycin bound to poly(L-glutamic acid), Macromol. Chem. 192, 2925–2942.

    CAS  Google Scholar 

  149. Pouton, C.W., Lucas, P., Thomas, B.J., Uduehi, A.N., Milroy, D.A. and Moss, S.H. (1998) Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids, J.Control. Rel. 53, 289–299.

    Article  CAS  Google Scholar 

  150. Sidman, K.R., Schwope, A.D., Steber, W.D., Rudolph, S.E. and Poulin, S.B. (1980) Biodegradable, implantable sustained release systems based on glutamic acid copolymers, J. Mem. Sci. 7, 277–291.

    Article  CAS  Google Scholar 

  151. Akbari, H., Attwood, D. and D’Emanuele, A. (1998) Effect of fabrication technique on the characteristics of polyanhydride matrices, Pharma.Dev.Technol. 3, 251–259.

    Article  CAS  Google Scholar 

  152. Chasm, M., Lewis, D. and Langer, R. (1988) Polyanhydrides for controlled drug delivery, Biopharm. Manufac. 1, 33–46.

    Google Scholar 

  153. Chasm, M., Domb, A., Ron, E., Mathiowitz, E., Langer, R., Leong, K., Laurencin, C., Brem, H. and Grossman, S. (1990) Polyanhydrides as drug delivery systems, in M. Chasm and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, pp. 43–70.

    Google Scholar 

  154. Domb, A.J., Amselem, S., Langer, R. and Maniar, M. (1994) Polyanhydrides as carriers of drugs, in S. W. Shalaby (ed.), Biomedical Polymers. Designed-toDegrade Systems, Hanser Publ., Munich, Germany, pp. 69–96.

    Google Scholar 

  155. Erdmen, L., Macedo, B. and Uhrich, KE. (2000) Degradable poly(anhydride ester) implants: effects of localized SA release on bone, Biomater. 21, 2507–2512.

    Article  Google Scholar 

  156. Gopferich A. (1999) Biodegradable polymers: Polyanhydrides, in E. Mathiowitz (ed.), Encyclopedia of Controlled Drug Delivery, John Wiley, New York, Vol. I, pp. 60–71.

    Google Scholar 

  157. Laurencin, C., Gerhart, T., Witschger, P., Satcher, R., Domb, A., Hanff, P., Edsberg, L., Hayes, W. and Langer, R. (1989) Bioerodible Polyanhydrides for Antibiotics Drug Delivery: In Vivo Osteomyelitis Treatment Studies, Proc. Int. Symp. Rel.Bioact. Mater.,Controlled Release Society, Inc.

    Google Scholar 

  158. Leong, K.W., Brott, B.C. and Langer, R. (1985) Bioerodible polyanhydrires as drug carrier matrices I: characterization, degradation and release characteristics, J. Biomed. Mater. Res. 19, 941–955.

    Article  CAS  Google Scholar 

  159. Ron, E., Turek, T., Mathiowitz, E., Cahsin, M. and Langer R. (1989) Release of Polypeptides From Polyanhydride Implants, Proceed. Intern. Symp. Rel. Bioact. Mater. 16, Controlled Release Society, Inc.

    Google Scholar 

  160. Choi, N.S. and Heller, J. (1978) Drug delivery devices manufactured from polyorthoesters and polyorthocarbonates, US Patent, 4 093 709.

    Google Scholar 

  161. Choi, N.S. and Heller, J. (1979) Erodible agent releasing device comprising polyorthoesters and polyorthocarbonates, US Patent, 4 138 344, Feb 6.

    Google Scholar 

  162. Daniels, A.U., Chang, M.K.O., Andriano, K.P. and Heller, J. (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone, J. Appl. Biomater. 1, 57–78.

    Article  CAS  Google Scholar 

  163. Davies, M.C., Khan, M.A., Lynn, R.A., Heller, J. and Watts, J.F. (1991) X-ray photoelectron spectroscopy analysis of the surface chemical structure of some biodegradable polyorthoesters, Biomater. 12, 305–308.

    Article  CAS  Google Scholar 

  164. Heller, J. (1983) Use of polymers in controlled drug release, in M. Szycher (ed.), Biocompatible Polymers, Metals, and Composites, Technomic Publ. Co.,Lancaster, PA, Chapter 24, pp. 551–584.

    Google Scholar 

  165. Heller, J. (1990) Development of polyorthoesters: A historical overview, Biomater. 11, 659–665.

    Article  CAS  Google Scholar 

  166. Heller, J., Sparer, R.V. and Zentner, G.M. (1990a) Polyorthoesters, in M. Chasin and R Langer, (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, pp. 121–161.

    Google Scholar 

  167. Heller, J., Ng, S.Y., Fritzinger, B.K. and Roskov, K.V. (1990b) Controlled drug release from bioerodible hydrophobic ointments, Biomater. 11, 235–237.

    Article  CAS  Google Scholar 

  168. Heller, J., Ng, S.Y. and Fritzinger, B.K. (1992) Synthesis and characterization of a new family of polyorthoesters, Macromol. 25, 3362–3364.

    Article  CAS  Google Scholar 

  169. Heller, J. and Daniels, A.U. (1994) Polyorthoesters, in S.W. Shalaby (ed.), Biomedical Polymers. Designed-to-Degrade Systems, Hanser Publ., Munich, Germany, pp. 35–67.

    Google Scholar 

  170. Heller, J. (1996) Drug delivery systems, in B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons (eds.), Biomaterials Science: An Introduction to Materials in Medicine, Acad. Press, San Diego, CA, pp. 346–356.

    Google Scholar 

  171. Heller, J. and Gurny, R. (1999) Polyorthoesters, in E. Mathiowitz (ed.), Encyclopedia of Controlled Drug Delivery, John Wiley, New York, Vol. II, pp. 852–874.

    Google Scholar 

  172. Leadley, S.R., Shakesheff, K.M., Davies, M.C., Heller, J., Franson, N.M., Paul, A.J., Brown, A.M. and Watts, J.F. (1998) The use of SIMS, XPS and AFM to probe the acid catalysed hydrolysis of polyorthoesters, Biomater. 19, 1353–1360.

    Article  CAS  Google Scholar 

  173. Mao, H.Q., Kadiyala, I., Leong, K.W., Zhao, Z. and Dang, W. (1999) Biodegradable polymers: Polyphosphoesters, in E. Mathiowitz (ed.), Encyclopedia of Controlled Drug Delivery, John Wiley, New York, Vol.l, pp. 45–60.

    Google Scholar 

  174. Allcock, H.R. (1972) Phosphorus-Nitrogen compounds. Cyclic, Linear, and High Polymeric Systems, Acad. Press, New York, USA.

    Google Scholar 

  175. Allcock, H.R., Fuller, T.J., Mack, D.P., Matsumura, K. and Smeltz, K.M. (1977) Phosphazene compounds. Synthesis of poly[(amino acid alkylester)phosphazenes], Macromol. 10, 824–830.

    Article  CAS  Google Scholar 

  176. Allcock, H.R., Fuller, T.J. and Matsumura, K. (1982) Hydrolysis pathways for aminophosphazenes, Inorg. Chem. 21, 515–521.

    Article  CAS  Google Scholar 

  177. Allcock, H.R. (1990) Polyphosphazene as new biomedical and bioactive materials, in M. Chasin and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, pp. 163–193.

    Google Scholar 

  178. Allcock, H.R., Pucher, S.R. and Scopelianos, A.G. (1994) Poly(amino acid ester)phosphazenes as substrates for the controlled release of small molecules, Biomater. 15, 563–569.

    Article  CAS  Google Scholar 

  179. Allcock, H.R., Pucher, S.R. and Scopelianos, A.G. (1994) Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups–Prototypes for new bioerodible polymers, Macromol. 27, 1–4.

    Article  CAS  Google Scholar 

  180. Allcock H.R. (1998) Functional polyphosphazenes, in A.O. Patil, D.N. Schulz and B.N. Novak (eds.), Functional Polymers. Modern Synthetic Methods and Novel Structures, ACS Symp. Ser., Washington, pp. 261–275.

    Google Scholar 

  181. Andrianov, A.K., Cohen, S., Visscher, K.B., Payne, L.G., Allcock, H.R. and Langer, R. (1993) Controlled release using ionotropic polyphosphazene hydrogels, J. Control. Rel. 27, 69–77.

    Article  CAS  Google Scholar 

  182. Crommen, J., Vandorpe, J. and Schacht, E. (1993) Degradable polyphosphazenes for biomedical applications, J. Control. Rel. 24, 167–180.

    Article  CAS  Google Scholar 

  183. De Jaeger, R. and Gleria, M. (1998) Polyorganophosphazenes and related compounds: synthesis, properties and applications, Progr. Poym. Sci. 23, 179–276.

    Article  Google Scholar 

  184. Goedemoed, J.H. and De Goot, K. (1988) Development of implantable antitumor devices based on polyphosphazene, Macromol. Chem. Macromol. Symp. 19, 34 1365.

    Google Scholar 

  185. Grolleman, C.W.J, De Visser, A.C., Wolke, J.G.C., Klein, C.P.A.T., Van der Goot, H. and Timmerman, H. (1986) Studies on a bioerodible drug carrier system based on a polyphosphazene, J. Control. Rel. 3, 143–154.

    Article  CAS  Google Scholar 

  186. Ibim, S.M., Ambrosio, A.A., Larrier, D., Allcock, H.R. and Laurencin, C.T. (1996) Controlled macromolecule release from polyphosphazene matrices, J. Control. Rel. 40, 31–39.

    Article  CAS  Google Scholar 

  187. Ibim, S.M., Ambrosio, A.A., Kwon, M.S., El-Amin, S.F., Allcock, H.R. and Laurencin, C.T. (1997) Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies, Biomater. 18, 1565–1569.

    CAS  Google Scholar 

  188. Langone, F., Lora, S., Veronese, F.M., Caliceti, P., Parnigotto, P.P., Valenti, F. and Palma, G. (1995) Peripheral Nerve Repair Using a Poly(organo)phosphazene Tubular Prosthesis, Biomater.16, 347–353.

    Google Scholar 

  189. Laurencin, C.T., Koh, H.J., Neenan, T.X., Allcock, H.R. and Langer, R. (1987) Controlled release using a new bioerodible polyphosphazene matrix system, J. Biomed. Mater. Res. 21, 1231–1246.

    Article  CAS  Google Scholar 

  190. Scopelianus, A.G. (1994) Polyphospazenes as new biomaterials, in S.W. Shalaby (ed.), Biomedical Polymers. Designed-to-Degrade Systems, Hanser Publ., Munich, Germany, pp. 153–172.

    Google Scholar 

  191. Singler, R.E., Sennett, M.S. and Willingham, R. A. (1988) Phosphazene polymers: synthesis, structure, and properties, in M. Zeldin, K.J. Wynne and H.R. Allcock (eds.), Inorganic Organometallic Polymers, ACS Symp. Ser. Vol. 360, 360.

    Google Scholar 

  192. Vandorpe, J., Schacht, E., Dunn, E., Hawley, A., Stolnik, S., Davis, S.S., Garnett, M.C., Davies, M.C. and Ilium, L. (1997a) Long circulating biodegradable poly(phosphazene) nanoparticle surface modified with poly(phosphazene)poly(ethylene oxide) copolymer, Biomater.18, 1147–1142.

    Google Scholar 

  193. Veronese, F.M., Marsilio, F., Lora, S., Caliceti, P., Passi, P. and Orsolini, P. (1999) Polyphosphazene Membranes and Microspheres in Periodontal Diseases and Implant Surgery, Biomater. 20, 91–98.

    Article  CAS  Google Scholar 

  194. Verweire, I., Schacht, E., Qiang, B.P., Wang, K. and De Scheerder, I. (2000) Evaluation of fluorinated polymers as coronary stent coating, J. Mater. Sci.: Mater. in Med. 11 207–212.

    Google Scholar 

  195. Amiel, G.E., Sukhotnik. I., Kawar, B. and Siplovich, L. (1999) Use of N-butyl-2cyanoacrylate in elective surgical incisions-longterm outcomes, J. Am. Coll. Surg. 189, 21–25.

    CAS  Google Scholar 

  196. Beattie, G.C., Kumar, S. and Nixon, S.J. (2000) Laparoscopic total extraperitoneal hernia repair: Mesh fixation is unnecessary, J. Laparoendosc. Adv. 10, 71–73.

    Article  CAS  Google Scholar 

  197. Ciapetti, G., Stea, S., Cenni, E., Sudanese, A., Marraro, D., Toni, A. and Pizzoferrato, A. (1994) Cytotoxicity testing of cyanoacrylates using direct contact assay on cell cultures, Biomater. 15, 63–67.

    Article  CAS  Google Scholar 

  198. Courtney, P.J. and Sorenson, J. (1996) Adhesive bonding of medical plastics, Med. Plast. Biomater. 3, 1–20.

    Google Scholar 

  199. Couvreur, P. Kante, B. and Roland, M. (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers-preparation, morphological and sorptive properties, J. Pharm. Pharmacol. 31, 331–332.

    CAS  Google Scholar 

  200. Damage, C., Vranckx, H., Balschmidt and Couvreur, P. (1997) Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin, J. Pharm. Sci. 86, 1403–1409.

    Article  Google Scholar 

  201. Fattal, E., Blanco-Prieto, M. J., Leo, E., Puisieux, F. and Couvreur, P. (1997) Design of nanoparticles for vaccine delivery in antigen delivery systems, Hardwood Acad. Publ., pp. 139–157.

    Google Scholar 

  202. Fattal,E., Peracchia, M.T. and Couvreur, P. (1997) Polyalkylcyanoacrylates in A.J. Domb, J. Kost and D.M. Wiseman (eds.), Handbook of Polymer, Hardwood Acad. Publ., pp. 183–202.

    Google Scholar 

  203. Jaffe, R., Wade, C.W.R., Hegyeli, A.F., Rice, R. and Hodge, J. (1986) Synthesis and bioevaluation of alkyl 2-cyanoacryloyl glycolates as potential soft tissue adhesives, J. Biomed. Mater.Res. 20, 205–212.

    Article  CAS  Google Scholar 

  204. Lenaerts, V., Couvreur, P., Christiansen-Leyh, D., Joiris, E., Roland, M., Rollman, B. and Speiser, P. (1984) Degradation of poly(isobutyl cyanoacrylate) nanoparticles, Biomater. 5, 65–68.

    Article  CAS  Google Scholar 

  205. O’Connor, J. and Dreifus, D. (1986) Cyanoacrylates, Loctite Corp. Internal Technical Memorandum.

    Google Scholar 

  206. Peracchia, M.T., Harnisch, S., Pinto-Alphandary, H., Gulik, A., Dedien, J.C., Desmaële, D., d’Angelo, J., Müller, R.H. and Couvreur, P. (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth ® polycyanoacrylate nanoparticles, Biomater. 20, 1269–1275.

    Article  CAS  Google Scholar 

  207. Ronis, M.L., Harwick, J.D., Fung, R. and Dellavecchia, M. (1984) Review of cyanocrylate tissue glues with emphasis on their otorhinolaryngological applications, Laryngoscope 94, 210–213.

    Article  CAS  Google Scholar 

  208. Tseng, Y., Tabata, Y., Hyon, S. and Ikada, Y. (1990) In vitro toxicity of 2cyanoacrylate polymers by cell culture method, J. Biomed. Mater. Res. 24, 13551367.

    Google Scholar 

  209. Tuncel, A., Çiçek, H. and Piskin, E. (1995) Degradation and drug-release characteristics of monosize polyethylcyanoacrylate microspheres, J. Biomat. SciPolym. Ed. 6, 845–856.

    Article  Google Scholar 

  210. Wang, M.Y., Levy, M.L., Mittler, M.A., Liu, C.Y., Johnston, S. and Mc Comb, J.G. (1999) A prospective analysis of the use of octyl acrylate tissue adhesive for wound closure in pediatric neurosurgery, Pediatr. Neurosurg. 30, 186–188.

    Article  CAS  Google Scholar 

  211. Wohlgemuth, M., MacHtle, W. and Mayer, C. (2000) Improved preparation and physical studies of polybutylcyano acrylate nanocapsules, J. Microencapsul. 17, 437–448.

    Article  CAS  Google Scholar 

  212. Borgdorff, P., Van den Berg, R.H., Vis, M.A., Van den Bos, G.C. and Tangelder, G.J. (1999) Pump-induced platelet aggregation in albumin-coated extracorporeal systems, J. Thorac. Cardiovasc. Surg. 118, 946–952.

    Article  CAS  Google Scholar 

  213. Bos, G.W., Scharenborg, N.M., Poot, A.A., Engbers, G.H., Beugeling, T., Van Aken W.G. and Feijen, J. (1999) Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion, J. Biomed. Mater. Res. 47, 279–291.

    Article  CAS  Google Scholar 

  214. Bouillot, P., Ubrich, N., Sommer, F., Duc, T.M., Loeffler, J.P. and Dellacherie, E. (1999) Protein encapsulation in biodegradable amphiphilic microspheres, Int. J. Pharm. 181, 159–172.

    Article  CAS  Google Scholar 

  215. Guillaume, Y.C., Peyrin, E. and Berthelot, A. (1999) Chromatographic study of magnesium and calcium binding to immobilized human serum albumin, J. Chromatogr. B: Biomed. Sci. Appl. 728, 167–174.

    Article  CAS  Google Scholar 

  216. Kocisova, E., Jancura, D., Sanchez-Cortes, S., Miskovsky, P., Chinsky, L. and Garcia-Ramos, J.V. (1999) Interaction of antiviral and antitumor photoactive drug hypocrellin A with human serum albumin, J. Biomol. Struct. Dyn. 17, 111–120.

    Article  CAS  Google Scholar 

  217. Kramer, P. A. (1974) Albumin microspheres as vehicles for achieving specificity in drug delivery, J. Pharm. Sci. 63, 1646–1647.

    Article  CAS  Google Scholar 

  218. Lee, T.K., Sokoloski, T.D. and Royer, G.P. (1981) Serum albumin beads; an injectable, biodegradable system for the sustained release of drugs, Science 213, 230–235.

    Article  Google Scholar 

  219. Arem, A. (1985) Collagen modifications, Clin. Plast. Surg. 12, 209–220.

    CAS  Google Scholar 

  220. Auger, F.A., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V. and Germain, L. (1998) Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications, Med. Biol. Eng. Comput. 3, 801–812.

    Article  Google Scholar 

  221. Bartone, F.F., Shervey, P.D. and Gardner, P.J. (1976) Long term tissue responses to catgut and collagen sutures, Invest. Urol. 13, 390–394.

    CAS  Google Scholar 

  222. Brumback, G.F. and McPherson, S.D Jr. (1967) Reconstituted collagen sutures in corneal surgery. An experimental and clinical evaluation, J. Ophthalmol. 64, 222227.

    Google Scholar 

  223. Choi, Y.S., Hong, S.R, Lee, Y.M., Song, K.W., Park, M.H. and Nam, Y.S. (1999) Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge, J. Biomed. Mater. Res. 48, 631–639.

    Article  CAS  Google Scholar 

  224. Chvapil, M., Kronenthal, R.L. and van Winkle, W. (1973) Medical and surgical applications of collagen, Int. Rev. Connect. Tissue Res. 6, 1–61.

    CAS  Google Scholar 

  225. Coleman, W.P. (1996) Assessment of a new device for injecting bovine collagen-The ADG needle, Dermat. Surg. 22, 175–176.

    Article  Google Scholar 

  226. Engler, R.J., Weber, C.B. and Turnicky, R. (1986) Hypersensitivity to chromated catgut sutures: a case report and review of the literature, Ann. Allergy 5, 317–320.

    Google Scholar 

  227. Friess, W. (1998) Collagen-biomaterial for drug delivery, Eur. J. Pharm. Biopharm. 45, 113–136.

    Article  CAS  Google Scholar 

  228. Friess, W., Uludag, H., Foskett, S., Biron, R. and Sargeant, C. (1999) Characterization of absorbable collagen sponges as rhBMP-2 carriers, Int. J. Pharm. 187, 91–99.

    Article  CAS  Google Scholar 

  229. Goissis, G., Marcantonio, E. Jr., Marcantonio, R.A., Lia, R.C., Cancian, D.C., and de Carvalho, W. M. (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking, Biomater. 20, 27–34.

    Article  CAS  Google Scholar 

  230. 230. Gorham, S.D. (1991) Collagen, in D. Byron (ed.), Biomaterials, Novel Materials From Biological Sources,Stockton Press, New York, Chapter 2.

    Google Scholar 

  231. Huc, A. (1985) Collagen biomaterials characteristics and applications, J. Amer. Leather Chem. Ass. 80, 195–212.

    CAS  Google Scholar 

  232. Lou, X. and Chirila, T.V. (1999) Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use, J. Biomater. Appl. 14, 184–191.

    CAS  Google Scholar 

  233. Nimni, M.E. (1983) Collagen: structure, function and metabolism in normal and fibrotic tissues, Semin. Arthritis Rheum., XIII, pp. 1–86.

    Article  Google Scholar 

  234. Okada, T., Hayashi, T. and Ikada Y. (1992) Degradation of collagen suture in vitro and in vivo, Biomater. 13, 448–454.

    Article  CAS  Google Scholar 

  235. Pachence, J.M., Berg, R.A. and Silver, F.H. (1987) Collagen: Its place in the medical device industry, Med. Device Diagn. Ind. 9, 49–55.

    CAS  Google Scholar 

  236. Rogalla, C.J. (1997) Autologous collagen: a new treatment for dermal defects, Minim. Invasive Surg. Nurs. 11, 67–69.

    CAS  Google Scholar 

  237. Schlegel, A.K., Möhler, H., Busch, F. and Mehl, A. (1997) Preclinical and clinical studies of a collagen membrane (Bio-Gide), Biomater. 18, 535–538.

    Google Scholar 

  238. Silver, F.H., Pins, G.D., Wang, M.C. and Christiansen, D. (1995) Collagenous biomaterials as models for tissue inducing implants, in D.L. Wise (ed.), Encyclopaedic Handbook of Biomaterials and Bioengineering, Part A: Materials, Marcel Dekker Inc., New York, pp. 63–70.

    Google Scholar 

  239. Stone, K.R., Webber, R.J., Rodkey, W.G. and Steadman, J.R. (1989) Prosthetic meniscal replacement: In vitro studies of meniscal regenaration using copolymeric collagen prostheses, Arthroscopy 5, 152–158.

    Google Scholar 

  240. Sung, H.W., Huang, D.M., Chang, W.H., Huang, L.L., Tsai, C.C. and Liang, I.L. (1999) Gelatin-derived bioadhesives for closing skin wounds: An in vivo study, J. Biomater. Sci., Polym. Ed. 10, 751–771.

    CAS  Google Scholar 

  241. Ulrich, S., Kuntz, G. and Anita, R. (1992) Haemostyptic preparations on the basis of collagen alone and as fixed combination with fibrin glue, Clinical Mater. 9, 169–177.

    Article  Google Scholar 

  242. Yannas, I.V. (1972) Collagen and gelatin in solid-state, J. Macromol. Sci. Revs. Macromol. Chem. C7, 49–57.

    Article  CAS  Google Scholar 

  243. Yannas, I.V. and Burke, J.F. (1980) Design of an artificial skin: I. Design principles, J. Biomed. Mater. Res. 14, 65–81.

    Article  CAS  Google Scholar 

  244. Averbatch, B.L. (1978) Proc. 1st Int. Conf. Chitin/Chitosan, MIT, Cambrigde, pp. 199.

    Google Scholar 

  245. Chandy, T., Das, G.S. and Rao, G. (2000) 5-Fluorouracil-loaded chitosan coated polylactic acid microspheres as biodegradable drug carriers for cerebral tumors, J. Microencap. 17 625–3 8.

    Google Scholar 

  246. Chung, L.Y., Shmidt, R.J., Hamlyn, P.F., Sagar, B.F. and Andrews, A.M. (1994) Biocompatibility of potential wound management products: Fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture, J. Biomed. Mat. Res. 28, 463–469.

    Article  CAS  Google Scholar 

  247. Erbacher, P., Zou, S., Bettinger, T., Steffan, A.M. and Remy, J.S. (1998) Chitosanbased vector/DNA complexes for gene delivery: biophysical characteristic and transfection, Pharm. Res. 15, 1332–1339.

    Article  CAS  Google Scholar 

  248. Gallaher, C., Munion, J., Hesslink, R.Jr., Wise, J. and Gallher, D.D. (2000) Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats, J. Nutr. 130, 27532759.

    Google Scholar 

  249. Hudson, S.M. (1994) Review of chitin and chitosan as fiber and film formers, J.Mater. Sci. 34, 375–437.

    Google Scholar 

  250. Kuen, Y.L., Wan, S.H. and Won, H.P. (1995) Blood compatibility and biodegradibility of partially N-acylated chitosan derivatives, Biomat. 16, 12111216.

    Google Scholar 

  251. Kurita, K. (1998) Chemistry and application of chitin and chitosan, Polym. Degrad. Stabil. 59, 117–120.

    Article  CAS  Google Scholar 

  252. Leong, K.W., Mao, H.Q., Truong-Le V.L., Roy, K., Walsh, S.M. and August, J.T. (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles, J.Control. Rel. 53, 183–193.

    Article  CAS  Google Scholar 

  253. Muzzarelli, R.A. (1993) Biochemical significance of exogenous chitins and chitosans in animals and patients, Carbohydrate Polym. 20, 7–15.

    Article  CAS  Google Scholar 

  254. Muzzarelli, R.A., Jeuniaux, C. and Gooday, G.W. (1986) Evaluation of Chitosan as a New Hemostatic Agent: Vitro and In Vivo Experiments, in G. Fradet, S. Brister, D. Mulder, J. Lough, and B.L. Averbach (eds.), Chitin in Nature and Technology, Plenum Press, New York.

    Chapter  Google Scholar 

  255. Nagai, T., Sawayanagi, Y. And Nambu, N. (1984) Chitin, Chitosan and Related Enzymes, Acad. Press, Orlando, FL

    Google Scholar 

  256. Sandford, P.A. (1989) Chitosan: Commercial uses and potential applications, in T. Anthonsen and P. Sandford (eds.), Chitin and Chitosan: Sources, Chemistry, Biochemistry Physical Properties and Applications. Elsevier Applied Science, N.Y., pp: 51–69.

    Google Scholar 

  257. Stone, C.A., Wright, H., Clarke, T., Powell, R. and Devaraj, V.S. (2000) Healing at skin graft donor sites dressed with chitosan, J. Plast. Surg. 53, 601–606.

    Article  CAS  Google Scholar 

  258. Suh, J.K. and Matthew, H.W. (2000) Aplication of chitosan-based polysaccharide biomaterials in cartilage tissue engineering, Biomat. 21, 2589–2598.

    Article  CAS  Google Scholar 

  259. Varum, K.M., Myhr, M.M., Hjerde, R.J.N. and Smidsrud, O. (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum, Carbohydrate Res. 299, 99–101.

    Article  CAS  Google Scholar 

  260. Zizokis, J.P. (1984) Chitin, Chitosan and Related Enzymes, Acad. Press, Orlando, FL.

    Google Scholar 

  261. Abatangelo, G., Barbucci, R., Brun, P. and Lamponi, S. (1997) Biocompatibility and enzymatic degradation studies on sulphated hyaluronic acid derivatives, Biomaterials 18, 1411–1415.

    Article  CAS  Google Scholar 

  262. Anderson, A.B. and Clapper, D.L. (1998) Coatings for blood-contacting devices, Med. Plast. Biomat. 3, 16–20.

    Google Scholar 

  263. Balazs, E.A. (1995) Hyaluronan biomaterials: Medical applications, in D.L. Wise (ed.), Handbook of Biomaterials and Applications, New York, Marcel Dekker, pp. 2719–2741.

    Google Scholar 

  264. Baumann, H., Mueller, U. and Keller, R. (1997) Which glycosaminoglycans are suitable for antithrombogenic or athrombogenic coatings of biomaterials? Part I: Basic concepts of immobilized GAGs on partially cationized cellulose membrane,Sem. in Thrombosis and Hemostasis 23 203–213.

    Google Scholar 

  265. Butler, C.E., Navarro, F.A., and Orgill, D.P. (2001) Reduction of abdominal adhesions using composite collagen-GAG implants for ventral hernia repair, J.Biomed.Mater.Res. 58, 75–80.

    Article  CAS  Google Scholar 

  266. Davis, W.M., (1998) The role of glucosamine and chondroitin sulfate in the management of arthritis, Drug Topics 3S - 13S.

    Google Scholar 

  267. Denuzière, A., Ferrier, D. and Domard, A. (2000) Interactions between chitosan and glycosaminoglycans (chondroitin sulfate and hyaluronic acid): physicochemical and biological studies, Ann. Pharmaceut. Francaises 58, 47–53.

    Google Scholar 

  268. Gogly, B., Dridi, M., Hornebeck W., Bonnefoix, M., Godeau, G. and Pellat, B. (1999) Effect of heparin on the production of matrix metalloproteinases and tissue inhibitors of metalloproteinases by human dermal fibroblasts, Cell. Biol. Int. 23, 203–209.

    Article  CAS  Google Scholar 

  269. Hoekstra, D. (1999) Hyaluronan-modified surfaces for medical devices, Med. Dev. Diagn. Ind. Mag. 2, 48–52.

    Google Scholar 

  270. Laurent, T.C. (1970) Structure of hyaluronic acid, in E.A Balazs (ed.), Chemistry and Molecular Biology of the Intercellular matrix, Acad. Press, London, pp. 703732.

    Google Scholar 

  271. Oerther, S., Le Gall, H., Payan, E., Lapicque, F., Presle, N., Hubert, P., Dexheimer, J. and Netter, P. (1999) Hyaluronate-alginate gel as a novel biomaterial. Biotechnol. Bioeng. 63, 206–215.

    Article  CAS  Google Scholar 

  272. Oerther, S., Maurin, A.C., Payan, E., Hubert, P., Lapicque, F., Presle, N., Dexheimer, J., Netter, P. and Lapicque, F. (2000) High interaction alginatehyaluronate associations by hyaluronate deacetylation for the preparation of efficient biomaterials, Biopolym. 54, 273–281.

    Article  CAS  Google Scholar 

  273. Paulsson, M., Gouda, I., Larm, O. and Ljungh, A. (1994) Adherence of coagulasenegative staphylococci to heparin and other glycosaminoglycans immobilized on polymer surfaces, J.Biomed.Mater.Res. 28, 311–317.

    Article  CAS  Google Scholar 

  274. Rastelli, A., Beccaro, M., Biviano, F., Calderini, G. and Pastorello, A. (1990) Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physico-chemical properties, in G. Heimke, U. Soltesz and A.J.C. Lee (eds.), Clinical Implant Materials-Advances in Biomaterials, Vol. 9, Elsevier, Amsterdam, pp. 199–206.

    Google Scholar 

  275. Roche, S., Ronzière, M.C., Herbage, D., and Freyria, A.M. (2001) Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering, Biomat. 22, 9–18.

    Article  CAS  Google Scholar 

  276. Tomihata, K. and Ikada, Y. (1997) Preparation of cross-linked hyaluronic acid films of low water content, Biomater. 18, 189–195.

    Article  CAS  Google Scholar 

  277. Artursson, P., Edman, P., Laakso, T., and Sjöholm, I. (1984) Characterization of polyacryl starch microparticles as carriers for proteins and drugs, J. Pharma Sci. 73, 1507–1513.

    Article  CAS  Google Scholar 

  278. Brook, M.A., Jiang, J.X., Heritage, P., Underdown, B. and Mc Dermott, M.R. (1997) Silicone-modified strach/protein particles: protecting biopolymers with a hydrophobic coating, Coll. Surf. B: Interfaces 9, 285–295.

    Article  CAS  Google Scholar 

  279. 279. Brookfield, P., Murphy, P., Harker, R. and MacRae, E. (1997) Starch degradation and starch pattern indices; interpretation and relationship to maturity, Posharvest Biol. Tec. 11 23–30.

    Google Scholar 

  280. Franssen, O., Stenekes, R. J. and Hennink, W. E. (1999) Controlled release of a model protein from enzymatically degrading dextran microspheres, J. Control. Rel. 59, 219–228.

    Article  CAS  Google Scholar 

  281. Franssen, O., Vandervennet, L., Roders, P. and Hennink, W. E. (1999) Degradable dextran hydrogels: controlled release of a model protein from cylinders and microspheres, J. Control. Rel. 60, 211–221.

    Article  CAS  Google Scholar 

  282. Heller, J., Pangburn, S.H., Roskos, K.V. (1990) Development of enzymatically degradable protective coatings for use in triggered drug delivery systems: derivatized starch hydrogels, Biomater.11, 345–350.

    Google Scholar 

  283. Huijun, L., Ramsden, L. and Corke, H. (1998) Physical properties and enzymatic digestibility of acetylated and normal maize starch, Carbohydr. Polym. 34, 283289.

    Google Scholar 

  284. Kumada, T., Nakano, S., Sone, Y., Kiriyama, S., Hisanaga, Y., Rikitoku, T., Tamoto, A. and Honda, T. (1999) Clinical effectiveness of degradable starch microspheres in patients with liver cancer, Gan To Kagaku Ryoho 26, 1678–1683.

    CAS  Google Scholar 

  285. Lawton, J.W. (1996) Effect of starch type on the properties of starch containing films, Carbohydr. Polym. 29, 203–208.

    Article  CAS  Google Scholar 

  286. Ratto, J.A., Stenhouse, P.J., Auerbach, M., Mitchell, J. and Farrell, R. (1999) Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system, Polymer 40, 6777–6788.

    Article  CAS  Google Scholar 

  287. Rein, H., and Steffens, K.J. (1997) Surface modification of water-insoluble drug particles with starch, Starch-Starke 49, 364–371.

    Article  CAS  Google Scholar 

  288. Rindlav-Westling, A., Stading, M., Hermansson, A.M. and Gatenholm, P. (1998) Structure, barrier and mechanical properties of amylose and amylopectin films, Carbohydr. Polym. 36, 217–224.

    Article  CAS  Google Scholar 

  289. Tabata, Y. and Ikada, Y. (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities, Biomater. 20, 2169–2175.

    Article  CAS  Google Scholar 

  290. Treib, J., Baron, J.F., Grauer, M.T. and Strauss, R.G. (1999) An international view of hydroxyethyl starches, Intensive Care Med. 25, 258–268.

    Article  CAS  Google Scholar 

  291. Wurzburg, O.B. (1986), Modified Starches: Properties and Uses, CRC Press, Boca Raton, FL.

    Google Scholar 

  292. Dennis, J.M. (1987) Production,properties and uses of alginates, in J.M. Dennis, (ed.), Production and Utilization of Products from Commercial Seaweeds, Food and Agriculture Organization of United Nation, US, pp. 58–115.

    Google Scholar 

  293. Douxian, S., Yan, Z., Anlie, D., Goosen, M.F.A. and Sun, A.M. (1991) Studies on the degradation of chitosan and preparation of alginate-chitosan microcapsules, Polym. Biomater. 3, 295–300.

    Google Scholar 

  294. Edwards-Levy, F. and Levy, M.C. (1999) Serum albumin-alginate coated beads: mechanical properties and stability, Biomater. 20, 2069–2084.

    Article  CAS  Google Scholar 

  295. Ertesvag, H. and Valla, S. (1998) Biosynthesis and applications of alginates, Polym Degrad Stabil. 59, 85–89.

    Article  CAS  Google Scholar 

  296. Gaserod, O., Smidsrod, O. and Skjak-Braek., G. (1998) Microcapsules of alginate-chitosan-I.A quantative study of the interaction between alginate and chitosan, Biomater.19, 1815–1825.

    Google Scholar 

  297. Gaserod, O., Sannes, A. and Skjak-Braek, G. (1999) Microcapsules of alginatechitosan–II. A study of capsule stability and permeability, Biomater. 20, 773–783.

    Article  CAS  Google Scholar 

  298. Gutowska, A., Jeong, B. and Jasionowski, M. (2001) Injectable gels for tissue engineering, The Anatomical Record. 263, 342–349.

    Article  CAS  Google Scholar 

  299. Horncastle, J. (1995) Wound dressings. Past, present, and future, Med. Device Technol. 6, 30–36.

    CAS  Google Scholar 

  300. Kurt, I.D., Skjak- Braek, G. and Olav, S. (1997) Alginate based new materials, Int. J. Biol. Macromol. 21, 47–55

    Article  Google Scholar 

  301. Lee, O.S., Ha, B.J., Park, S.N. and Lee, Y.S. (1997) Studies on on the pH-dependent swelling properties and morphologies of chitosan/calcium-alginate complexed beads, Macromol. Chem. Phys. 198, 2971–2976.

    Article  CAS  Google Scholar 

  302. 302. Leo, W.J., Mc Loughlin, A.J. and Malone, D.M. (1990) Effects of sterilization treatments on some properties of alginate solutions and gels, Biotechnol Progr. 6 51–53.

    Google Scholar 

  303. Martinsen, A. and Smidsrod, O. (1989) Alginate as immobilization material: Correlation between chemical and physical properties of alginate gel beads, Biotechnol Bioeng. 33, 79–89.

    Article  CAS  Google Scholar 

  304. Murata, Y., Maeda, T., Miyamoto, E. and Kawashima, S. (1993) Preparation of chitosan-reinforced alginate gel beads–effects of chitosan on gel matrix erosion, Int.J Pharm. 96, 139–145.

    Article  CAS  Google Scholar 

  305. Ribeiro, A.J., Neufeld, R.J., Arnaud, P. and Chaumeil, J.C. (1999) Microencapsulation of lipophilic drugs in chitosan-coated alginate microspheres, Int. J. Pharm. 187, 115–123.

    Article  CAS  Google Scholar 

  306. Smidsrod, O. and Skjak-Braek G. (1990) Alginate as immobilization matrix for cells, Trends Biotechnol. 8, 71–78.

    Article  CAS  Google Scholar 

  307. Strand, B.L., Morch, V.A. and Skjak-Braek, G. (2000) Alginate as immobilization matrix for cells, Minevra Biotechnol. 12, 223–233.

    Google Scholar 

  308. Thu, B., Bruheim, P., Espevik, T., Smidsrod, O. and Skjak-Braek, G. (1996) Alginate polycation microcapsules–I. Interaction between alginate and poycation, Biomater.17, 1031–1040.

    Google Scholar 

  309. Thu, B., Bruheim, P., Espevik, T., Smidsrod, O. and Skjak-Braek,’ G. (1996) Alginate polycation microcapsules–II. Some functional properties, Biomater.17, 1069–1079.

    Google Scholar 

  310. Vacanti, C., Langer, R., Schloo, B. and Vacanti, J.P. (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation, Plast Recon Surg. 88, 753–758.

    Article  CAS  Google Scholar 

  311. Atkins, T.W. and Peacock, S.J. (1996) In vitro biodegradation of poly(beta-hydroxybutyrate-hydroxyvalerate) microspheres exposed to Hanks’ buffer, newborn calf serum, pancreatin and synthetic gastric juice, J. Biomater. Sci. Polym. 7, 10751084.

    Google Scholar 

  312. Boeree, N.R., Dove, J., Cooper, J.J., Knowles, J. and Hastings, G.W. (1993) Development of a degradable composite for orthopaedic use: mechanical evaluation of a hydroxyapatite-polyhydroxybutyrate composite material, Biomater. 14, 793–796.

    Article  CAS  Google Scholar 

  313. Doi, Y. (1990) Microbial Polyesters, Carl Hanser Verlag, New York.

    Google Scholar 

  314. Gangrade, N. and Price, J.C. (1991) Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties, J. Microencapsul. 8, 185–202.

    Article  CAS  Google Scholar 

  315. Kassab, A.C., Xu, K., Denkbas, E.B., Dou, Y., Zhao, S. and Piskin, E. (1997) Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent, J. Biomater. Sci., Polym. Ed. 8, 947–961.

    Article  CAS  Google Scholar 

  316. Kemnitzer, J.E., Gross, R.A. and McCarthy, S.P. (1992) Stereochemical and morphoplogical effects on th degradation kinetics of polyhydroxybutyrate: a model study, Proc. ACS Div., Polym. Mat. Sci. Eng. 66, 405–407.

    CAS  Google Scholar 

  317. Kostopoulos, L. and Karring, T. (1994) Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer, Clin. Oral Implants Res. 5, 66–74.

    Article  CAS  Google Scholar 

  318. Ljungberg, C., Johansson-Ruden, G., Bostrom, K.J., Novikov, L. and Wiberg, M. (1999) Neuronal survival using a resorbable synthetic conduit as an alternative to primary nerve repair, Microsurg. 19, 259–264.

    Article  CAS  Google Scholar 

  319. Ottenbrite,R.M., Huang, S.J. and Park, K. (1996) Hydrogel and Biodegradable Polymers for Bioapplications, ACS Symp. Ser. 627, Am. Chem. Soc. Washington DC, Maryland, pp. 69–92.

    Google Scholar 

  320. Rouxhet, L., Duhoux, F., Borecky, O., Legras, R. and Schneider, Y.J. (1998) Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly (epsiloncaprolactone) (PCL) films modified by an alkaline hydrolysis and of poly(ethylene terephtalate) (PET) track-etched membranes, J. Biomater. Sci., Polym. Ed. 9, 1279–1304.

    Article  CAS  Google Scholar 

  321. Sendil, D., Gursel, I., Wise, D.L. and Hasirci, V., 1999, Antibiotic release from biodegradable PHBV microparticles. J. Control. Rel. 59, 207–217.

    Article  CAS  Google Scholar 

  322. Timminis, M.R., Gilmore, D.F., Fuller, R.C. and Lenz, R.W. (1993) Bacterial polyesters and their biodegradation, in C. Ching, D. Kaplan and E. Thomas (eds.), Biodegradable Polymers and Packaging. Technomic Publ. Co., Lancaster, PA, pp. 119–130.

    Google Scholar 

  323. Hagenmaier, R.D. and Shaw, P.E. (1990) Moisture permeability of edible films made with fatty acid and hydroxypropyl methylcellulose, J. Agric. Food Chem. 38, 17991803.

    Google Scholar 

  324. Hoenich, N.A. and Stamp, S. (2000) Clinical investigation of the role of membrane structure on blood contact and solute transport characteristics of a cellulose membrane, Biomater. 21, 317–324.

    Article  CAS  Google Scholar 

  325. Kester, J.J. and Fennema, O. (1986) Edible films and coatings: A review, J. Food Sci. 40, 47–59.

    CAS  Google Scholar 

  326. Krogel, I. and Bodmeier, R. (1999) Development of a multifunctional matrix drug delivery system surrounded by an impermeable cylinder, J. Control. Rel. 61, 43–50.

    Article  CAS  Google Scholar 

  327. Nose, Y. (1990) Artificial kidney, is it really not necessary? Artif. Organs, 14, 245251.

    Google Scholar 

  328. Shi, Y., Ploof, J. and Correia, A. (1999) Increasing antibody production with hollow-fiber bioreactors, IVD Technol. Mag. 5, 37–40.

    Google Scholar 

  329. Grasset, L., Cordier, D. and Ville A. (1977) Woven silk as a carrier for the immobilization of enzymes, Biotechnol. Bioeng. 19, 611–618.

    Article  CAS  Google Scholar 

  330. Heslot, H. (1998) Artificial fibrous proteins: A review, Biochim. 80, 19–31.

    Article  CAS  Google Scholar 

  331. Kaplan, D., Adams, W., Farmer, B., and Viney, C. (1993) Silk Polymers: Materials Science and Biotechnology, ACS Symp. Ser.

    Book  Google Scholar 

  332. Liu, Y., Chen, X., Qian, J., Liu, H., Shao, Z., Deng, J. and Yu, T. (1997) Immobilization of glucose oxidase with the blend of regenerated silk fibroin and poly(vinyl alcohol) and its application to a 1,1’-dimethylferrocene-mediating glucose sensor, Appl. Biochem. Biotechnol. 62, 105–117.

    Article  CAS  Google Scholar 

  333. Minoura, N., Tsukada, M. and Nagura, M. (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial, Biomater. 11, 430–434.

    Article  CAS  Google Scholar 

  334. Santin, M., Motta, A., Freddi, G. and Cannas, M. (1999) In vitro evaluation of the inflammatory potential of the silk fibroin, J. Biomed. Mater. Res. 46, 382–389.

    Article  CAS  Google Scholar 

  335. Seves, A., Romano, M., Maifreni, T., Sora, S. and Ciferri, O. (1998) The microbial degradation of silk: a laboratory investigation, Internat. Biodeterior. Biodegrad. 42, 203–211.

    Article  CAS  Google Scholar 

  336. Vollrath, F. (2000) Sternght and structure of spider’s silk, Rev. Mol. Biotechnol. 74, 67–83.

    Article  CAS  Google Scholar 

  337. Zhang Y.O., Zhu, J. and Gu R.A. (1998) Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane, Appl. Biochem. Biotechnol. 75, 215–233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pişkin, E. (2002). Biodegradable Polymers in Medicine. In: Scott, G. (eds) Degradable Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1217-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1217-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6091-4

  • Online ISBN: 978-94-017-1217-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics