Skip to main content

Multivariate Data Analysis in Chemistry

  • Chapter
Chemometrics

Part of the book series: NATO ASI Series ((ASIC,volume 138))

Abstract

Any data table produced in a chemical investigation can be analysed by bilinear projection methods, i. e. principal components and factor analysis and their extensions. Representing the table rows (objects) as points in a p-dimensional space, these methods project the point swarm of the data set or parts of it down on a F-dimensional subspace (plane or hyperplane). Different questions put to the data table correspond to different projections.

This provides an efficient way to convert a data table to a few informative pictures showing the relations between objects (table rows) and variables (table columns).

The methods are presented geometrically and mathematically in parallell with chemical illustrations. more dangerous in the long run than methods that are conservative with respect to the amount of extracted information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C. Albano, W. J. Dunn, U. Edlund, E. Johansson, B. Norderi, M. Sjöström and S. Wold (1978). Four levels of pattern recognition. Anal. Chim Acta Comput. Tech. Optim. 103, 429–443.

    Article  CAS  Google Scholar 

  • C. Albano and S. Wold (1980). Multivariate analysis of solvolysis kinetic data. An empirical classification parallelling charge delocalization in transition state. J. Chem. Soc. Perkin 2, 1980, 1447–51.

    Google Scholar 

  • G. E. P. Box, W. G. Hunter, J. S. Hunter (1978). Statistics for experimenters. Wiley, New York.

    Google Scholar 

  • R. N. Carey, S. Wold and J. O. Westgard (1 975). Principal Components Analysis: An Alternative to: An Alternative to “Referee” Methods in Method Comparison Studies. Anal. Chem. 47, 1824.

    Google Scholar 

  • D. Coomans, D. L. Massart, I. Brockaert, A. Tassin (1 981). Potential methods in pattern recognition. Part 1. Classification aspects of the supervised method ALLOC. Analyt. Chin. Acta Comp. Tech. Optim., 133, 215–224

    Google Scholar 

  • M. P. Derde, D. Coomans and D. L. Massart (1982). Effect of scaling on class modelling with the SIMCA method. Anal. Chim. Acta 141, 187.

    Article  CAS  Google Scholar 

  • P. Diaconis and B. Efron (1983). Computer intensive methods in statistics. Scientific American, May 1983, 96–108.

    Google Scholar 

  • N. R. Draper and H. Smith (1 981). Applied regression analysis, 2. nd edition. Wiley, New York.

    Google Scholar 

  • W. J. Dunn III and S. Wold (1980). Structure - activity analyzed by pattern recognition: The asymmetric case. J. Med. Chem. 23, 595.

    Article  CAS  Google Scholar 

  • W. J. Dunn III and S. Wold (1980). Relationships between chemical structure and biological activity modelled by SIMCA pattern recognition. Bioorg. Chem. 9, 505–23.

    Article  CAS  Google Scholar 

  • H. T. Eastment and W. J. Krzanowski (1982). Cross-validatory choice of the number of components from a principal component analysis. Technometrics 24, 73–77.

    Article  Google Scholar 

  • K. H. Esbensen and S. Wold (1983). SIMCA, MACUP, SELPLS, GDAM, SPACE and UNFOLD: The ways towards regionalized principal components analysis and subconstrained N-way decomposition - with geological illustrations. Proc. Conf. Applied Statistics, Stavanger ( 0. Christie, Ed. ).

    Google Scholar 

  • R. A. Fisher and W. A. MacKenzie (1 923). Studies in Crop Variation. II. The manurial response of different potato varieties. J. Agr. Sci. 13, 311–320.

    Google Scholar 

  • I. E. Frank and B. R. Kowalski (1 982). Chemometrics. Anal. Chem. 54, 232R - 243R.

    Google Scholar 

  • R. Gnanadesikan (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York.

    Google Scholar 

  • J. D. F. Habbema (1983). Some useful extensions of the standard model for probabilistic supervised pattern recognition. Ana_l. Chim. Acta 150, 1–10.

    Article  CAS  Google Scholar 

  • E. Jellum, I. Björnson, R. Nesbakken, E. Johansson and S. Wold (1981). Classification of human cancer cells by means of capillary gas chromatography and pattern recognition analysis. J. Chromatogr. 217, 231–237.

    Article  CAS  Google Scholar 

  • E. Johansson, S. Wold and K. Sjödin (1983). Closure or the constant sum problem in analytical chemistry, with examples from gas chromatography. Submitted to Anal. Chem. 1983.

    Google Scholar 

  • D. Johnels, U. Edlund, E. Johansson and S. Wold (1983). A Multivariate Method for Carbon-13 NMR Chemical Shift Predictions Using Partial Least-Squares Data Analysis. J. Magn. Reson. 55, 316–21.

    CAS  Google Scholar 

  • I. T. Jolliffe (1982). A note on the Use of Principal Components in Regression. Appt. Statist. 31, 300–303.

    Article  Google Scholar 

  • K. G. Jöreskog, J. E. Klovan and R. A. Reyment (1 976). Geological factor analysis. Elsevier, Amsterdam.

    Google Scholar 

  • K. G. Jöreskog and H. Wold, Ed. s (1982). Systems under indirect observation, Vol. I and II. North Holland, Amsterdam.

    Google Scholar 

  • B. R. Kowalski and C. F. Bender (1972). Pattern recognition. A powerful approach to interpreting chemical data. J. Amer. Chem. Soc., 94, 5632–5639.

    Article  CAS  Google Scholar 

  • B. R. Kowalski and C. F. Bender (1973). Pattern recognition. II. Linear and nonlinear methods for displaying chemical data. J. Amer. Chem. Soc., 95, 686–693.

    Article  CAS  Google Scholar 

  • B. R. Kowalski (1974). Pattern Recognition in Chemical Research. In Computers in Chemical and Biochemical Research, Vol. 2 (C. E. Klopfenstein and C. L. Wilkins, Ed. $). Academic Press, N. Y

    Google Scholar 

  • B. R. Kowalski (1980). Chemometrics. Anal. Chem., 52, 112R.

    Article  CAS  Google Scholar 

  • BR. Kowalski and M. A Sharaf (1 981). Extraction of individual mass spectra from gas chromatography-mass spectrometry data of unseparated mixtures. Anal. Chem. 53, 51 8–22.

    Google Scholar 

  • B. R. Kowalski and S. Wold (1982). Pattern Recognition in Chemistry. In: Classification, Pattern Recognition and Reduction of Dimensionality, (P. R. Krishnaiah and L. N. Kanal, Ed. $ ), North-Holland, Amsterdam.

    Google Scholar 

  • W. Lindberg, J-Ä. Persson and S. Wold (1983). Partial Least-Squares Method for Spectrofluorimetric Analysis of Mixtures of Humic Acid and Ligninsulfonate. Anal. Chem. 55, 643–648.

    Article  CAS  Google Scholar 

  • E. R. Malinowski and D. G. Howery (1980). Factor analysis in chemistry. Wiley, New York.

    Google Scholar 

  • K. V. Mardia, J. T. Kent and J. M. Bibby (1979). Multivariate Analysis. Academic Press, New York.

    Google Scholar 

  • H. Martens and H. Russworm, Jr., Ed. s (1983). Food Research and Data Analysis. Applied Science Publ., London 1983.

    Google Scholar 

  • D. L. Massart, A. Dijkstra and L. Kaufman (1 978). Evaluation and Optimization of Laboratory Methods and Analytical Procedures. Elsevier, Amsterdam.

    Google Scholar 

  • R. Mecke und K. Noack (1960). Strukturbestimmungen von ungesättigen Ketonen mit Hilfe von Infrarot-und Ultraviolett-Spektren. Chem. Ber. 93, 210.

    Article  Google Scholar 

  • G. Musumarra, S. Wold and S. Gronowitz (1981). Application of principal component analysis to C-13 NMR shifts of chalcones and their thiophene and furan analogues: a useful tool for the shift assignment and for the study of substituent effects. Org. Magn. Resonance 17, 118–123.

    Google Scholar 

  • G. Musumarra, G. Scarlata, G. Romano and S. Clementi (1984). Identification of drugs by principal components analysis of Rf data obtained by TLC in different eluent systems. J. Anal. Toxicol. 1984, in press.

    Google Scholar 

  • K. Pearson (1 901). On lines and planes of closest fit to systems of points in space. Phil. Mag. (6) 2, 559–72.

    Google Scholar 

  • Schiffman, S. S., Reynolds, M. L. and Young, F. W (1 981). Introduction to multidimensional scaling: Theory, methods and applications. Academic Press, New York 1981.

    Google Scholar 

  • H. F Shurvell and A. Dunham (1978). The application of factor ana- lysis and Raman band contour resolution techniques to the study of aqueous Zn(II) chloride solutions. Can. J. Spectrosc. 23, 160–5.

    CAS  Google Scholar 

  • M. Sjöström and U. Edlund (1977). Analysis of C-13 NMR data by means of pattern recognition methodology. J. Magn. Reson. 25, 285.

    Google Scholar 

  • M. Sjöström and B. R. Kowalski (1979). A comparison of five pattern recognition methods based on the classification results from six real data bases. Anal. Chim. Acta 112, 11–30.

    Article  Google Scholar 

  • B. Söderström, S. Wold and G Blomqvist (1 982). Pyrolysis-Gas Chromatography Combined with SIMCA Pattern Recognition for Classification of Fruit-bodies of Some Ectomycorrhizal Suillus Species. J. Gen. Microbiol. 128, 1783–1784.

    Google Scholar 

  • J. G. Topliss, R. P. Edwards (1 979). Chance factors in studies of quantitative structure-activity relationships. J. Med. Chem., 22, 1238–1244.

    Google Scholar 

  • K. Varmuza (1980). Pattern recognition in chemistry, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • H. Wold (1982). Soft Modeling. The Basic Design and Some Extensions. In Jöreskog and Wold, Ed. s ( 1982 ).

    Google Scholar 

  • S. Wold (1976). Pattern recognition by means of disjoint principal components models. Pattern Recognition 8, 127–139.

    Article  Google Scholar 

  • S. Wold and M. Sjöström (1977). SIMCA, a method for analyzing chemical data in terms of similarity and analogy. In Chemometrics, Theory and Application ( B. Kowalski, Ed.). Amer. Chem. Soc. Symp_Ser. 52.

    Google Scholar 

  • S. Wold (1978). Cross validatory estimation of the number of components in factor and principal components models. Technometrics 20, 397–406.

    Article  Google Scholar 

  • S. Wold and W. J. Dunn III (1983). Multivariate quantitative structure activity relationships (QSAR): Conditions for their applicability. J. Chem. Inf Comput. Sci. 23, 6–13.

    Article  CAS  Google Scholar 

  • S. Wold, W. J. Dunn and S. Hellberg (1982). Survey of applications of pattern recognition to structure-activity problems. Research Group for Chemometrics, Tech. Rep. 1–1 982, Inst. of Chemistry, Ume$ University, S-901 87 Ume., Sweden

    Google Scholar 

  • S. Wold et. al. (1983). Pattern Recognition: Finding and Using Regularities in Multivariate Data. In Martens and Russwurm, Ed. s ( 1983 ).

    Google Scholar 

  • S. M. Wolfrum and G. Kateman (1983). A survey of chemometric publications of 1982. Chemometric Newsletter No. 9 (Jan. 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wold, S. et al. (1984). Multivariate Data Analysis in Chemistry. In: Kowalski, B.R. (eds) Chemometrics. NATO ASI Series, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1026-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1026-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8407-1

  • Online ISBN: 978-94-017-1026-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics