Skip to main content

Abstract

Senescence is the terminal phase in the development of a plant, plant organ or plant tissue. Flower senescence, for example, occurs after pollination when the petals no longer serve a useful purpose, and for certain flowers is accompanied by a climacteric rise in ethylene production. In carnation, this climacteric surge in ethylene formation is temporally coincident with inrolling of the petals, which is the first morphological manifestation of petal senescence (Thompson et al.,1982). Petal inrolling is thought to reflect loss of cell turgor attributable to membrane leakiness. Indeed, there is growing evidence that a progressive decline in membrane selective permeability and the ensuing loss of intracellular compartmentation are characteristic features of both flower and leaf senescence (Thompson et al., 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F.B. (1973) Ethylene in Plant Biology, Academic Press, New York, pp. 1–302.

    Book  Google Scholar 

  • Allan, D., Billah, M.M., Finean, J.B., and Michell, R.H. (1976) Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular Cat+, Nature (London) 261, 58–60.

    Article  CAS  Google Scholar 

  • Baker, J.E., Wang, C.Y., Lieberman, M., and Hardenburg, R. (1977) Delay in senescence in carnations by a rhizobitoxine analog and sodium benzoate, HortScience 12, 38–39.

    CAS  Google Scholar 

  • Baker, J.E., Wang, C.Y., and Terlizzi, D.E. (1985) Delay of senescence in carnations by pyrazon, phenidone analogs and iron, HortScience 20, 121–122.

    CAS  Google Scholar 

  • Barber, R.F. and Thompson, J.E. (1980) Senescence-dependent increase in permeability of liposomes prepared from cotyledon membranes, J. Exp. Bot. 31, 1305–1313.

    Article  CAS  Google Scholar 

  • Barber, R.F. and Thompson, J.E. (1983) Neutral lipids rigidify unsaturated acyl chains in senescing membranes, J. Exp. Bot. 34, 268–276.

    Article  CAS  Google Scholar 

  • Beutelmann, P. and Kende, H. (1977) Membrane lipids in senescing flower tissue of Ipomoea tricolor, Plant Physiol. 59, 888–893.

    Article  CAS  PubMed  Google Scholar 

  • Biale, J.B. (1960) Respiration in fruits, Encycl. Plant Physiol. 2, 536–592.

    Google Scholar 

  • Biale, J.B. and Young, R.E. (1981) Respiration and ripening in fruits — retrospect and prospect, in J. Friend and M.J.C. Rhodes (eds.), Recent Advances in the Biochemistry of Fruits and Vegetables, Academic Press, London, pp. 1–39.

    Google Scholar 

  • Blank, A. and McKeon, T.A. (1991) Three RNases in senescent and nonsenescent wheat leaves, Plant Physiol. 97, 1402–1408.

    Article  CAS  PubMed  Google Scholar 

  • Borochov, A. and Woodson, W.R. (1989) Physiology and biochemistry of flower petal senescence, Hort. Rev. 11, 15–43.

    CAS  Google Scholar 

  • Borochov, A., Halevy, A.H., Borochov, H., and Shinitzky, M. (1978) Microviscosity of plasmalemmas in rose petals as affected by age and environmental factors, Plant Physiol. 61, 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Borochov, A., Cho, M.H., and Boss, W.F. (1994) Plasma membrane lipid metabolism of petunia petals during senescence, Physiol. Plant. 90, 279–284.

    Article  CAS  Google Scholar 

  • Bovy, A.G., Angenent, G.C., Dons, H.J.M., and van Altvorst, A.C. (1999) Heterologous expression of the Arabidopsis eta-1 allele inhibits the senescence of carnation flowers, Molec. Breeding 5, 301–308.

    Article  CAS  Google Scholar 

  • Brown, J.H., Lynch, D.V., and Thompson, J.E. (1987) Molecular species specificity of phospholipids breakdown in microsomal membranes of senescing carnation flowers, Plant Physiol. 85, 679–683.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston, V. (1997) The molecular biology of leaf senescence, J. Exp. Bot. 48, 181–191.

    Article  Google Scholar 

  • Celikel, F.G.and Van Doom W.G. (1995) Solute leakage, lipid peroxidation, and protein degradation during the senescence of Iris tepals, Physiol. Plant. 94, 515–521.

    Article  Google Scholar 

  • Chang, C., Kwok, S.F., Bleecker, A.B., and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators, Science 262, 539–544.

    CAS  Google Scholar 

  • De Bellis, L., Picciarelli, P., Pistelli, L., and Alpi, A. (1990) Localization of glyoxylate-cycle marker enzymes in peroxisomes of senescent leaves and green cotyledons, Planta 180, 435–439.

    Article  Google Scholar 

  • De Bellis, L., Tsugeki, R., and Nishimura, M. (1991) Glyoxylate cycle enzymes in peroxisomes isolated from petals of pumpkin during senescence, Plant Cell Physiol. 32, 1227–1235.

    Google Scholar 

  • Droillard, M.J. and Paulin, A. (1990) Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation during senescence, Plant Physiol. 94, 1187–1192.

    Article  CAS  PubMed  Google Scholar 

  • Dryer, J.H., Ryu, S.B., and Wang, X. (1994) Multiple forms of phospholipase D following germination and during leaf development of castor bean, Plant Physiol. 105, 715–724.

    Google Scholar 

  • Duxbury, C.L., Legge, R.L., Paliyath, G., and Thompson, J.E. (1991a) Lipid breakdown in smooth microsomal membranes from bean cotyledons alters membrane proteins and induces proteolysis, J. Exp. Bot. 42, 103–112.

    Article  CAS  Google Scholar 

  • Duxbury, C.L., Legge, R.L., Paliyath, G., Barber, R.L., and Thompson, J.E. (1991b) Alterations in membrane protein conformation in response to senescence-related changes in membrane fluidity and sterol concentration, Phytochem. 30, 63–68.

    Article  CAS  Google Scholar 

  • Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Eze, J., M., O., Mayak, S., Thompson, J., E., and Dumbroff; E.B. (1986) Senescence in carnation flowers: temporal and physiological relationships among water status, ethylene, abscisic acid and membrane permeability, Physiol. Plant. 68, 323–328.

    CAS  Google Scholar 

  • Fobel, M., Lynch, D.V., and Thompson, J.E. (1987) Membrane deterioration in senescing carnation flowers. Coordinated effects of phospholipid degradation and the action of membranous lipoxygenase, Plant Physiol. 85, 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Fujino, D.W., Reid, M.S., and Yang, S.F. (1980) Effects of amino-oxyacetic acid on post-harvest characteristics of carnation, Acta Hort. 113, 59–64.

    Google Scholar 

  • Galliard, T. (1980) Degradation of acyl lipids: hydrolytic and oxidative enzymes, in P.K. Stumph (ed.), The Biochemistry of Plants, Academic Press, New York.

    Google Scholar 

  • Gerbling, H. and Gerhardt, B. (1987) Activation of fatty acids by non-glyoxysomal peroxisomes, Planta 171, 386–392.

    Article  CAS  Google Scholar 

  • Gerhardt, B. (1986) Basic metabolic function of the higher plant peroxisome, Physiol. Veg. 24, 397–410.

    CAS  Google Scholar 

  • Graham, I.A., Smith, L.M., Leaver, C.J., and Smith, S.M. (1990) Developmental regulation of expression of the malate synthase gene in transgenic plants, Plant Mol. Biol. 15, 539–549.

    Article  CAS  PubMed  Google Scholar 

  • Grbic, V. and Bleecker, A.B. (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis, Plant J. 8, 595–602.

    Article  CAS  Google Scholar 

  • Grunze, M. and Deuticke, B. (1974) Change of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes, Biochim. Biophys. Acta 356, 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, A., D. and Kende, H. (1975) Ethylene-enhanced ion and sucrose efflux in morning glory flower tissue, Plant Physiol. 55, 663–669.

    CAS  Google Scholar 

  • Hong, Y., Wang, T.W., Hudak, K.A., Schade, F., Froese, C., and Thompson, J.E. (2000) An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence, PNAS USA 97, 8717–8722.

    Google Scholar 

  • Kemper, W.M., Berry, K.W. and Merrick, W.C. (1976) Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Ba, J. Biol. Chem. 251, 5551–5557.

    CAS  PubMed  Google Scholar 

  • Kende, H. and Baumgartner, B. (1974) Regulation of aging in flowers of Ipomoea tracolor by ethylene, Planta 116, 279–289.

    Article  CAS  Google Scholar 

  • Kirby, C.J. and Green, C. (1980) Erythrocyte membrane cholesterol levels and their effects on membrane proteins, Biochim. Biophys. Acta 598, 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, R.M., Jakubowski, J.A., Vaillancourt, R., and Deykin, D. (1982) Effect of membrane cholesterol on phospholipid metabolism in thrombin-stimulated platelets, J. Biol. Chem. 257, 6844–6849.

    CAS  PubMed  Google Scholar 

  • Landolt, R. and Matile, P. (1990) Glyoxysome-like microbodies in senescent spinach leaves, Plant Science 72, 159–163.

    Article  CAS  Google Scholar 

  • Lawton, K.A., Raghothama, K.G., Goldsbrough, P.B., and Woodson, R.W. (1990) Regulation of senescence-related gene expression in carnation flower petals by ethylene, Plant Physiol. 93, 1370–1375.

    Article  CAS  PubMed  Google Scholar 

  • Lay-Yee, M., Stead, A.D., and Reid, M.S. (1992) Flower senescence in daylily (Hemerocallis), Physiol. Plant. 86, 308–314.

    Article  CAS  Google Scholar 

  • Legge, R.L. and Brown, R.M. (1988) Modification of protoplast cell wall regeneration by membrane perturbation, Protoplasma 143, 38–42.

    Article  Google Scholar 

  • Legge, R.L., Thompson, J.E., Murr, D.P., and Tsujita, M.J. (1982) Sequential changes in lipid fluidity and phase properties of microsomal membranes from senescing rose petals, J. Exp. Bot. 33, 303–312.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., Sridhara, S., and Thompson, J.E. (1984) Involvement of calcium and calmodulin in membrane deterioration during senescence of pea foliage, Plant Physiol. 75, 329–335.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, D.V. and Thompson, J.E. (1984) Lipoxygenase-mediated production of superoxide anion in senescing plant tissues, FEES Lett. 173, 251–254.

    Article  CAS  Google Scholar 

  • Lynch, D.V., Sridhara, S., and Thompson, J.E. (1985) Lipoxygenase-generated hydroperoxides account for the nonphysiological features of ethylene formation from 1-aminocyclopropane- 1 -carboxylic acid by microsomal membranes of carnations, Planta 164, 121–125.

    Article  CAS  Google Scholar 

  • Mayak, S., Vaadia, Y., and Dilley, D.R. (1977) Regulation of senescence in carnation by ethylene, Plant Physiol. 59, 591–593.

    Article  CAS  PubMed  Google Scholar 

  • Mayak, S., Legge. R.L., and Thompson, J.E. (1983) Superoxide radical production by microsomal membranes from senescing carnation flowers: an effect on membrane fluidity, Phytochemistry 22, 1375–1380.

    CAS  Google Scholar 

  • McKersie, B.D. and Thompson, J.E. (1979) Influence of plant sterols on the phase properties of phospholipids bilayers, Plant Physiol. 63, 802–805.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, R. (1966) Ethylene production during senescence of flowers, J. Hortic. Sci. 41, 279–290.

    CAS  Google Scholar 

  • Nichols, R. (1977) Sites of ethylene production in the pollinated and unpollinated senescing carnation inflorescence, Planta 135, 155–159.

    Article  CAS  Google Scholar 

  • Nishimura, M., Takeuchi, Y., De Bettis, L., and Hara-Nishimura, I. (1993) Leaf peroxisomes are directly transformed to glyoxysomes during senescence of pumpkin cotyledons, Protoplasma 175, 131–137.

    Article  Google Scholar 

  • Noh, Y.-S. and Amasino, R.M. (1999a) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol. Biol. 41, 181–194.

    Article  CAS  PubMed  Google Scholar 

  • Noh, Y.-S. and Amasino, R.M. (1999b) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol. Biol. 41, 195–206.

    CAS  Google Scholar 

  • Overbeek, J.H.M. and Woltering, E.J. (1990) Synergistic effect of 1-aminocyclopropane-l-carboxylic acid and ethylene during senescence of isolated carnation petals, Physiol. Plant. 79, 368–376.

    Article  CAS  Google Scholar 

  • Paliyath, G. and Thompson, J.E. (1987) Calcium and calmodulin regulated breakdown of phospholipid by microsomal membranes from bean cotyledons, Plant Physiol. 83, 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Paliyath, G. and Thompson, J.E. (1990) Evidence for early changes in membrane structure during post-harvest development of cut carnation (Dianthus caryophyllus L.) flowers, New Phytol. 114, 555–562.

    Article  Google Scholar 

  • Park, K.Y., Drory, A., and Woodson, W.R. (1992) Molecular cloning of an 1-aminocyclopropane-l-carboxylate synthase from senescing carnation flower petals, Plant Mol. Biol. 18, 377–386.

    CAS  Google Scholar 

  • Park, M.H., Lee, Y.B. and Joe, Y.A. (1997) Hypusine is essential for eukaryotic cell proliferation. Bio Signals 6, 115–123.

    Article  CAS  Google Scholar 

  • Pistelli, L., Rascio, N., De Bettis, L., and Alpi, A. (1989) Localization of 13-oxidation enzymes in peroxisomes of rice coleoptiles, Physiol. Plant. 76, 144–148.

    Article  CAS  Google Scholar 

  • Platt-Aloia, K.A. and Thomson, W.W. (1985) Freeze-fracture evidence of gel phase lipid in membranes of senescing cowpea cotyledons, Planta 163, 360–369.

    Article  CAS  Google Scholar 

  • Quirino, B.F., Noh, Y.S., Himelblau, E., and Amasino, R., M. (2000) Molecular aspects of leaf senescence, Trends in Plant Sci. 5, 278–282.

    Google Scholar 

  • Rosorius, O., Reichart, B., Kratzer, F., Heger, P., Dabauvalle, M.C., and Hauber, J. (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1, J. Cell Sci. 112, 2369–2380.

    Google Scholar 

  • Ryu, S.B. and Wang, X. (1995) Expression of phospholipase D during castor bean leaf senescence, Plant Physiol. 108, 713–719.

    CAS  PubMed  Google Scholar 

  • Sacher, J.A. (1973) Senescence and postharvest physiology, Annu. Rev. Plant Physiol. 24, 197–224.

    Article  CAS  Google Scholar 

  • Savin, K.W., Baudinette, S.C., Graham, M.W., Michael, M.Z., Nugent, G.D., Lu, C-Y., Chandler, S.F., and Cornish, E.C. (1995) Antisense ACC oxidase RNA delays carnation petal senescence, HortSci. 30, 970–972.

    CAS  Google Scholar 

  • Senarata, T., McKersie, B.D., and Borochov, A. (1987) Desiccation and free radical mediated changes in plant membranes, J. Exp. Bot. 38, 2005–2014.

    Article  Google Scholar 

  • Shinitzky, M. and Inbar, M. (1976) Microviscosity parameters and protein mobility in biological membranes, Biochim. Biophys. Acta 433, 133–149.

    Article  CAS  Google Scholar 

  • Shinitzky, M., Skarnick, Y., and Haron-Ghera, N. (1976) Effective tumor immunization induced by cells of elevated membrane-lipid microviscosity, Proc. Natl. Acad. Sci. U.S.A. 76, 5313–5316.

    Article  Google Scholar 

  • Smalle, J. and van der Straeten, D. (1997) Ethylene and vegetative development, Physiol. Plant. 100, 593–605.

    Article  CAS  Google Scholar 

  • Stimart, D.P., Brown, D.J., and Solomos, T. (1983) Development of flowers and changes in carbon dioxide, ethylene and various sugars of cut Zinnia elegans. J. Am. Soc. Hortic. Sci. 108, 651–655.

    CAS  Google Scholar 

  • Suttle, J.C. and Kende, H. (1978) Ethylene and senescence in petals of Tradescantia, Plant Physiol. 62, 267271.

    Google Scholar 

  • Thompson, J.E., Mayak, S., Shinitzky, M., and Halevy, A.H. (1982) Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene, Plant Physiol. 69, 859–863.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.E., Froese, C.D., Madey, E., Smith, M.D., and Hong, Y. (1998) Lipid metabolism during plant senescence, Prog. Lipid Res. 37, 119–141.

    Article  CAS  PubMed  Google Scholar 

  • Titus, D.E. and Becker, W.M. (1985) Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy, J. Cell Biol. 101, 1288–1299.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. and Woodson, W.R. (1991) A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis, Plant Physiol. 96, 1000–1001.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T.-W., Lu, L., Wang, D., and Thompson, J.E. (2001) Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor-5A from tomato, J. Biol. Chem. 276, 17541–17549.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Xu, L., and Zheng, L. (1994) Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L., J. Biol. Chem. 269, 20312–20317.

    CAS  PubMed  Google Scholar 

  • Warren, G.B., Houslay, M., Metcalfe, D., and Birdsall, N.J.M. (1975) Cholesterol is excluded from the phospholipids annulus surrounding an active calcium transport protein, Nature 255, 684–687.

    Article  CAS  PubMed  Google Scholar 

  • Weaver, L.M., (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment, Plant Mol. Biol. 37, 455–469.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleecker, A.B., Chang, C., Meyerowitz, E.M., and Klee, H.J. (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants, Nature Biotechnol. 15, 444–447.

    Article  CAS  Google Scholar 

  • Woltering, E.J. and Van Doorn, W.G. (1988) Role of ethylene in the senescence of petals: morphological and taxonomical relationships, J. Exp. Bot. 39, 1605–1606.

    Article  CAS  Google Scholar 

  • Woodson, W.R. (1987) Changes in protein and mRNA populations during development of carnation petals, Physiol. Plant. 71, 495–502.

    Article  CAS  Google Scholar 

  • Woodson, W.R., Hanchey, S.H., and Chrisholm, D.N. (1985) Role of ethylene in the senescence of isolated Hibiscus petals, Plant Physiol, 79, 679–683.

    Article  CAS  PubMed  Google Scholar 

  • Woodson, W.R., Park, K.Y., Drory, A., Larson, P.B., and Wang, H. (1992) Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers, Plant Physiol. 99, 526–532.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol. 35, 155–189.

    Article  CAS  Google Scholar 

  • Yao, K., Paliyath, G., and Thompson, J.E. (1991) Nonsedimentable microvesicles from senescing bean cotyledons contain gel phase-forming phospholipid degradation products, Plant Physiol. 97, 502–508.

    Article  CAS  PubMed  Google Scholar 

  • Yeaman, S.J. (1990) Hormone-sensitive lipase — a multipurpose enzyme in lipid metabolism, Biochim. Biophys. Acta 1052, 128–132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thompson, J.E., Wang, TW. (2002). Molecular Genetics of Flower Senescence. In: Vainstein, A. (eds) Breeding For Ornamentals: Classical and Molecular Approaches. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0956-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0956-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5975-8

  • Online ISBN: 978-94-017-0956-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics