Skip to main content

Aging and Longevity in the Filamentous Fungus Podospora anserina

  • Chapter
Aging of Organisms

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 4))

Abstract

The fungi represent a diverse assembly of heterotrophic eukaryotes. In principal, they can be divided into two groups, the yeasts and the mycelial (filamentous) fungi. In yeasts, a single cell predominantly represents the individuum. In contrast, the vegetation body of mycelial fungi is represented by the so-called mycelium, a thallus consisting of a network of long filamentous “cells,” termed hyphae. Mycelial growth proceeds via the elongation of the peripheral hyphae [1]. From time to time, these hyphae branch at their tips. If two independent mycelia come into close contact they may fuse by hyphal anastomoses giving rise to the formation of a heterokaryon, a mycelium containing the nuclei of the two fusion partners. This process is genetically controlled [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartnicki-Garcia S (2002). Hyphal tip growth: outstanding questions. In: Osiewacz HD, ed. Molecular Biology of Fungal Development. New York, Basel: Marcel Dekker, pp. 29–58.

    Google Scholar 

  2. Glass NL, Saupe SJ (2002). Vegetative incompatibilityin filamentous ascomycetes. In: Osiewacz HD, ed. Molecular Biology of Fungal Development. New York, Basel: Marcel Dekker, pp. 109–32.

    Google Scholar 

  3. Mosch H-U (2002). Pseudohyphal growth in yeast. In: Osiewacz HD, ed. Molecular Biology of Fungal Development. New York, Basel: Marcel Dekker, pp. 1–27.

    Google Scholar 

  4. Smith ML, Bruhn JN and Anderson JB (1992). The fungus Armillaria bulbosa is amongst the largest and oldest living organisms. Nature 356: 428–431.

    Google Scholar 

  5. Barton AA (1950). Some aspects of cell division in Saccharomyces cerevisiae. J Gen Microbiol. 4: 84–87.

    Google Scholar 

  6. Mortimer RK, Johnston JR (1959). Life span of individual yeast cells. Nature 183: 1751–1752.

    PubMed  CAS  Google Scholar 

  7. Marcou D (1961). Notion de longevite et nature cytoplasmatique du determinant de senescence chez quelques champignons. Ann Sci Nat Bot. 653–764.

    Google Scholar 

  8. Caten CE, Handley L (1978). Vegetative death syndrome in Aspergillus glaucus. Bull Br Mycol Soc. 12: 114.

    Google Scholar 

  9. Handley L, Caten CE (1973). Vegetative death: a mitochondrial mutation in Aspergillus amstelodami. Heredity 31: 136.

    Google Scholar 

  10. Lazarus CM, Earl AJ, Turner G, Kuntzel H (1980). Amplification of a mitochondrial DNA sequence in the cytoplasmically inherited “ragged’’ mutant of Aspergillus amstelodami. Eur JBiochem. 106: 633–41.

    CAS  Google Scholar 

  11. Lazarus CM, Kuntzel H (1981). Anatomy of amplified mitochondrial DNA in “ragged’’ mutants of Aspergillus amstelodami: excision points within genes and a common 215 bp segment containing a possible origin of amplification. Curr Genet. 4: 99–107.

    CAS  Google Scholar 

  12. Jinks JL (1956). Naturally occurring cytoplasmic changes changes in fungi. CR Trav Lab Carlsberg Ser Pysiol. 26: 183–203.

    Google Scholar 

  13. Lindberg GD (1959). A transmissible disease of Helminthosporium victoriae. Phytopathology 49: 29–52.

    Google Scholar 

  14. Bertrand H, Collins RA, Stohl LL, Goewert RR, Lambowitz AM (1980). Deletion mutants of Neurospora crassa mitochondrial DNA and their relationship to the “stop-start’’ growth phenotype. Proc Natl Acad Sci USA 77: 6032–6036.

    PubMed  CAS  Google Scholar 

  15. de Vries H, de Jonge JC, van’t Sant S, Agsteribbe E, Arnberg A (1981). A “stopper’’ mutant of Neurospora crassa containing two populations of aberant mitochondrial DNA. Curr Genet. 3: 205–211.

    Google Scholar 

  16. Bertrand H, Chan BS, Griffiths AJ (1985). Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell, 41: 877–884.

    PubMed  CAS  Google Scholar 

  17. Akins RA, Kelley RL, Lambowitz AM (1986). Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47: 505–516.

    PubMed  CAS  Google Scholar 

  18. de Vries H, Alzner-DeWeerd B, Breitenberger CA, Chang DD, de Jonge JC, RajBhandary UL (1986). The E35 stopper mutant of Neurospora crassa: precise localization of deletion endpoints in mitochondrial DNA and evidence that the deleted DNA codes for a subunit of NADH dehydrogenase. EMBO J. 5: 779–785.

    PubMed  Google Scholar 

  19. Bertrand H, Wu Q, Seidel-Rogol BL (1993). Hyperactive recombination in the mitochondrial DNA of the natural death nuclear mutant of Neurospora crassa. Mol Cell Biol. 13: 6778–6788.

    PubMed  CAS  Google Scholar 

  20. Rieck A, Griffiths AJ, Bertrand H (1982). Mitochondrial variants of Neurospora intermedia from nature. Can J Genet Cytol. 24: 741–759.

    PubMed  CAS  Google Scholar 

  21. Griffiths AJF, Bertrand H (1984). Unstable cytoplasm in Hawaiian strains of Neurospora intermedia. Curr Genet. 8: 387–98.

    Google Scholar 

  22. Griffiths AJ, Yang X (1995). Recombination between heterologous linear and circular mitochondrial plasmids in the fungus Neurospora. Mol Gen Genet. 249: 25–36.

    PubMed  CAS  Google Scholar 

  23. Bertrand H, Griffiths AJ, Court DA, Cheng CK (1986). An extrachromosomal plasmid is the etiological precursor of kalDNA insertion sequences in the mitochondrial chromosome of senescent Neurospora. Cell 47: 829–837.

    PubMed  CAS  Google Scholar 

  24. Chevaugeon J, Digbeu S (1960). Un second facteur cytoplasmique infectant chez le Pestalozzia annulata. CR Acad Sci. 251: 3043–3061.

    CAS  Google Scholar 

  25. Rizet G (1953). Sur l’impossibilite d’obtenir la multiplication vegetative initerrompuet illimite de l’ascomycete Podospora anserina. CR Acad Sci Paris 237: 838–855.

    CAS  Google Scholar 

  26. Rizet G (1953). Sur la longevite des phenomen des souches de Podospora anserina. CR Acad Sci Paris 237: 1106–1109.

    CAS  Google Scholar 

  27. Bockelmann B, Esser K l1986). Plasmids of mitochondrial origin in senescent mycelia of Podospora curvicolla. Curr Genet. 10: 803–810.

    Google Scholar 

  28. Gagny B, Rossignol M, Silar P (1997). Cloning, sequencing, and transgenic expression of Podospora curvicolla and Sordaria macrospora eEF1A genes: relationship between cytosolic translation and longevityin filamentous fungi. Fungal Genet Biol. 22: 191–198.

    PubMed  CAS  Google Scholar 

  29. Esser K, Tudzynski P l1980). Senescence in fungi. In: Thimann KV, ed. Senescence in Plants. Boca Raton: CRC Press, pp. 67–83.

    Google Scholar 

  30. Esser K, Kuck U, Lang-Hinrichs C, et al. l1986). Plasmids of Eukaryotes. Fundamentalsand Applications. Heidelberg, New York, Tokyo: Springer

    Google Scholar 

  31. Osiewacz HD (1990). Molecular analysis of aging processes in fungi. Mutat Res. 237: 1–8.

    PubMed  CAS  Google Scholar 

  32. Griffiths AJ (1992). Fungal senescence. Annu Rev Genet. 26: 351–372.

    PubMed  CAS  Google Scholar 

  33. Osiewacz HD (1997). Genetic regulation of aging. JMol Med. 75: 715–727.

    CAS  Google Scholar 

  34. Osiewacz HD, Kimpel E (1999). Mitochondrial-nuclear interactions and lifespan control in fungi. Exp Gerontol. 34: 901–909.

    PubMed  CAS  Google Scholar 

  35. Bertrand H (2000). Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control. Annu Rev Phytopathol. 38: 397–422.

    PubMed  CAS  Google Scholar 

  36. Osiewacz HD, Borghouts C (2000). Mitochondrial oxidative stress and aging in the filamentous fungus Podospora anserina. Ann NYAcad Sci. 908: 31–39.

    CAS  Google Scholar 

  37. Osiewacz HD (2002). Mitochondrial functions and aging. Gene 286: 65–71.

    PubMed  CAS  Google Scholar 

  38. Osiewacz HD (2002). Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev. 123: 755–764.

    PubMed  CAS  Google Scholar 

  39. Osiewacz HD (2002). Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev. 28: 1–18.

    Google Scholar 

  40. Osiewacz HD, Scheckhuber CQ (2002). Senescence in Podospora anserina. In: Osiewacz HD, ed. Molecular Biology of Fungal Development. New York, Basel: Marcel Dekker, pp. 87–108.

    Google Scholar 

  41. Delay C (1963). Observations inframicroscopiques sur le mycelium “senescent” du Podospora anserina. CR Acad Sci Paris 256: 4721–4724.

    Google Scholar 

  42. Silliker ME, Liotta MR, Cummings DJ (1996). Elimination of mitochondrial mutations by sexual reproduction: two Podospora anserina mitochondrial mutants yield only wildtype progeny when mated. Curr Genet. 30: 318–324.

    PubMed  CAS  Google Scholar 

  43. Silliker ME, Monroe JA, Jorden MA (1997). Evaluation of the efficiency of sexual reproduction in restoring Podospora anserina mitochondrial DNA to wild-type. Curr Genet. 32: 281–286.

    PubMed  CAS  Google Scholar 

  44. Marcou D, Schecroun J (1959). La senescence chez Podospora pourrait etre due a des particles cytoplasmatiques infectantes. CR Acad Sci. 248: 280–283.

    Google Scholar 

  45. Rizet G (1957). Les modifications qui conduisent a la senescence chez Podospora sontelles de nature cytoplasmique. CR Acad Sci. 244: 663–665.

    CAS  Google Scholar 

  46. Tudzynski P, Esser K (1979). Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol Gen Genet. 173: 71–84.

    PubMed  CAS  Google Scholar 

  47. Esser K, Tudzynski P (1977). Prevention of senescence in the ascomycete Podospora anserina by the antibiotic tiamulin. Nature 265: 454–456.

    PubMed  CAS  Google Scholar 

  48. Tudzynski P, Esser K (1977). Inhibitors of mitochondrial function prevent senescence in the ascomycete Podospora anserina. Mol Gen Genet. 153: 111–113.

    PubMed  CAS  Google Scholar 

  49. Koll F, Begel O, Keller AM, Vierny C, Belcour L (1984). Ethidium bromide rejuvenation of senescent cultures of Podospora anserina: loss of senescence-specific DNA and recovery of normal mitochondrial DNA. Curr Genet. 8: 127–134.

    CAS  Google Scholar 

  50. Smith JL, Rubenstein I (1973). Cytoplasmic inheritance of the timing of ``senescence’’ in Podospora anserina. J Gen Microbiol. 76: 297–304.

    Google Scholar 

  51. Smith JR, Rubenstein I (1973). The development of `senescence’ in Podospora anserina. J Gen Microbiol. 76: 283–296.

    Google Scholar 

  52. Esser K, Keller W (1976). Genes inhibiting senescence in the ascomycete Podospora anserina. Mol Gen Genet. 144: 107–110.

    PubMed  CAS  Google Scholar 

  53. Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978). Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet. 162: 341–343.

    PubMed  CAS  Google Scholar 

  54. Cummings DJ, Belcour L, Grandchamp C (1979). Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet. 171: 239–250.

    PubMed  CAS  Google Scholar 

  55. Belcour L, Begel O, Mosse MO, Vierny-Jamet C (1981). Mitochondrial DNA amplification in senescent cultures of Podospora anserina: variability between the retained, amplified sequences. Curr Genet. 3: 13–21.

    CAS  Google Scholar 

  56. Kück U, Stahl U, Esser K (1981). Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Curr Genet. 3: 151–156.

    Google Scholar 

  57. Osiewacz HD, Esser K (1984). The mitochondrial plasmid of Podospora anserina: A mobile intron of a mitochondrial gene. Curr Genet. 8: 299–305.

    CAS  Google Scholar 

  58. Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990). The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet. 17: 375–402.

    PubMed  CAS  Google Scholar 

  59. Kück U, Osiewacz HD, Schmidt U, et al. (1985). The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet. 9: 373–382.

    PubMed  Google Scholar 

  60. Jamet-Vierny C, Boulay J, Begel O, Silar P (1997). Contribution of various classes of defective mitochondrial DNA molecules to senescence in Podospora anserina. Curr Genet. 31: 171–178.

    PubMed  CAS  Google Scholar 

  61. Jamet-Vierny C, Boulay J, Briand JF (1997). Intramolecular cross-overs generate deleted mitochondrial DNA molecules in Podospora anserina. Curr Genet. 31: 162–170.

    PubMed  CAS  Google Scholar 

  62. Sellem CH, Lecellier G, Belcour L (1993). Transposition of a group II intron. Nature 366: 176–178.

    PubMed  CAS  Google Scholar 

  63. Borghouts C, Kerschner S, Osiewacz HD (2000). Copper-dependence of mitochondrial DNA rearrangements in Podospora anserina. Curr Genet. 37: 268–275.

    PubMed  CAS  Google Scholar 

  64. Michel F, Lang BF l1985). Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316: 641–643.

    Google Scholar 

  65. Fassbender S, Bruhl KH, Ciriacy M, Kück U (1994). Reverse transcriptase activity of an intron encoded polypeptide. EMBO J. 13: 2075–2083.

    PubMed  CAS  Google Scholar 

  66. Vierny-Jamet C, Keller AM, Begel O, Belcour L(1982). A sequence of mitochondrial DNA is associated with the onset of senescence in a fungus. Nature 297: 157–159.

    Google Scholar 

  67. Schulte E, Kück U, Esser K (1988). Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet. 211: 342–349.

    CAS  Google Scholar 

  68. Begel O, Boulay J, Albert B, Dufour E, Sainsard-Chanet A (1999). Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol. 19: 4093–4100.

    PubMed  CAS  Google Scholar 

  69. Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989). Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron lplDNA) in a long-lived mutant of Podospora anserina. Mutat Res. 219: 9–15.

    PubMed  CAS  Google Scholar 

  70. Hermanns J, Osiewacz HD (1992). The linear mitochondrial plasmid pAL2–1 of a longlived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet. 22: 491–500.

    PubMed  CAS  Google Scholar 

  71. Hermanns J, Asseburg A, Osiewacz HD (1994). Evidence for a life span-prolonging effect of a linear plasmid in a longevity mutant of Podospora anserina. Mol Gen Genet. 243: 297–307.

    PubMed  CAS  Google Scholar 

  72. Hermanns J, Osiewacz HD (1994). Three mitochondrial unassigned open reading frames of Podospora anserina represent remnants of a viral-type RNA polymerase gene. Curr Genet. 25: 150–157.

    PubMed  CAS  Google Scholar 

  73. Hermanns J, Debets F, Hoekstra R, Osiewacz HD (1995). A novel family of linear plasmids with homology to plasmid pAL2–1 of Podospora anserina. Mol Gen Genet. 246: 638–647.

    PubMed  CAS  Google Scholar 

  74. Hermanns J, Osiewacz HD (1996). Induction of longevity by cytoplasmic transfer of a linear plasmid in Podospora anserina. Curr Genet. 29: 250–256.

    PubMed  CAS  Google Scholar 

  75. Prillinger H, Esser K (1977). The phenoloxidases of the ascomycete Podospora anserina. XIII. Action and interaction of genes controlling the formation of laccase. Mol Gen Genet. 156: 333–345.

    PubMed  CAS  Google Scholar 

  76. Marbach K, Fernandez-Larrea J, Stahl U (1994). Reversion of a long-living, undifferentiated mutant of Podospora anserina by copper. Curr Genet. 26: 184–186.

    PubMed  CAS  Google Scholar 

  77. Borghouts C, Kimpel E, Osiewacz HD (1997). Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci USA 94: 10768–10773.

    PubMed  CAS  Google Scholar 

  78. Silar P, Koll F, Rossignol M (1997). Cytosolic ribosomal mutations that abolish accumulation of circular intron in the mitochondria without preventing senescence of Podospora anserina. Genetics 145: 697–705.

    PubMed  CAS  Google Scholar 

  79. Osiewacz HD, Nuber U (1996). GRISEA, a putative copper-activated transcription factor from Podospora anserina involved in differentiation and senescence. Mol Gen Genet. 252: 115–124.

    PubMed  CAS  Google Scholar 

  80. Borghouts C, Osiewacz HD (1998). GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae. Mol Gen Genet. 260: 492–502.

    PubMed  CAS  Google Scholar 

  81. Kimpel E, Osiewacz HD (1999) PaGrgl, a glucose-repressible gene of Podospora anserina that is differentially expressed during lifespan. Curr Genet. 35: 557–563.

    PubMed  CAS  Google Scholar 

  82. Borghouts C, Scheckhuber CQ, Werner A, Osiewacz HD (2002). Respiration, copper availability and SOD activityin P. anserina strains with different lifespan. Biogerontology 3: 143–153.

    PubMed  CAS  Google Scholar 

  83. Borghouts C, Scheckhuber CQ, Stephan O, Osiewacz HD (2002). Copper homeostasis and aging in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter. 1nt JBiochem Cell Biol. 34: 1355–1371.

    CAS  Google Scholar 

  84. Glerum DM, Shtanko A, Tzagoloff A, Gorman N, Sinclair PR (1996). Cloning and identification of HEM 14, the yeast gene for mitochondrial protoporphyrinogen oxidase. Yeast 12: 1421–1425.

    PubMed  CAS  Google Scholar 

  85. Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000). Cox11p is required for stable formation of the CulB) and magnesium centers of cytochrome c oxidase. J Biol Chem. 275: 619–623.

    PubMed  CAS  Google Scholar 

  86. Lode A, Kuschel M, Paret C, Rodel G (2000). Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p. FEBS Lett. 485: 19–24.

    PubMed  CAS  Google Scholar 

  87. Liao X-B, Clare J, Farabaugh P (1987). The upstream activation site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element. Proc Natl Acad Sci USA 84: 8520–8524.

    PubMed  CAS  Google Scholar 

  88. Liao X, Butow RA (1993). RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72: 61–71.

    PubMed  CAS  Google Scholar 

  89. Sekito T, Thornton J, Butow RA (2000). Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell. 11: 2103–2115.

    PubMed  CAS  Google Scholar 

  90. Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000). A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97: 4138–4143.

    PubMed  CAS  Google Scholar 

  91. Wagner AM, Moore AL (1997). Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep. 17: 319–333.

    PubMed  CAS  Google Scholar 

  92. Harman D (1956). A theory based on free radical and radiation chemistry. J Gerontol. 11: 298–300.

    PubMed  CAS  Google Scholar 

  93. Harman D (1988). Free radicals in aging. Mol Cell Biochem. 84: 155–161.

    PubMed  CAS  Google Scholar 

  94. Harman D (1992). Free radical theory of aging. Mutat Res. 275: 257–266.

    PubMed  CAS  Google Scholar 

  95. Miquel J, de Juan E, Sevila I (1992). Oxygen-induced mitochondrial damage and aging. EXS 62: 47–57.

    PubMed  CAS  Google Scholar 

  96. Beckman KB, Ames BN (1998). The free radical theory of aging matures. Physiol Rev. 78: 547–581.

    PubMed  CAS  Google Scholar 

  97. Harman D (1998). Aging and oxidative stress. J1nt Fed Clin Chem. 10: 24–27.

    CAS  Google Scholar 

  98. Harman D (2001). Aging: overview. Ann NYAcad Sci. 928: 1–21.

    CAS  Google Scholar 

  99. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001). A fraction of yeast Cu,Znsuperoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. JBiol Chem. 276: 38084–38089.

    CAS  Google Scholar 

  100. Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M (1997). Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol. 17: 6359–6366.

    PubMed  CAS  Google Scholar 

  101. Silar P, Lalucque H, Vierny C (2001). Cell degeneration in the model system Podospora anserina. Biogerontology 2: 1–17.

    PubMed  CAS  Google Scholar 

  102. Averbeck NB, Jensen ON, Mann M, Schägger H, Osiewacz HD (2000). Identification and characterization of PaMTH1, a putative o-methyltransferase accumulating during senescence of Podospora anserina cultures. Curr Genet. 37: 200–208.

    PubMed  CAS  Google Scholar 

  103. Averbeck NB, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001). Molecular control of copper homeostasis in filamentous fungi: increased expression of a metal- lothionein gene during aging of Podospora anserina. Mol Gen Genet. 264: 604–612.

    PubMed  CAS  Google Scholar 

  104. Gross SR, Hsieh TS, Levine PH l1984). Intramolecular recombination as a source of mitochondrial chromosome heteromorphism in Neurospora. Cell 38: 233–239.

    Google Scholar 

  105. Almasan A, Mishra NC (1988). Molecular characterization of the mitochondrial DNA of a stopper mutant ER-3 of Neurospora crassa. Genetics 120: 935–945.

    PubMed  CAS  Google Scholar 

  106. Kempken F, Hermanns J, Osiewacz HD (1992). Evolution of linear plasmids. J Mol Evol. 35: 502–513.

    PubMed  CAS  Google Scholar 

  107. Meinhardt F, Kempken F, Kämper J, Esser K (1990). Linear plasmids among eukaryotes: fundamentals and application. Curr Genet. 17: 89–95.

    PubMed  CAS  Google Scholar 

  108. Bulpitt KJ, Piko L (1984). Variation in the frequency of complex forms of mitochondrial DNA in different brain regions of senescent mice. Brain Res. 300: 41–48.

    PubMed  CAS  Google Scholar 

  109. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989). Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1: 642–645.

    PubMed  CAS  Google Scholar 

  110. Wallace DC (1989). Mitochondrial DNA mutations and neuromuscular disease. Trends Genet. 5: 9–13.

    PubMed  CAS  Google Scholar 

  111. Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang CF, Marzuki S (1990). Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem 1nt. 22: 1067–1076.

    CAS  Google Scholar 

  112. Kadenbach B, Mu~ller-Hocker J (1990). Mutations of mitochondrial DNA and human death. Naturwissenschaften 77: 221–225.

    CAS  Google Scholar 

  113. Osiewacz HD, Hermanns J (1992). The role of mitochondrial DNA rearrangements in aging and human diseases. Aging 4: 273–286.

    PubMed  CAS  Google Scholar 

  114. Wallace DC (1993). Mitochondrial diseases: genotype versus phenotype. Trends Genet. 9: 128–133.

    PubMed  CAS  Google Scholar 

  115. Wallace DC (1999). Mitochondrial diseases in man and mouse. Science 283: 1482–1488.

    PubMed  CAS  Google Scholar 

  116. Wallace DC (2001). A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp. 235: 247–263.

    PubMed  CAS  Google Scholar 

  117. Liao XS, Small WC, Srere PA, Butow RA (1991). Intramitochondrial functions regulate nonmitochondrial citrate synthase lCIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol. 11: 38–46.

    PubMed  CAS  Google Scholar 

  118. Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999). Interorganelle signaling is a determinant of longevityin Saccharomyces cerevisiae. Genetics 152: 179–90.

    PubMed  CAS  Google Scholar 

  119. Lai CY, Jaruga E, Borghouts C, Jazwinski SM (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162: 73–87.

    PubMed  CAS  Google Scholar 

  120. Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE (1995). Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res. 23: 1419–1425.

    PubMed  CAS  Google Scholar 

  121. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2002). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 33: 40–48.

    PubMed  Google Scholar 

  122. Kirkwood TB, Holliday R (1979). The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci. 205: 531–546.

    PubMed  CAS  Google Scholar 

  123. Kirkwood TB (2002). Evolution of ageing. Mech Ageing Dev. 123: 737–745.

    PubMed  Google Scholar 

  124. Martin GM, Austad SN, Johnson TE (1996). Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet. 13: 25–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Osiewacz, H.D. (2003). Aging and Longevity in the Filamentous Fungus Podospora anserina . In: Osiewacz, H.D. (eds) Aging of Organisms. Biology of Aging and its Modulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0671-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0671-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6332-8

  • Online ISBN: 978-94-017-0671-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics