Handbook of Charcoal Making

Solar Energy R&D in the European Community

Series E: Energy from Biomass

Volume 7

Solar Energy R&D in the European Community

Series E Volume 7 Energy from Biomass

Handbook of Charcoal Making

The Traditional and Industrial Methods

by

WALTER EMRICH

Springer-Science+Business Media, B.V.

Library of Congress Cataloging in Publication Data

Emrich, Walter.

Handbook of charcoal making.

(Solar Energy R&D in the European Community. Series E, Energy from biomass; v. 7) (EUR; 9590)
Includes bibliographies.

Charcoal. I. Commission of the European Communities.

II. Title. III. Series: Solar energy R & D in the European Community.
Series E, Energy from biomass; v. 7. IV. Series: EUR; 9590.
TP331.E45 1985 662'.74 84-27630
ISBN 978-90-481-8411-8 ISBN 978-94-017-0450-2 (eBook)

DOI 10.1007/978-94-017-0450-2

Publication arrangements by Commission of the European Communities Directorate-General Information Market and Innovation, Luxembourg

EUR 9590

© 1985 Springer Science+Business Media Dordrecht Originally published by ECSC, EEC, EAEC, Brussels and Luxembourg in 1985. Softcover reprint of the hardcover 1st edition 1985

LEGAL NOTICE

Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

All Rights Reserved

No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

PREFACE

We are happy to introduce the Handbook of Charcoal-Making, a comprehensive survey written by a competent expert with international experience. The book was prepared by the Commission of the European Communities in the frame of its R + D programme on biomass.

In the European Community today the biomass option is only little developed: a huge resource is waiting for use.

Actually, there is ample scope for biomass utilisation as it bears promise in some of the vital sectors of modern society. Development of indigenous and renewable energy sources, creation of new employment, recycling of wastes and improvement of the environment, restructuring of European agriculture, development of the Third World, they are all concerned.

It is important to note that the exploitation of the biomass resource is largely related to its conversion into a marketable product. However, as many of the conversion technologies are not yet well established or need improvement, R + D is more than ever the critical pathway to get access to the benefits of biomass utilisation.

In the European Communities' R + D programme, thermal conversion of biomass is developed with priority. Gasification as well as pyrolysis development projects are being supported by the Commission in European industry and universities.

Pyrolysis is particularly attractive because the conversion products charcoal and pyrolytic oil are very convenient in use, technologies are relatively simple and projected pay-back times favourable.

- v -

Charcoal making is just the simplest and oldest form of pyrolysis. Charcoal is already a market product and plays an important role in the energy consumption structures of most developing countries.

As modern literature on charcoal is scarce, this book will first of all serve the purpose of a review book of the state-of-the-art. Furthermore, it is essential as a reference book for future R + D in view of technical improvements and new processes of charcoal making and pyrolysis in general.

I take this opportunity to thank Dr. Walter Emrich for having accepted the Commission's invitation to write this book. I also thank Mr. L. Crossby and Mr. J.F. Molle for reviewing the manuscript.

I wish the book great success.

Dr. W. Palz R + D Programme Biomass Commission of the European Communities

CONTENTS

PREFAC	Ε	v
LIST O	F ILLUSTRATIONS	xi
FOREWO	RD	xv
Chapte	<u>r 1</u>	
<u>Chapter 1</u> HISTORY AND FUNDAMENTALS OF THE CHARCOAL PROCESS 1.1 Charcoal-Making from the Beginning until		
1.1	Charcoal-Making from the Beginning until	1
	the Present Day	1
1.2	Theory of the Carbonization Process	5
1.3	Heating Systems for Charcoal Plants	8
1.4	Properties of Carbonization Products	11
1.4.1	Charcoal	12
1.4.2	Pyrolysis Oil	16
1.4.3	Process Gas	17
	References	18

References

Chapter 2

TRADITIO	DNAL METHODS OF THE SMALLHOLDER CHARCOAL-	
MAKER		19
2.1	Charcoal Pits and Earthmound Kilns	20
2.1.1	The Charcoal Pit	24
2.1.2	The Earthmound Kiln	27
2.1.3	The Earthmound Kiln with Chimney	33
2.1.4	The Earthmound Kiln with Tar Recovery	35
2.2	Charcoal-Making with Portable and	
	Movable Kilns	38

2.2.1	The Tongan Oil Drum Kiln	39
2.2.2	The Philippines Kiln	42
2.2.3	The Black Rock Forest Kiln	45
2.2.4	Sectional Metal Kilns	48
2.2.5	The Carborion Kiln	54
2.3	Concrete and Brick Kilns	56
2.3.1	The Missouri Kiln	60
2.3.2	Cinder Block Kilns	66
2.3.3	The Schwartz and Ottelinska Furnaces	74
2.3.4	The Brazilian Beehive Brick Kiln	77
2.3.5	The Argentine Kilns	88
2.4	Kiln Designs for Waste Conversion	99
2.4.1	The Carbo-Gas Retort	101
	References	104

Chapter 3

CONCEPTS	AND TECHNOLOGY FOR THE INDUSTRIAL	
CHARCOAL-	-MAKER	107
3.1	Equipment for Charcoal Plants with	
	By-Product Recovery	107
3.1.1	The Forerunners of Modern Charcoal	
	Equipment	109
3.1.2	Retort Technology	116
3.1.2.1	The Wagon Retort	117
3.1.2.2	The Reichert Retort Process	120
3.1.2.3	The French SIFIC Process	123
3.1.3	Charcoal Technology for The Carbonization	
	of Biomass	129
3.1.3.1	Generalized Flow Diagram	129
3.1.3.2	The Multiple Hearth Furnace	133
3.1.3.3	The Fluid Bed Carbonizer	136
3.1.3.4	The Vertical Flow Converter	139
3.1.3.5	The Enerco Mobile Pyrolyser (Model 24)	143
	References	147

<u>Chapter 4</u>

TECHNIQUES FOR RECOVERING COMMERCIAL PRODUCTS FROM		
PYROLYSI	PYROLYSIS OIL	
4.1	Pyrolysis Oil Recovery	149
4.2	Crude Acetic Acid and Acetone Recovery	150
4.3	Recovery of Methanol (Wood Spirit)	152
4.4	Processing of Charcoal Tar	154
4.5	Concluding Remarks	159
	References	161

<u>Chapter 5</u>

RAW MATERIALS SUPPLY		162
5.1	Supply from Fuelwood Plantations	165
5.2	Agricultural Resources	166
5.3	Transport and Preparation of Raw Materials	168
5.3.1	Key Factors in Wood Supply	169
	References	176

<u>Chapter 6</u>

	END-USE	MARKETS FOR CHARCOAL AND CHARCOAL BY-PRODUCTS	178
	6.1	Charcoal as Household Fuel	178
6.1.1 Lump Charcoal		Lump Charcoal	178
	6.1.2	Charcoal Briquettes	179
	6.2	Charcoal as Fuel for Industry	180
	6.3	Charcoal in Metal Extraction	182
	6.4	Activated Charcoal	183
	6.4.1	Synopsis of Industrial Active Carbon Markets	185
	6.5	Speciality Markets for Charcoal	187
	6.6	Charcoal for Producer Gas	187
	6.7	By-Product Utilization	189
	6.8 Synopsis of Major Uses of Charcoal and		
		By-Products	193
	6.9	Charcoal Costs and Fuel Prices	195
	6.10	Packing and Shipment for Export/Market	
		Strategy	200
	6.11	World Production	203
		References	207

Chapter 7

PLANNING	A CHARCOAL VENTURE AND SELECTION OF EQUIPMENT	208
7.1	Planning of Projects	211
7.2	Selection of Charcoal Equipment	214
7.3 Conclusions		220
	References	222

Chapter 8

	CHARCOAL	BRIQUETTES AND ACTIVATED CHARCOAL	
MANUFACTURING			223
	8.1	The Briquetting Process	223
	8.1.1	Simple Briquetting Equipment	227
	8.2	The Activated Charcoal Process	228
		References	233

Chapter 9

SAFETY P	RECAUTIONS AND ENVIRONMENTAL CONSIDERATIONS	234
9.1	Safety in Charcoal Operations	234
9.2	Safety Devices and Equipment	236
9.3	General Safeguarding of Charcoal Plants	237
9.4	Precautions for Charcoal Storage	238
9.5	Environmental Considerations for the	
	Charcoal-Maker	239

Chapter 10

CHARCOAL	LABORATORY WORK	243
10.1	Analysis	244
10.2	Bench-Scale Carbonization Tests	251
	References	253

APPENDICES

<u>Appendix l</u>	Case Studies	255
Appendix 2	Energy Distribution Diagram	265
Appendix 3	Addresses of Consultants, Institutes,	
	and Equipment Suppliers	268
Appendix 4	Conversion Tables	275

254

LIST OF ILLUSTRATIONS

Figures

l, la	Temperature diagrams of dry distillation	6
2	Temperature distribution diagram (continuous	
	process)	7
3	Heating systems	9
4	Classification of charcoal processes	10
5, 5a	Carbon content and higher heating value.	
	Moisture content and net heating value	23
6	A charcoal pit	26
7	A small earthmound kiln	28
8	A large earthmound kiln with centre firing	31
9	An earthmound kiln with chimney	34
10	An earthmound kiln with pyrolysis oil	
	recovery	36
11	The Tongan oil drum kiln	40
12	The Philippines oil drum kiln	43
13	The Black Rock Forest kiln	46
14	Handling the kiln with a derrick	46
15	A battery of four Black Rock Forest kilns	
	in operation	47
16	A portable metal kiln	50
17	Air inlet channels at the bottom of a	
	portable metal kiln with wood grate	50
18	The Carborion kiln	55
19	The Missouri charcoal kiln	58
20	Plan and elevation of the Missouri kiln	59
21	A cinder-block charcoal kiln	67
22	Typical masonry units for block-type	
	charcoal kilns	70
23	Detail of the thermocouple assembly on the	
	lengthwise centreline of a cinder-block kiln	72
24	The Schwartz charcoal furnace	75
25	The Ottelinska furnace	75

26	Improving the Schwart'z system by installing	
	"calorifères"	76
27	The Brazilian beehive brick kiln	79
28	The slope-type beehive brick kiln	80
29	Beehive fire brick kiln with external heating	81
30	A charcoal production centre	86
31	Half orange kiln with straight jacket	91
32	Carbo-Gas retort (twin unit)	100
33	Carbo-Gas retort plant with charcoal gas	
	recovery for commercial use	100
34	The Carbo furnace	111
35	The Bosnic charcoal plant	113
36	A smaller Bosnic plant with interchangeable	
	retorts	114
37	The wagon retort plant	118
38	The Reichert retort process	122
39	The French SIFIC retort process	124
40	Side view of the CISR Lambiotte plant	127
41	Generalized flow diagram of the rapid	
	pyrolysis process	131
42	Cross-section of a multiple hearth furnace	134
43	The fluid bed carbonizer. Generalized diagram	137
44	The vertical flow converter	140
45	The ENERCO model 24 pyrolyser	145
46	A charcoal plant with pyrolysis oil refinery	153
47	Recovery of commercial products from	
	pyrolytic tar	155
48	A wood dryer for continuous operation	174
49	The integrated carbonization concept with	
	four carbonizers	212
50	Simple charcoal briquetting press	226
51	Activated carbon plant for manufacturing	
	of pellets or granular active carbon	231
52	Apparatus for bench-scale dry distillation	252
53	The energy distribution diagram	266

<u>Photos</u>

1	Small earthmound kiln in Ghana one hour	
	after lighting.	30
2	Discharging charcoal from same kiln	
	two days later.	30
3	A Missouri kiln. The shell is dangerously	
	cracked as a result of faulty operation.	63
4	Side view of kiln with two smoke pipes and	
	air inlet holes at the bottom	63
5	Charging the beehive brick kiln.	85
6	A Brazilian beehive brick kiln in full	
	operation.	85
7	The Argentine half-orange kiln. The operator	
	is closing the gate after charging the kiln.	90
8	Small half orange kiln (7 m 3)	92
9	Charcoal trainees in Kenya constructing	
	a half orange kiln with straight jacket.	92
10	Charcoal trainees igniting the kiln with	
	a shovelful of glowing charcoal.	93
11	Charcoal trainee brushes over leaks.	93
12	A Lambiotte reactor.	128
13	Model of a vertical flow converter	
	charcoal plant.	141
14	A charcoal briquetting press.	225
15	Pillow-shaped charcoal briquettes.	225
16	A rotary kiln for activation of charcoal	
	in the Philippines.	232

FOREWORD

Owing to the widespread use of cheap fossil fuels and natural gas in industry, household charcoal has been somewhat neglected during recent decades. The development of new and improved charcoal techniques has nevertheless been advancing during this period, unknown to outsiders.

Comprehensive charcoal literature has not appeared since the late nineteen-forties; in particular, there have been no publications concerned with industrial charcoal-making. Some literature cited in this book exists of the onlv in specialized collections. Occasionally the public has learned about the achievements of companies active in charcoal production or equipment manufacturing, particularly in the carbonization of biomass and the formulation of long-burning charcoal fuels, but overall there has been an inadequate flow of information to potential users.

The Commission of the European Communities, Directorate-General for Science, Research and Development intends to close the information gap by publishing this handbook. However, a handbook cannot be expected to reach all the innumerable small-scale charcoal-makers, distributors and users, especially in developing countries. who do not normally acquire knowledge of improved techniques from books. At this level, information should be disseminated directly by government agencies where or appropriate, through internationally sponsored development projects.

The author has been engaged as consultant and design engineer in the charcoal and active carbon industry for more than twenty years. He has also worked on assignments as research and plant manager of charcoal and active carbon plants. During these years he became aware, through numerous contacts with Governments, Ministries of Planning and private entities that two factors frequently prevent or obstruct the promotion and realization of efficient projects:

- inadequate knowledge of the state of the art

- xv -

lack of the experience needed to develop charcoal projects.

The author's major concern in this handbook is to draw the attention of all persons involved in energy project planning to the fact that new and improved charcoal techniques are able to convert forestal and agricultural wastes and residues into energy. In countries which abound with these reserves the modern charcoal-maker can make an important contribution to the household fuel programme of his country.

For more than a thousand years, charcoal has been made from whole trees; it is time for everyone to accept recent advances in a very old industry and to adopt new ways. We should always bear in mind:

> THERE IS NO WASTE IN THE WORLD WASTE IS AN ENERGY RESERVE

Therefore, let's use it.

The author would like to express his gratitude to the numerous organizations which have contributed valuable data. Among these are: the United Nations Industrial Development Organization (UNIDO), the Food and Agriculture Organization in Rome, and the Barbeque Industry Association in the U.S.A.

Last but not least, the author would like to thank the many charcoal producers and equipment suppliers who have volunteered updated proprietary information.

WALTER EMRICH

Neu-Isenburg, September 1984