Sulphur in Plants

Sulphur in Plants

Edited by

Yash P. Abrol

Department of Environmental Botany, Faculty of Science, Hamdard University, New Delhi, India

and

Altaf Ahmad

Department of Environmental Botany, Faculty of Science, Hamdard University, New Delhi, India

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-90-481-6276-5 ISBN 978-94-017-0289-8 (eBook) DOI 10.1007/978-94-017-0289-8

Printed on acid-free paper

All Rights Reserved © 2003 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2003 Softcover reprint of the hardcover 1st edition 2003

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

CONTENTS

Preface		vii
Contributors	S	xi
Abbreviation	18	xvii
Chapter 1	The global sulphur cycle and its links to plant environment S Haneklaus, E Bloem and E Schnug	1
Chapter 2	Food production and plant nutrient sulphur NS PASRICHA AND YP ABROL	29
Chapter 3	Managing sulphur in agroecosystems O Oenema and R Postma	45
Chapter 4	<i>Sulphate uptake and transport</i> MJ Hawkesford, P Buchner, L Hopkins and JR Howarth	71
Chapter 5	Sulphate assimilation: a pathway which likes to surprise S KOPRIVA AND A KOPRIVOVA	87
Chapter 6	Sulphur distribution and redistribution in vegetative and generative plants JW Anderson and MA FITZGERALD	113
Chapter 7	Sulphur amino acids: biosynthesis of cysteine and methionine M NOJI AND K SAITO	135
Chapter 8	<i>Glucosinolates: biosynthesis and metabolism</i> E Glawischnig, MD Mikkelsen and BA Halkier	145
Chapter 9	Metallothioneins and phytochelatins: ecophysiological aspects JAC Verkleij, FEC Sneller and H Schat	163
Chapter 10	Metallothioneins and phytochelatins: molecular aspects CS COBBETT	177
Chapter 11	Sulphoquinovosyl diacylglycerol (SQDG) – the sulpholipid of higher plants JL HARWOOD AND AA OKANENKO	189
Chapter 12	The role of thiols in plant adaptation to environmental stress M TAUSZ, G GULLNER, T KÖMIVES AND D GRILL	221

Chapter 13	Genetic engineering of oxidative stress resistance in plants A SIRKO, A BŁASZCZYK, F LISZEWSKA, K KAZIMIERCZUK AND D GAGANIDZE	245
Chapter 14	Hydrogen sulphide: emission and utilization by plants KC LAKKINENI, A AHMAD AND YP ABROL	265
Chapter 15	Plant responses to atmospheric sulphur M AGRAWAL	279
Chapter 16	Sulphur nutrition and legume seed quality J IMSANDE	295
Chapter 17	Effect of sulphur nutrition on agronomic and quality attributes of wheat HA NAEEM AND F MACRITCHIE	305
Chapter 18	Sulphur nutrition and oilseed quality KC WALKER AND EJ BOOTH	323
Chapter 19	Crop responses to sulphur nutrition MS AULAKH	341
Chapter 20	Sulphur interaction with other nutrients MZ ABDIN, A AHMAD, N KHAN, I KHAN, A JAMAL AND M IQBAL	359
Chapter 21	Biologically active sulphur compounds of plant origin K HAQ AND M ALI	375
	SUBJECT INDEX	387

PREFACE

Sulphur (S) plays a pivotal role in various plant growth and development processes being a constituent of sulphur-containing amino acids, cysteine and methionine, and other metabolites viz., glutathione and phytochelatins, co-factor of enzymes which contribute to stress repair and amelioration of heavy metal toxicity. Besides, a number of S-containing components are biologically active and, thus, a source for use as medicinal value.

The basic global issue before the agricultural scientist and world community is to evolve cultivars and develop methodologies for efficient use of inputs to enhance agricultural productivity. This is particularly true of the developing countries which are going to see maximum rise in population with changing food demands and declining availability of land. Amongst the inputs, nutrients play a crucial role. The major requirement is for N, P and K followed by several micro-nutrients. In this context reports of world-wide S deficiency in the agricultural systems are relevant. The reasons are many. Broadly speaking reduction in S emission, use of S-free N, P and K fertilizers and higher biomass production contributed the maximum. Despite the need for sulphur as an essential plant nutrient and the substantial returns expected from its use, very little attention has been given to fill the gap between supply and demand of S.

During the recent past, there has been spurt in research activity in various aspects of S utilization by crops. These range from an understanding of the global S cycle to the biotechnological approaches to improve the utilization efficiency of not only S but also its role in balanced use of fertilizers. This is to contribute to efficient use of nutrients and, thus, development of sustainable agricultural practices.

In this book, the editors have attempted to put together the research contributions by experts in their respective fields to elaborate the various aspects of sulphur to be considered from the agricultural point of view.

In chapter 1, a general introduction of the S, its global inventory and the expected changes concerning its turnovers on a global scale within the next 15 years are discussed comprehensively; the S cycle of upland, wetland and limnic ecosystems are examined, and S balances at different scales from landscape over sub-field down to plant level are presented.

Chapter 2 deals with the food requirement scenario keeping in view the increase in population, income level, urbanization and, thus, the changing food habits, and need to remedy the under-nourishment and malnutrition prevailing amongst the teeming millions in some regions of the world. This is followed by discussion on prevalence of S deficiency, its causes and the present and future scenario of fertilizer demand and supply.

Chapter 3 deals with managing sulphur (S) in agroecosystems. In the first part of this chapter global biogeochemical S cycle, S sources and transformation processes in the environment are dealt. The second part deals specifically with the

management of S in agroecosystems.

Chapter 4 summarizes what is known about the uptake and transport of sulphate in plants. The physiological and biochemical background on sulphate transport characteristics are summarized together with a critical appraisal of current molecular approaches in this research area. A model of a 'highly regulated circuit' controlling sulphate uptake and assimilation, mediated by feedback loops involving key metabolites of cysteine biosynthesis has been proposed.

In chapter 5, the newly obtained information for the current view on the pathway of assimilatory sulphate reduction are presented. A brief historical account of investigations of sulphate assimilation is followed by biochemical and molecular characterisation of the enzymes and their regulation. Finally, a summary of the remaining open questions and directions for future research is given.

Chapter 6 deals with the sulphur distribution and redistribution in vegetative and generative plants. In the first part, evidence for the reallocation of S, factors that influence reallocation changes in mobility and sinks with respect to plant development, and mechanisms for loading sulphate and organic-S into the phloem are discussed. In the second part, pattern of distribution and redistribution of S ulphur in vegetative plants in monocots and dicots, pathways for the importation of S into developing grains in monocots and dicots are given.

Chapter 7 deals with the biosynthesis of cysteine and methionine.

Chapter 8 focuses on the recent advances in the elucidation of glucosinolate biosynthesis. Finally, future research need on identification of regulators of glucosinolate biosynthesis to make it possible to metabolically engineer glucosinolate profiles in a tissue specific manner to improve disease resistance and nutritional value is given.

Chapter 9 and 10 deal with ecophysiological and molecular aspects of metallothionine (MTs) and phytochelatins (PCs). In chapter 9, emphasis is placed on their role in metal detoxification, metal specific genetically defined tolerance (hypertolerance) and the possible use of PCs as biomarkers of heavy meal toxicity, and chapter 10 reviews our current understanding of the biosynthesis, expression, regulation and functions of MTs and PCs, drawn from a range of physiological, biochemical, genetic and molecular biological approaches to their study.

In chapter 11 occurrence, localization, coding gene, metabolism and function of a higher plant sulpholipid, sulphoquinovosyl diacylglycerol (SQDG), are given in 1-5 sections. In 6th sections, a number of different stress responses were considered, and tried to evaluate whether SQDG can play a role in adaptation. The future looks very interesting for research on this unique membrane lipid!

Chapter 12 discusses the role of thiol compounds (with special emphasis on GSH redox system) in the defense systems and their involvement in plant responses to environmental stress.

In chapter 13, an extensive review of genetic engineering strategies used to modify stress tolerance is presented. Main focus is given on the changes in the content and redox state of glutathione, a major low-molecular-weight thiol-containing compound and a scavenger of reactive oxygen species.

In chapter 14 detail mechanisms of H_2S emission and utilization by plants that will help to develop strategies for usefulness of the channelling of extra sulphur into specific sulphur pool in order to improve crop quality by using molecular biology tools are described.

Chapter 15 deals with the consequences of SO₂ influx in plants.

Chapter 16 describes the very important role plants play in providing the protein required in animal diets. Mechanisms by which the plant regulates the relative abundance of these two protein classes are proposed. Also, efforts to enhance the relative abundance of the sulphur amino acids in seed storage proteins are described.

Chapter 17 is concerned specifically with impact of S on processing quality of wheat. An overview of the distribution of S deficiency, its amelioration, effect of other plant nutrients on S uptake is also given.

Chapter 18 examines the effect of sulphur on yield and quality of oilseed rape and also describes the relationship between sulphur nutrient status within the plant and disease development.

Chapter 19 synthesizes the available information on the responses of field crops, both in terms of yield and quality to S fertilization in monoculture and cropping systems that are prevalent in different states of India, and the role of S in optimizing crop production and reducing environmental risks.

Chapter 20 deals with the interaction of S with other nutrients which is relevant to considering/developing strategies for balanced use of fertilizers.

Chapter 21 discusses the biological profile of some of the sulphur compounds of plant origin, and rationale for their possible use in the form of medicine.

Thus, this book has presented an authorative review of present status of knowledge of sulphur and its availability for crop production and quality, and identified further research areas to be explored. We believe that this book, written by experts in different areas of research, will be useful for under-graduates, graduates, professors, scientists in biology and agronomy.

We are thankful to the authors for their time and efforts. We express our sincere gratitude to Mr. Siraj Hussain (IAS, Vice-Chancellor) and Professor Muhammad Iqbal (Head, Department of Environmental Botany) of Hamdard University for their constant encouragement and for providing us necessary facilities to effectively carry out this work. Financial supports from Indian National Science Academy (under Honorary Scientist Scheme) and Department of Science and Technology (under SERC Fast Track Young Scientist Scheme), Govt. of India are gratefully acknowledged.

Yash P Abrol and Altaf Ahmad The Editors

CONTRIBUTORS

Malik Z ABDIN

Centre for Biotechnology, Faculty of Science, Hamdard University, New Delhi, 110062, India

Yash P ABROL

Department of Environmental Botany, Faculty of Science, Hamdard University, New Delhi, India

Madhoo AGRAWAL

Department of Botany, Banaras Hindu University, Varanasi 221 005, India

Altaf AHMAD

Department of Environmental Botany, faculty of Science, Hamdard University, New Delhi, 110 062, India

Mohammad ALI

Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi, 110 062, India

John W ANDERSON

Botany Department, La Trobe University, Bundoora, Victoria 3083, Australia

Milkha S AULAKH

Department of Soils, Punjab Agricultural University, Ludhiana, 141004, India

Anna BŁASZCZYK

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland

Elke BLOEM

Institute of Plant Nutrition and Soil Science, Federal Agricultural Research Centre (FAL), Bundesallee 50, D-38116 Braunschweig, Germany

Elaine J BOOTH

Scotaland Agriculture College (SAC), Craibstone Estate, Bucksburn, Aberdeen, Scotland, AB21 9YA, UK

Peter BUCHNER

Agronomy and Environment Division, IACR-Rothamsted, Harpenden, Hertfordshire, AL5 2JQ, UK

Christopher S COBBETT

Department of Genetics, The University of Melbourne, Parkville, Victoria, 3052, Australia

Melissa A FITZGERALD

Yanco Agricultural Institute, NSW Agriculture, Private Mail Bag, Yanco, NSW, 2703, Australia

Dali GAGANIDZE

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland

Erich GLAWISCHNIG

Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40, Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark

Dieter GRILL

Institute of Plant Physiology, University of Graz, Schubertstraße 51, 8010 Graz, Austria

Gábor GULLNER

Plant Protection Institute, Hungarian Academy of Sciences, 1525 Budapest, POB 102, Hungary

Barbara A HALKIER

Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40, Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark

Silvia HANEKLAUS

Institute of Plant Nutrition and Soil Science, Federal Agricultural Research Centre (FAL), Bundesallee 50, D-38116 Braunschweig, Germany

Kashif-ul-HAQ

Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi, 110 062, India

John L HARWOOD

School of Biosciences, Cardiff University, PO box 911, Cardiff Cf10 3us, U.K.

Malcolm J HAWKESFORD

Agronomy and Environment Division, IACR-Rothamsted, Harpenden, Hertfordshire, AL5 2JQ, UK

Laura HOPKINS

Agronomy and Environment Division, IACR-Rothamsted, Harpenden, Hertfordshire, AL5 2JQ, UK

Jonathan R HOWARTH

Agronomy and Environment Division, IACR-Rothamsted, Harpenden, Hertfordshire, AL5 2JQ, UK

John IMSANDE

Plant Genetics Group., Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA

Muhammad IQBAL

Department of Environmental Botany, Faculty of Science, Hamdard University, New Delhi, 110062, India

Arshad JAMAL

Centre for Biotechnology, Faculty of Science, Hamdard University, New Delhi, 110062, India

Kacper KAZIMIERCZUK

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland

Ishrat KHAN

Centre for Biotechnology, Faculty of Science, Hamdard University, New Delhi, 110062, India

Nuzhat KHAN

Centre for Biotechnology, Faculty of Science, Hamdard University, New Delhi, 110062, India

Tamás KÖMIVES

Plant Protection Institute, Hungarian Academy of Sciences, 1525 Budapest, POB 102, Hungary

Stanislav KOPRIVA

Institute of Forest Botany and Tree Physiology, Georges-Köhler-Allee 053, D-79085 Freiburg, Germany

Anna KOPRIVOVA

Department of Plant Biotechnology, Faculty of Biology, Schänzlestr. 1, D-79104 Freiburg, Germany

Karunachand C LAKKINENI

201-2300 Grenet, St-Laurent, Montreal, QC, Canada H4L 4Y9

Frantz LISZEWSKA

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland

Finlay MACRITCHIE

Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA

Michael D MIKKELSEN

Plant Biochemistry Laboratory, Department of Plant Biology, The Royal Veterinary and Agricultural University, 40, Thorvaldsensvej, DK-1871 Frederiksberg C, Denmark

Hamid A NAEEM

Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA

Masaaki NOJI

Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

Oene OENEMA

Wageningen University and Research Center, Alterra, P.O.Box 47, NL-6700 AA Wageningen The Netherlands.

Alexander A OKANENKO

National Taras Shevchenko University, Plant Physiology & Ecology Department, Kyiv, 01033, Ukraine

NS PASRICHA

Postah Research Institute, Gurgaon, Haryana, India

Romke POSTMA

Nutrient Management Institute NMI, Haagsteeg 2b, NL-6708 PM Wageningen (RP), The Netherlands.

Kazuki SAITO

Department of Molecular Biology and Biotechnology, Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

Henk SCHAT

Department of Ecology and Physiology of Plants, Vrije Universiteit, Faculty of Earth and Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Ewald SCHNUG

Institute of Plant Nutrition and Soil Science, Federal Agricultural Research Centre (FAL), Bundesallee 50, D-38116 Braunschweig, Germany

Agnieszka SIRKO

Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland

F Else C SNELLER

Department of Chemistry and Ecotoxicology, National Institute of Inland Water Management and, Wastewater Treatment (RIZA), P.O. Box 17, 8200 AA Lelystad, The Netherlands

Michael TAUZ

Institute of Plant Physiology, University of Graz, Schubertstraße 51, 8010 Graz, Austria

Joc AC Verkleij

Department of Ecology and Physiology of Plants, Vrije Universiteit, Faculty of Earth and Life Sciences, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Kerr C WALKER

Scotaland Agriculture College (SAC), Craibstone Estate, Bucksburn, Aberdeen, Scotland, AB21 9YA, UK

ABBREVIATIONS

γΕСЅ	γ-glutamyl-cysteine synthase
γGluCys	γ-glutamylcysteine
ADP	Adenosine diphosphate
AOS	active oxygen species
APK	APS kinase
APR	APS reductase
APS	adenosine 5'-phosphosulphate
APSST	APS sulphotransferase
APX	ascorbate peroxidase
APXs	Ascorbate peroxidases
ATPS	ATP sulphurylase
BSO	buthionine sulphoximine
CAT	catalase
CDPK	calcium dependent protein kinase
COS	carbonylsulphide
СР	chlorophyll-protein
CS_2	carbon disulphide
CHS	chalcone synthase
СҮР	cytochrome P450
Cys	cysteine
DAG	diacylglycerol
DAP	diammonium phosphate
DGDG	digalactosyldiacylglycerol
DHA	dehydroascorbate
DMBA	9,10-Dimethyl 1,2-Benzanthracene
DMDS	dimethyl disulphide
DMS	dimethyl sulphide
dpa	days post anthesis
ESP	epithiospecifier protein
GC	gas chromatography
GCS	γ-glutamylcysteine synthetase
GPX	glutathione peroxidase
GR	glutathione reductase
GS	glutathione synthase
GSH	glutathione
GSH-S	glutathione synthetase
GSL	glucosinolate
GSNO	nitroso-glutathione
GST	glutathione-S-transferases

CLIC	0 . 1
GUS	p-glucuronidase
H_2O_2	hydrogen peroxide
H ₂ S	homo shitethiane
nGSH	nomogiutatnione
HMW	nign molecular weight
HMW-GS	high molecular weight glutenin subunits
hmPC	hydroxylmethyl PC
hPCs	homo-PCs
HSO ₃	bisulphite
IAA	indole-3-acetic acid
IAAId	indole-3-acetaldenyde
IAN	indole-3-acetonitrile
IAOx	indole-3-acetaldoxime
ICP-OES	inductively coupled plasma-optical emission spectroscopy
kDa	kilo Daltons
LMW	low molecular weight
LMW-GS	low molecular weight glutenin subunits
МАРК	mitogen activated protein kinase
MDA	malondialdehyde
MDHA	monodehydroascorbate
Me	methyl
Met	methionine
MGDG	monogalactosyldiacylglycerol
MIC	minimum inhibitory concentration
MMT	S-adenosylmethionine methyltransferase
MOP	muriate of potash
MS	Mass Spectrometry
MSDs	membrane spanning domains
MTs	metallothioneins
MV	methyl viologen
O ₂	superoxide radical ion
OAS	O-acetyl-L-serine
OAS-TL	O-acetylserine(thiol) lyase
OTC	L-2-oxothiazolidine-4-carboxylic acid
PAL	phenylalanine ammonia lyase
PAPS	adenosine 3'-phosphate 5'-phosphosulphate
PCs	phytochelatins
PhG	phenylglyoxal
PHGPX	phospholipid hydroperoxide glutathione peroxidase
PHLOH	phospholipid alcohol
PHLOOH	phospholipid peroxide
PLA ₂	lipid-activated phospholipase A ₂
PxV	potato potevirus
ROS	reactive oxygen species

QTL	quantitative trait locus
S-GT	UDPG:thiohydroximic acid glucosyltransferase
ST	sulphate transporter
TPX	thioredoxin peroxidase
UPP	unextractable polymeric protein