CHLOROPLAST BIOGENESIS

Chloroplast Biogenesis

From Proplastid to Gerontoplast

by

Udaya C. Biswal

School of Life Sciences, Sambalpur University, Orissa, India

Basanti Biswal

School of Life Sciences, Sambalpur University, Orissa, India

and

Mukesh K. Raval

P.G. Department of Chemistry, Rajendra College, Orissa, India

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress

ISBN 978-90-481-6415-8 ISBN 978-94-017-0247-8 (eBook) DOI 10.1007/978-94-017-0247-8

Printed on acid-free paper

Cover illustrations: The background ultrastructures of proplastid, chloroplast, and gerontoplast are modified from Kutik et al., 1984 and Hudak, 1997"

All Rights Reserved © 2003 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2003 Softcover reprint of the hardcover 1st edition 2003 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

TABLE OF CONTENTS

Foreword	
Preface	
Colorplates	
1. Introduction	1
 1.1. PLASTID FORMS, THEIR STRUCTURAL FLEXIBILITY, AND POTENTIAL FOR TRANSFORMATION 1.2. CHLOROPLAST BIOGENESIS: INVOLVEMENT OF THREE 	1
PLASTID FORMS	3
1.2.1. Organization of the Plastid Genome, Its Genetic Potential, and Chloroplast Biogenesis	4
Semiautonomous Character of Plastid The Plastid Genes	4 5
1.2.2. Nuclear Genes, Gene Products, and Chloroplast Biogenesis	8
1.2.3. Basic Features of the Biogenesis and Signaling Systems	9
1.2.4. Thermodynamic Characteristics of Plastid Transformation	12
Proplastid to Mature Chloroplast	12
Mature Chloroplast	14
Chloroplast to Gerontoplast	15
1.3. DESIGN OF THE BOOK AND THE LIMITATIONS 1.3.1. The Book	15 15
1.3.2. The Limitations	16
1.5.2. The Limitations	10
2. Proplastid to Chloroplast Transformation	19
2.1. DEVELOPMENT OF INTERNAL MEMBRANE	
STRUCTURES	19
2.1.1. Etioplast, the Experimental Precursor of Chloroplast2.1.2. Proplastid and Etioplast, the Beginners of Chloroplast	19
Biogenesis	20
2.1.3. Organization of Prolamellar Body and Prothylakoid	22
2.1.4. NADPH-Protochlorophyllide Oxidoreductase, a Modulator of Transformation of Prolamellar Body to Thylakoid	23
Chemistry and Molecular Biology of NADPH- Protochlorophyllide Oxidoreductase	24
Types of NADPH-Protochlorophyllide Oxidoreductase	24
Photoregulation of NADPH-Protochlorophyllide	
Oxidoreductase	25
2.2. THYLAKOID FORMATION AND PIGMENT	26
ACCUMULATION	26 26
2.2.1. Coordination between the Two events2.2.2. Chlorophyll Biosynthesis	26 27
2.2.2. Chiorophyli Diosynthesis	41

Coordinate Action of NADPH-Protochlorophyllide	
Oxidoreductase and Chlorophyll Synthase, the Final	
Step of Chlorophyll Biosynthesis	27
Heterogeneity in Chlorophyll Biosynthetic Pathways	29
Significance of the Heterogeneity and Formation of	
Different Forms of Light Harvesting Complex	30
2.2.3. Carotenoid Biosynthesis	30
2.2.4. The Lipid Framework	34
2.3. BIOGENESIS AND ASSEMBLY OF LIGHT HARVESTING	
COMPLEX	34
2.3.1. Assembly of Light Harvesting Complex of Photosystem II	35
2.3.2. Assembly of Light Harvesting Complex of Photosystem I	40
2.4. ASSEMBLY OF INDIVIDUAL THYLAKOID COMPLEXES	42
2.4.1. Photosystem II	44
2.4.2. Photosystem I	47
2.4.3. Cytochrome b/f Complex	47
2.4.4. ATP synthase	48
2.5. RUBISCO ASSEMBLY	48
2.6. CHLOROPLAST PROTEIN TARGETING	49
2.6.1. Import Machine	53
2.6.2. Protein Targeting to the Envelope	54
2.6.3. Targeting of Proteins to the Thylakoids	54
The ΔpH Pathway	54
The Sec like Pathway	54
The SRP like Pathway	55
Targeting by Spontaneous Mechanism	56
2.6.4. Protein Targeting within the Organelle	56
2.7. TEMPORAL APPEARANCE OF THYLAKOID COMPLEXES	57
2.8. FACTORS REGULATING GENE EXPRESSION DURING	
CHLOROPLAST DEVELOPMENT	59
2.8.1. Photoregulation	60
Expression of Light Harvesting Complex Genes	61
Expression of Rubisco Genes	61
Light at Posttranscriptional Level	62
Mechanism of Photosignal Transduction and Gene	
Expression	63
2.8.2. Circadian Rhythm	64
2.8.3. The Developmental Factor	64
2.9. INTERORGANELLAR COMMUNICATION, GENE	
EXPRESSION, AND CHLOROPLAST DEVELOPMENT	65
2.9.1. Nuclear Factor(s) for Plastid Gene Activity during	
Development	65
<i>F</i>	

	Plastid Gene Expression During Early Development	
	and Posttranscriptional Control	68
	Control of Translation and Assembly of the	
	Complexes	69
2.9.2.	Plastid Factor for the Expression of Nuclear Encoded	
	Photosynthetic Genes during Organelle Development	70
	VVIRONMENTAL MODULATION OF DEVELOPING	
	ILOROPLAST	72
		. –
3. M	ature Chloroplast	79
	ILOROPLAST ENVELOPE	80
	IE LAMELLAE	
		82
	GHT HARVESTING COMPLEXES	82
	Structure of the Light Harvesting Complex Protein	83
	Exciton Migration in the Light Harvesting Complex	83
	Organization of Light Harvesting Complexes in the	
	Photosystems	85
	IOTOSYSTEMS: COMPOSITION, STRUCTURAL	
	RGANIZATION, AND PRIMARY PHOTOCHEMISTRY	87
	Structural Similarity Among the Reaction Centers of	
	Photosystems	87
3.4.2.	Photosystem II	90
	The Antenna Proteins	90
	Reaction Center II	91
	Mn-Cluster	94
	Mechanism of Oxygen Evolution	96
	The Extrinsic Proteins	100
	Cytochrome b559	101
	Ionic Cofactors	101
3.4.3.	Photosystem I	103
	Organization and Function of the Subunits	103
	The Antenna System	105
	The Electron Transport Components	105
	Searching for Ligands to the Prosthetic Groups in	
	Reaction Center I	108
3.4.4.	Plastocyanin	108
	Protein-Protein Interactions Among Plastocyanin,	
	Cytochrome f, and Photosystem I	108
	The Dynamics of Reduction of $P700^+$ and Binding of	
	Plastocyanin to Photosystem I	110
3.4.5.	Ferredoxin	110
3.4.6.	Ferredoxin-NADP ⁺ Reductase	112

viii

3.4.7.	Cyclic Electron Flow	112
	CYTOCHROME b/f COMPLEX: THE LINK BETWEEN THE	
F	PHOTOSYSTEMS	112
3.5.1.	Structure and organization of the Complex	112
	Redox Reactions and Electron Flow through the Complex	114
	Regulation of the State Transition	114
	ATP SYNTHASE: STRUCTURE AND MECHANISM OF	
	ACTION	114
	Structure of the Enzyme Complex	114
3.6.2.		115
	Regulation of the Enzyme Activity	117
	Energetics of ATP synthesis	117
	The Dynamics of ATP Synthesis	118
	THE CALVIN-BENSON CYCLE	118
3.7.1.	The Catalytic site	119
	Rubisco Activase	121
	Energetics of the Cycle	121
3.7.4.		122
5.7.4.	Light	122
	Thioredoxin	122
3.7.5.	Endogenous Carbon Dioxide Generators and Regulation of	122
5.7.5.	Carbon Dioxide Pool	122
	Photorespiration	122
	The C_4 Path	124
	Crassulacean Acid Metabolism	126
3.8. (OTHER METABOLIC PROCESSES IN MATURE	120
	CHLOROPLAST	127
	Starch Synthesis	127
	Fatty Acid Synthesis	127
	Amino Acid Synthesis	127
	CHLOROPLAST UNDER STRESS	128
	Chloroplast: the Sensor of Stress in Green Plants	128
	Alterations in the Structure and Function of the Photosynthetic	
0.7.2.	Apparatus Induced by stress	130
3.9.3.	Stress Targets and Signal Transduction Pathways Associated	
010101	with Photosystem II	131
3.9.4.	Major Adaptive Response of Photosystem II to Stress	134
5.7.1.	Release of Ca^{2+} and Inactivation of Oxygen	10.
	Evolving Complex	134
	Energy Spillover	134
	Xanthophyll Cycle	134
	Turnover of Reaction Center II Proteins	133
3.9.5.	Photoinhibition of Photosystem I	142
5.1.5.	1 noromnomon oj 1 norosystem 1	1-75

3.9.6.	Gene Activity and Stress Adaptation	145
	Stress Signals and Expression of the Photosynthetic	
	genes	145
	The Stress Specific Genes	149
	Oxidative Stress	152
4. 1	Fransformation of Chloroplast to Gerontoplast	155
	INTRODUCTION	155
4.1.1.	Gerontoplast Is Not a Dead Plastid and Can Be Converted	
	Back to Chloroplast	159
4.1.2.		
	of Gerontoplasts	160
4.1.3.		160
	SENESCENCE INDUCED DEGRADATION OF THYLAKOID	
I	PROTEINS, LOSS OF PIGMENTS, AND	
• t	ULTRASTRUCTURAL CHANGES OF MEMBRANES	161
4.2.1.	Coordinate Degradation of Membrane Components	161
4.2.2.	Protein Loss	162
	Senescing Leaves Lose Chloroplast Proteins	163
	Plastid Located Proteolytic Systems	164
	Possible Participation of Cytoplasmic Proteases	166
4.2.3.	Degradation of Chlorophylls and Its Mechanism	166
	Chlorophyllase	169
	Mg-dechelatase	172
	Pheophorbide a oxygenase	172
4.2.4.	Degradation of Carotenoids	174
	Quantitative Loss and Changes in Composition	174
	Change in Distribution: From Thylakoid to	
	Plastoglobuli	175
	Possible Participation of Enzymes in the Pigment	
	Catabolism	177
4.2.5.	Lipid Breakdown	178
4.2.6.	Leaf Senescence Is Accompanied by Extensive Modification in	
	the Structure and Organization of Chloroplast Membranes	178
	Ultrastructural Modifications	178
	Membrane Phase Changes	187
	Changes in Optical Property	188
	SENESCENCE INDUCED CHANGES IN ELECTRON	
	FRANSPORT COMPLEXES AND RUBISCO	190
4.3.1.	Disorganization of Photosystem II	192
4.3.2.	Decline in Photosystem I Efficiency	198

4.3.3. Dismantling of Cytochrome b/f Complex and Other	200
Components of Interphotosystem Electron Transport Chain	200
4.3.4. Decline in Photophosphorylation	200
4.3.5. Changes in Rubisco	202 202
Loss in the Activity of Enzyme	
Enzyme Turnover	203
Proteolytic Degradation	204
Significance of Early and Rapid Loss in the Activity	205
of Enzyme	205
4.4. CHLOROPLAST TO GERONTOPLAST TRANSFORMATION	
IS ACCOMPANIED BY THE CHANGES IN THE PATTERN	200
OF GENE EXPRESSION IN LEAVES	206
4.4.1. Identification of the Senescence Associated Genes	208
4.4.2. All Senescence Associated Genes May Not Be Senescence	010
Specific	213
4.4.3. Senescence Associated Genes for Macromolecular Degradation	220
and Mobilization	220
Mobilization of Nitrogen	220
Conversion of Lipids, Polysaccharides, and Amino	222
Acids to Respiratory Substrates	222
Storage and Mobilization of Mineral Nutrients	223
Gene Expression against Free Radical Induced	222
Damage	223
Pathogenesis Related Genes	224
4.5. SENESCENCE SIGNALS AND OTHER REGULATING	224
FACTORS	224 225
4.5.1. The Signals for Expression of Senescence Associated Genes Hormones	225
Age Dependent Photosynthetic Signal	223
Signal from Developing Sink	228
Signal From Developing Sink Stress Signal	229
4.5.2. Intracellular Factors and Signaling	229
Nuclear Factor	231
Plastid Factor	232
Plastid Specific Redox Signals	232
4.5.3. The Cell Type Signals	234
4.5.4. Environmental Signaling and Regulation: Photoregulation	234
Light May Regulate through Photosynthesis	235
Action of Light through Phytochrome	235
Light Signal and Regulation of Leaf Senescence	230
under Canopy	238
	230

4.6.	STRESS RESPONSE OF THE SENESCING LEAVES AND	
	MODIFICATIONS OF GERONTOPLAST	240
5.	Conclusion and the Future	243
5.1.	THE PICTURE OF MECHANISMS OF ASSEMBLY OF	
	CHLOROPLAST COMPLEXES DURING DEVELOPMENT	
	AND THEIR DEMOLITION DURING SENESCENCE IS	
	HAZY	244
5.2.	THE MECHANISMS OF DEGRADATION OF PROTEIN	
	AND CHLOROPHYLL DURING BIOGENESIS OF THE	
	ORGANELLE LARGELY REMAIN UNCLEAR	245
5.3.	MOLECULAR BIOLOGY OF GERONTOPLAST	
	FORMATION DURING LEAF SENESCENCE, A	
	CHALLANGING AREA OF RESEARCH FOR FUTURE	246
5.4.	THE SIGNALING SYSTEMS ASSOCIATED WITH	
	TRANSFORMATIONS OF PROPLASTID TO	
	CHLOROPLAST AND CHLOROPLAST TO	
	GERONTOPLAST ARE POORLY UNDESTOOD	247
5.5.		
	BIOGENESIS IS LESS KNOWN	249
5.6.	THE STUDY OF CHLOROPLAST BIOGENESIS NEEDS	
	BETTER LABORATORY MODELS	249
	References	251
	Abbreviations	337
	Index	345
		2.2

xi

Foreword

Chloroplast is the organelle where the life-giving process photosynthesis takes place; it is the site where plants and algae produce food and oxygen that sustain our life. The story of how it originates from proplastids, and how it ultimately dies is beautifully portrayed by three authorities in the field: Basanti Biswal, Udaya Biswal and M. K. Raval. I consider it a great privilege and honor to have been asked to write this foreword.

The book ' Chloroplast biogenesis: from proplastid to gerontoplast' goes much beyond photosynthesis. The character of the book is different from that of many currently available books because it provides an integrated approach to cover the entire life span of the organelle including its senescence and death. The books available are mostly confined to the topics relating to the 'build up' or development of chloroplast during greening. The story of organelle biogenesis without description of the events associated with its regulated dismantling during genetically programmed senescence is incomplete. A large volume of literature is available in this area of chloroplast senescence accumulated during the last 20 years. Although some of the findings in this field have been organized in the form of reviews, the data in the book are generalized and integrated with simple text and graphics.

This book describes the structural features of proplastid and its transformation to fully mature chloroplast, which is subsequently transformed into gerontoplast exhibiting senescence syndrome. The book consists of five major chapters. Chapter 1 describes an plastid transformation: thermodynamic characteristics introduction to of the transformation, signaling systems involved, and coordinated action of nuclear and plastid genes during the organelle biogenesis. This chapter also summarizes the techniques used for the study of organelle biogenesis and the limitation of writing such a book. The data on the formation and regulation of thylakoid network, assembly of individual thylakoid complexes and Rubisco (Ribulose bis-phosphate carboxylase oxygenase) are critically discussed in chapter 2. Chapter 3 includes a critical review of the recent findings on the structure and function of a mature chloroplast and its response to environmental stress. In chapter 4, the authors highlight the events associated with the transformation of mature chloroplast to gerontoplast when green leaves turn yellow during senescence. The regulated disorganization of thylakoid membranes, loss in Rubisco protein and its activity with concomitant expression of senescence-associated genes (SAGs) is discussed in details in this chapter. Chapter 5 concludes and summarizes the data described in the previous chapters and brings forward several questions to be addressed in the future.

The book by the Biswals (Udaya, husband, and Basanti, wife) and M.K. Raval is a research and teaching monograph on chloroplast biogenesis. It also includes updated information on several related areas of plant sciences. Although it is primarily intended for researchers in and graduate students in Plant Physiology, Plant Biology and Integrative Biology, it is an excellent background book for graduate students in Plant Biochemistry, Plant Biophysics and Cellular and Molecular Biology.

Govindjee (E-mail: gov@uiuc.edu) Urbana, Illinois June 9, 2003

PREFACE

The book 'Chloroplast biogenesis: from proplastid to gerontoplast' describes biogenesis of the organelle that involves several events associated with the transformation of proplastid to chloroplast, which is subsequently transformed to gerontoplast during senescence. The description of the biogenesis covers the structural and functional changes, different signaling systems for induction of the changes and gene expression leading to establishment of structural transients of the plastid.

We have designed the book in such a way that it can be used as a good source of reference for the teachers and research scholars working in the areas of photosynthesis, biophysics, biochemistry, molecular biology and photobiology. It is also designed to be used as a textbook by the graduate and undergraduate students for the courses like plant physiology and development.

The book consists of 5 chapters. Chapter 1 deals with the introduction highlighting the basics of plastid transformations and approach to study them, chapter 2 with the development of proplastid to chloroplast, chapter 3 with the mature chloroplast: its structure and function, chapter 4 with the conversion of mature chloroplast to gerontoplast during leaf senescence and chapter 5 with the conclusion and perspective of research in the area of chloroplast biogenesis. It was a difficult time for us to organize our thoughts and determine the sequence of the chapters. Initially we thought to keep mature chloroplast before describing the development of proplastid to mature chloroplast. Our idea was to provide a clear picture of structure and function of a mature chloroplast in the first instance followed by its biogenesis. It would have been perhaps easier for a general reader to understand and appreciate the events associated with the organelle biogenesis after knowing the basics of its structure and function. However, in that case, we would have failed to give justice to the description of sequence of the organelle biogenesis since mature chloroplast is the product of biogenetic process and is developed from proplastid.

One of the strengths of this book lies in organizing the recent available data on the formation of gerontoplast, the last phase of organelle biogenesis (chapter 4). Our attempt was to establish gerontoplast as a form of plastid with active genetic potential and its role in leaf physiology during senescence particularly in the dynamics of nutrient mobilization. For a long time, it was difficult to characterize the precise nature of transformation of mature chloroplast to gerontoplast. But due to the availability of genetic and molecular tools, it has now become possible to study some of the complicated events associated with the transformations.

In this book, we have attempted to use uniform terminology and style of presentation.

We feel fortunate and privileged to have Professor Govindjee of the University of Illinois at Urbana-Champaign as our advisor during the preparation of this book. He recommended our book proposal to Kluwer Academic Publishers and edited the first chapter, table of contents and figures of the book. We had continuous correspondence with him for his guidance. We are grateful to him for writing the 'Foreword' for our book.

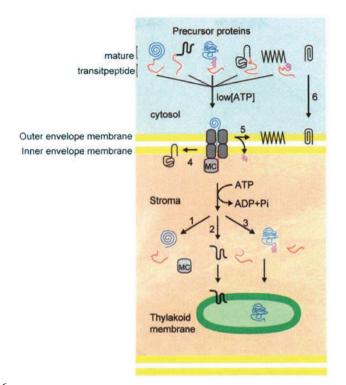
The book includes the results (both text and graphics) of many outstanding scientists working in the field of chloroplast biogenesis and metabolism. We are thankful to them for permitting us to use their materials including some of their figures. We are also fortunate in being able to present colored pictures including crystal structures of some of the thylakoid complexes from the available databases.

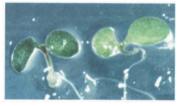
It was an enjoyable experience to have frequent correspondence with Dr. Jacco A. Flipsen, Publishing Manager, Plant Sciences Unit, Kluwer Academic Publishers. Jacco was very patient and agreed for shifting the deadline for submission of the manuscript on several occasions.

We would like to thank Prof. N.K.Choudhury, Prof. T.V.Rao and Mr. L. Nayak for reading the manuscript and for their suggestions. Sanjukta Badhai and Alokmay Behera, research scholars from our laboratory are acknowledged for checking the references. We wish to thank Prof. Yasar Demirel, Department of Chemical Engineering, Virginia Tech., USA and Dr.B.K.Mishra, Department of Chemistry, Sambalpur University, India for their valuable suggestions on the thermodynamic part of chloroplast biogenesis in the introduction chapter. Bikas Biswal, Manas Biswal, Hemant Raval and Rakesh Rawal are duly acknowledged for helping us in the preparation of the text and graphics of the book. M.K.Raval wishes to thank his wife, Praveena for her cooperation during preparation of the manuscript. Last but not the least, we would like to thank all our research colleagues, who have directly or indirectly helped us during preparation of the manuscript.

Udaya Chand Biswal

School of Life Sciences, Sambalpur University, Jyotivihar-768019, Orissa, India; E-mail address <udayab@sancharnet.in>


Basanti Biswal

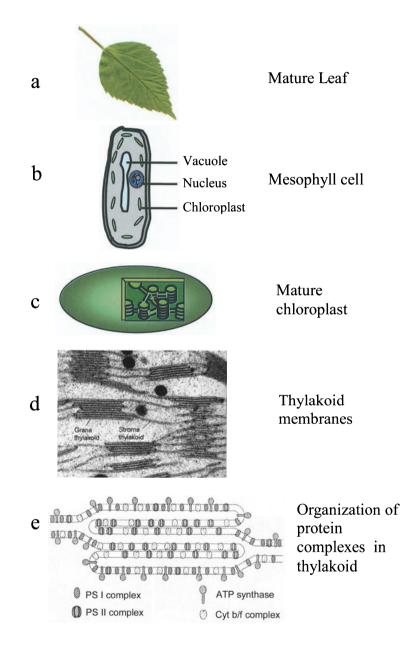

School of Life Sciences, Sambalpur University, Jyotivihar-768019, Orissa, India; E-mail address

data santi6@sancharnet.in>

Mukesh Kumar Raval

P.G.Department of Chemistry, Rajendra College, Bolangir, Orissa, India; E-mail address <mkroval@sancharnet.in>

Colorplates



WT

Α

chaos

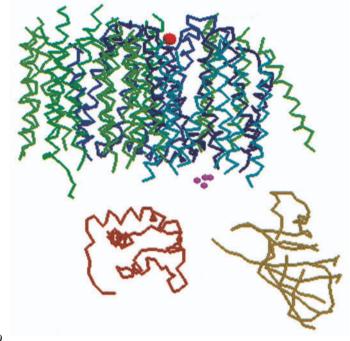


Figure 30

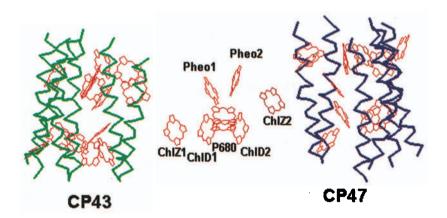


Figure 31

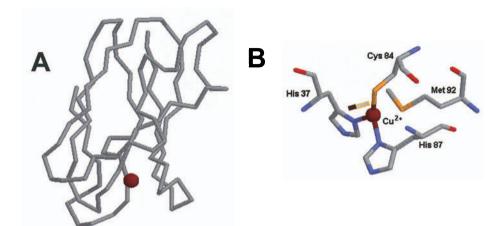
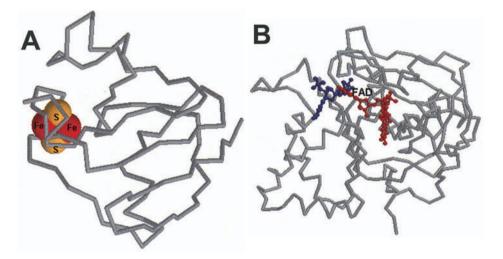
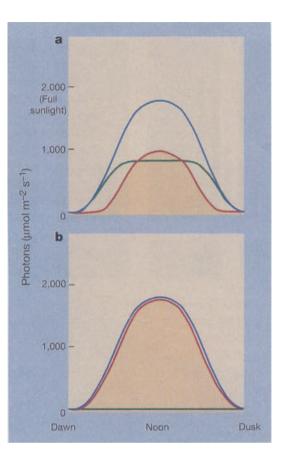




Figure 39

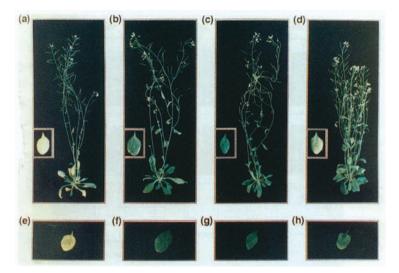


Figure 60

green flesh

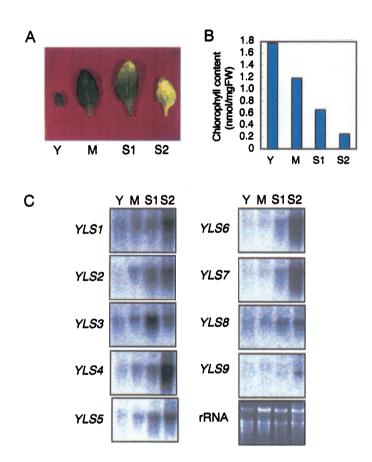
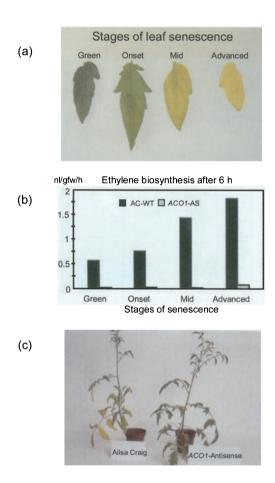



Figure 88

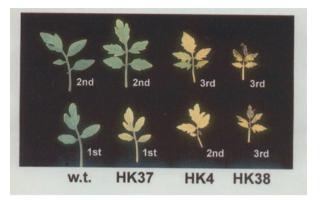
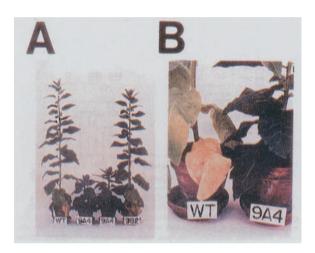



Figure 94

xxvii

xxviii

