Skip to main content

Redox Properties and Purification of Endohedral Metallofullerenes

  • Chapter
Endofullerenes

Part of the book series: Developments in Fullerene Science ((DFUL,volume 3))

Abstract

The chemical properties of endohedral metallofullerenes, including solubility and electrochemistry, are highly dependent on their electronic structures. An understanding of the different redox properties of distinct classes of metallofullerenes is emerging. These three classes, open-shell insoluble, closed-shell soluble and open-shell soluble endohedral metallofullerenes are discussed here along with electrochemical methods for purification of both soluble and insoluble classes of metallofullerenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Chai et al., “Fullerenes with Metals Inside,” J. Phys. Chem. 95, 7564–7568 (1991).

    Article  CAS  Google Scholar 

  2. M. D. Diener et al., “Anaerobic Preparation and Solvent Free Separation of Uranium Endohedral Metallofullerenes,” Chem. Mater. 9, 1773 (1997).

    Article  CAS  Google Scholar 

  3. M. D. Diener and J. M. Alford, “Isolation and Properties of Small-Bandgap Fullerenes,” Nature 393, 668–671 (1998).

    Article  CAS  Google Scholar 

  4. D. W. Cagle et al., “Synthesis, Characterization, and Neutron Activation of Holmium Metallofullerenes,” J. Am. Chem. Soc. 118, 8043–8047 (1996).

    Article  CAS  Google Scholar 

  5. L. Echegoyen and L. E. Echegoyen, L. E., “Electrochemistry of Fullerenes and Their Derivatives,” Acc. Chem. Res. 31, 593–601 (1998).

    Article  CAS  Google Scholar 

  6. J. C. Hummelen et al., “Isolation of the Heterofullerene C59N as its dimer (C86N)2,” Science 269, 1554–1556 (1995).

    Article  CAS  Google Scholar 

  7. P.W. Stephens et al., “Polymeric Fullerene Chains in RbC60 and KC60,” Nature 370, 636–639 (1994).

    Article  CAS  Google Scholar 

  8. O. Boltalina et al., “Electron Affinity of Some Endohedral Lanthanide Fullerenes,” J. Phys. Chem. A 101 (50), 9561–9563 (1997).

    Article  CAS  Google Scholar 

  9. Y. Kubozono et al., “Extractions of Y@C60, Ba@Cbo, La@C60, Ce@C60, Pr@C60, Nd@Cbo, and Gd@C60 with Aniline,” J. Am. Chem. Soc. 118, 6998–6999 (1996).

    Article  CAS  Google Scholar 

  10. A. Hirsch et al., Angew. Chem. Int. Ed. Eng. 30, 1309 (1991).

    Article  Google Scholar 

  11. T. J. S. Denis et al., “Production, Isolation and Characterization of Group-2 Metal-Containing Endohedral Metallofullerenes,” Appl. Phys. A 66, 243–247 (1998).

    Article  Google Scholar 

  12. T. Wan et al., “Production, Isolation and Electronic Properties of Missing Fullerenes: Ca@C72 and Ca@C72,” J. Am. Chem. Soc. 120, 6806–6807 (1998).

    Article  CAS  Google Scholar 

  13. T. Pichler et al., “Monometallofullerene Tm@C82: Proof of an Encapsulated Divalent Tm Ion by High-Energy Spectroscopy,” Phys. Rev. Lett. 79, 3026–3029 (1997).

    Article  CAS  Google Scholar 

  14. T. Okazaki et al., “Isolation and Spectroscopic Characterization of Sm-Containing Metallofullerenes,” Chem. Phys. Lett. 320, 435–440 (2000).

    Article  CAS  Google Scholar 

  15. S. Stevenson et al., “Small-bandgap Endohedral Metallofullerenes in High Yield and Purity,” Nature 401, 55–57 (1999).

    Google Scholar 

  16. T. Suzuki et al., “Electrochemistry and Ab Initio Study of the Dimetallofullerene La2@C80,” Angew. Chem. Int. Ed. Engl. 34 (10), 1094–1095 (1995).

    Article  CAS  Google Scholar 

  17. E. Nishibori et al., “Pentagonal-Dodecahedral La2 Charge Density in [80-Ih] Fullerene: Lae@C80,” Angew. Chem. Int. Ed. Eng. 40 (16), 2998–2999 (2001).

    Article  CAS  Google Scholar 

  18. K. Kobayashi et al., “A Theoretical Study of C80 and Lae@C80,” Chem Phys. Lett. 245, 230–236.

    Google Scholar 

  19. K. Akiyama et al., “New Fullerenes of a Group IV Element: Hf Metallofullerenes,” Chem. Phys. Lett. 317, 490–496 (2000).

    Article  CAS  Google Scholar 

  20. Y. Yang et al., “Reversible Fullerene Electrochemistry: Correlation with the HOMO-LUMO Energy Difference for C60, C70, C76, C78 and C84,” J. Am. Chem. Soc. 117, 7801–7804 (1995).

    Article  CAS  Google Scholar 

  21. See the following for DFT calculations on C60 (and anions): W. H. Green Jr., et al., J. Phys. Chem. 100, 14892 (1996).

    Google Scholar 

  22. C70: W. Andreoni, F. Gygi, and M. Parrinello, Chem. Phys. Lett. 189, 241 (1992).

    Article  Google Scholar 

  23. C76: H. Cheng and R. L. Whetten, Chem. Phys. Lett. 197, 44 (1992).

    Article  Google Scholar 

  24. C78: J. C. Niles and X. Q. Wang, J. Chem. Phys. 103, 7040 (1995).

    Article  Google Scholar 

  25. C84: X. Q. Wang, C. Z. Wang, B. L. Zhang, and K. M. Ho, Chem. Phys. Lett. 207, 349 (1993). These can be used to correct Figure 3 in Yang et al. to give a line with slope 0.8 and intercept —0.2.

    Google Scholar 

  26. M. Weaver and X. Gao, “Molecular Capacitance: Sequential Electron-Transfer Energetics for Solution-Phase Metallic Clusters in Relation to Gas-Phase Clusters and Analogous Interfaces,” J. Phys. Chem. 97, 332–338 (1993).

    Article  CAS  Google Scholar 

  27. T. Suzuki et al., “Electrochemical Properties of Fullerenolanthanides,” Tetrahedron 52, 4973–4982 (1996).

    Article  CAS  Google Scholar 

  28. C.-R. Wang et al., “C66 Fullerene Encaging a Scandium Dimer,” Nature 408, 426 (2000).

    Article  CAS  Google Scholar 

  29. T. Pichler et al., “Proof for Trivalent Sc Ions in Sc2@C84 from High-Energy Spectroscopy,” Phys. Rev. B 62 (19), 196–201 (2000).

    Article  Google Scholar 

  30. J. Ding and S. Yang, “Isolation and Characterization of the Ce2@C80 Dimetallofullerene,” Angew. Chem. Int. Ed. Eng. 35, 2234–2235 (1996).

    Article  CAS  Google Scholar 

  31. J. Ding and S. Yang, J. Phys. Chem. Solids 58, 1661 (1997).

    Article  CAS  Google Scholar 

  32. N. Tagmatarchis et al., “Production, Separation, Isolation and Spectroscopic Study of Dysprosium Endohedral Metallofullerenes,” Chem. Mater. 12 (10), 3222–3226 (2000).

    Article  CAS  Google Scholar 

  33. K. Nakao et al., Ab initio Molecular-Orbital Calculation for C70 and Seven Isomers of C80, “ Physical Rev. B, 415–419 (1994).

    Google Scholar 

  34. T. Akasaka et al. “La@C82 Anion. An Unusually Stable Metallofullerene,” J. Am. Chem. Soc. 122, 9316–9317 (2000).

    Article  CAS  Google Scholar 

  35. H. Shinohara et al., “Encapsulation of a Scandium Trimer in C82,” Nature 357, 52–54 (1992).

    Article  CAS  Google Scholar 

  36. C. S. Yannoni et al., “Scandium Clusters in Fullerene Cages,” Science 256, 1191–1192 (1992).

    Article  CAS  Google Scholar 

  37. M. Takata et al., “Triangle Scandium Cluster Imprisoned in a Fullerene Cage,” Phys. Rev. Lett. 83, 2214–2217 (1999).

    Article  CAS  Google Scholar 

  38. C. A.Reed and R. D. Bolskar, “Discrete Fulleride Anions and Fullerenium Cations,” Chem. Rev. 100, 1075–1120 (2000).

    Article  Google Scholar 

  39. K. Kikuchi et al., “Characterization of the Isolated Y@C82,” J. Am. Chem. Soc. 116, 9367–9368 (1994).

    Article  CAS  Google Scholar 

  40. T. Akasaka et al., “Isolation and Characterization of Two Pr@C82 Isomers,” Chem. Phys. Lett. 319, 153–156 (2000).

    Article  CAS  Google Scholar 

  41. H. Shinohara et al., “An Oriented Cluster Formation of Endohedral Y@C82 Metallofullerenes on a Clean Surface,” J. Phys. Chem. 99, 13769–13771 (1995).

    Article  CAS  Google Scholar 

  42. B. Kessler et al., “Evidence for Incomplete Charge Transfer and La-Derived States in the Valence Bands of Endohedrally Doped La@C82,” Phys. Rev. Lett. 79, 2289–2292 (1997).

    Article  CAS  Google Scholar 

  43. T. Almeida Murphy et al., “Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C60,” Phys. Rev. Lett. 77, 1075–1078 (1996).

    Article  Google Scholar 

  44. Y. Kubozono et al., “Preparation and Extraction of Ca@C60,” Chem. Lett. 457–458 (1995).

    Google Scholar 

  45. T. Inoue et al., “Electronic Structure of Eu@C60 Studied by XANES and UV-VIS Absorption Spectra,” Chem. Phys. Lett. 316, 381–386 (2000).

    Article  CAS  Google Scholar 

  46. T. Ogawa, T. Sugai, and S. Shinohara, “Isolation and Characterization of Er@C60,” J. Am. Chem. Soc. 122, 3538–3539 (2000).

    Article  CAS  Google Scholar 

  47. M. R. Anderson et al., “The Voltammetry of Sc3@C82,” J. Am. Chem. Soc. 119, 437–438 (1997).

    Article  CAS  Google Scholar 

  48. S. Nagase et al., “Endohedral Metallofullerenes: Theory, Electrochemistry, and Chemical Reactions,” in Fullerenes: Chemistry, Physics, and Technology, K. M. Kadish and R. S. Ruoff, Eds., John Wiley & Sons, New York, pp. 395–436 (2000).

    Google Scholar 

  49. H. Shinohara, “Endohedral Metallofullerenes,” Rep. Prog. Phys. 63, 843–892 (2000).

    Article  CAS  Google Scholar 

  50. H. Shinohara, “Endohedral Metallofullerenes: Production, Separation, and Structural Properties,” in Fullerenes: Chemistry, Physics, and Technology, K. M. Kadish and R. S. Ruoff, Eds., John Wiley & Sons, New York, pp. 357–393 (2000).

    Google Scholar 

  51. R. D. Bolskar et al., “Rapid Electrochemical Purification of Endohedral Metallofullerenes,” 197th Meeting of the Electrochemical Society, May 14–18, 2000, Toronto, Canada, Meeting Abstract # 824 (2000).

    Google Scholar 

  52. T. Akasaka et al., “Structural Determination of the La@C82 Isomer,” J. Phys. Chem. B. 105, 2971–2974 (2001).

    Article  CAS  Google Scholar 

  53. K. Akiyama et al., “Absorption Spectra of Metallofullerenes M@C82 of Lanthanoids,” J. Phys. Chem. A 104, 7224–7226 (2000).

    Article  CAS  Google Scholar 

  54. L. J. Wilson, “Medical Applications of Fullerenes and Metallofullerenes,” Electrochemical Society Interface, Winter Issue, 24 (1999).

    Google Scholar 

  55. M. Mikawa et al., “Paramagnetic Water-Soluble Metallofullerenes Having the Highest Relaxivity for MRI Contrast Agents,” Bioconj. Chem. 12, 510–514 (2001).

    Article  CAS  Google Scholar 

  56. D. W. Cagle et al., “In vivo Studies of Fullerene-Based Materials Using Endohedral Metallofullerene Radiotracers”, Proc. Natl. Acad. Sci. USA 96, 5182–5187 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Diener, M.D., Bolskar, R.D., Alford, J.M. (2002). Redox Properties and Purification of Endohedral Metallofullerenes. In: Akasaka, T., Nagase, S. (eds) Endofullerenes. Developments in Fullerene Science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9938-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9938-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6159-1

  • Online ISBN: 978-94-015-9938-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics