Skip to main content

Determinants of Unloaded Shortening Velocity in Striated Muscle

Unloaded Shortening Velocity

  • Chapter
  • 116 Accesses

Part of the book series: Advances in Muscle Research ((ADMR,volume 1))

Abstract

When a muscle is activated and shortens, the rate of shortening, the shortening velocity (v), varies inversely with the load (P) against which it shortens. This relationship is hyperbolic and is given by Hill’s classic equation (43):

$$ \left( {P + a} \right)v = b\left( {{P_0} - P} \right) $$
((1))

where Po is the isometric force, and a and b are constants in units of Po and muscle lengths/sec respectively. Typical values for frog skeletal muscle a and b at 0°C are 0.25 Po and 0.33 lo/s respectively. Total muscle fiber length, lo, is usually reported at optimal thick and thin filament overlap (2.2–2.5 μm per sarcomere). This is important because shortening occurs by the relative sliding of the thick and thin filaments past each other in all the sarcomeres in the muscle; i.e., each sarcomere in series shortens about the same amount. Thus, the longer a muscle fiber or cell is (i.e., the greater the number of sarcomeres arranged in series), the faster the total length of the fiber or cell decreases for a given afterload. Maximal overlap for mammalian muscle cells occurs at about 2.4 μm/ sarcomere (thin filaments each are 1.1 μm long and the pseudo H-zone is 0.2μm long while the thick filament in all vertebrate striated muscle is about 1.65–1.7 μm). Thus if one sarcomere shortens against an afterload, P, at 2.4 μm/s, then 10 sarcomeres arranged in series shortening against the same load P, will shorten at a rate of 24 μm/s. Consequently the measured shortening velocity is referenced to the muscle fiber length at optimal overlap to normalize the observed values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anson, M.. Temperature dependence and Arrhenius activation energy of f-actin velocity generated in vitro by skeletal myosin J. Mol. Biol. 224: 1029–1038, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Anson, M., M. Geeves, E. Kurzawa, and D. Manstein. Myosin motors with artificial lever arms. EMBO J. 15: 6069–6074, 1996.

    PubMed  CAS  Google Scholar 

  3. Araujo, A., and J. Walker. Phosphate release and force generation in cardiac myocytes investigated with caged phosphate and caged calcium. Biophys. J. 70: 2316–2326, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Barany, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50: 197–218, 1967.

    Article  PubMed  Google Scholar 

  5. Barclay, C. A weakly coupled version of the Huxley crossbridge model can simulate energetics of amphibian and mammalian skeletal muscle. J. Muscle Res. Cell Motil. 20:163–176, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Barclay, C. Mechanical efficiency and fatigue of fast and slow muscles of mouse. J. Physiol. 497: 781–794, 1996.

    PubMed  CAS  Google Scholar 

  7. Bottinelli, R., and C. Reggiani. Human Skeletal muscle fibers: Molecular and functional diversity. Prog.Biophys. & Mol. Biol. 73: 195–262, 2000.

    Article  CAS  Google Scholar 

  8. Bottinelli, R., S. Schiaffino, and C. Reggiani. Force-velocity relations and myosin heavy chain isoform composition of skinned fibres from rat skeletal muscle. J. Physiol. 437: 665–672, 1991.

    Google Scholar 

  9. Bottinelli, R., R. Betto, S. Schiaffino, and C. Reggiani. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rate skeletal muscle fibres. J. Physiol. 478: 341–349, 1994.

    PubMed  CAS  Google Scholar 

  10. Brenner, B. Rapid dissociation and reassociation of actomyosin cross-bridges during force generation: a newly observed facet of cross-bridge action in muscle. Proc. Natl. Acad. Sci. U. S. A. 88: 10490–4, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Brooks, S., and J. Faulkner. Isometric, shortening, and lengthening contractions of muscle fiber segments from adult and old mice. Am. J. Physiol. 267: C507–0513, 1994.

    PubMed  CAS  Google Scholar 

  12. Brooks, S. and J. Faulkner, Contractile properties of skeletal muscle from young, adult, and aged mice. J. Physiol. 404: 71–82, 1988.

    PubMed  CAS  Google Scholar 

  13. Cecchi, G., F. Colomo, and V. Lombardi. Force-velocity relation in normal and nitrate-treated frog single muscle fibres during rise of tension in an isometric tetanus. J. Physiol. 285: 257–73, 1978.

    PubMed  CAS  Google Scholar 

  14. Chase, P.B. and M. Kushmerick Effects of physiological ADP concentrations on contraction of single skinned fibers from rabbit fast and slow muscles. Am. J Physiol. Cell Physiol. 268: C480-C489, 1995.

    CAS  Google Scholar 

  15. Chase, P.B., T. Denkinger, and M. Kushmerick. Effect of viscosity on mechanics of single, skinned fibers from rabbit psoas muscle. Biophys. J. 74: 1428–1438, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Close, R. Dynamic properties of fast and slow skeletal muscle of the rat during development. J. Physiol. 173: 74–95, 1964.

    PubMed  CAS  Google Scholar 

  17. Close, R. Force:velocity properties of mouse muscles. Nature. 206: 718–719, 1965.

    Article  PubMed  CAS  Google Scholar 

  18. Close, R. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52: 129–197, 1972.

    PubMed  CAS  Google Scholar 

  19. Coulton, G., N. Curtin, J. Morgan, and T. Partridge. The mdx mouse skeletal muscle myopathy: II. Contractile properties. Neuropathol. Appl. Neurobiol. 14: 299–314, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Cooke, R. Actomyosin interaction in striated muscle. Physiol. Rev. 77: 671–97, 1997.

    PubMed  CAS  Google Scholar 

  21. Cooke, R. and W. Bialek. Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys. J. 28: 241–258, 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Cooke, R., and E. Pate. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys. J. 48: 789–798, 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Crow, M. and M. Kushmerick. Correlated reduction of velocity of shortening and the rate of energy utilization in mouse fast-twitch muscles during continuous tetanus. J. Gen. Physiol. 82: 703–720, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Dantzig, J., Y. Goldman, N. Millar, J. Lacktis, and E. Homsher. Reversal of the crossbridge forcegenerating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J. Physiol. 451: 247–278, 1992.

    PubMed  CAS  Google Scholar 

  25. Edman, K.A.P. Mechanical deactivation induced by active shortening in isolated muscle fibers of the frog. J. Physiol. 246: 255–275, 1975.

    PubMed  CAS  Google Scholar 

  26. Edman, K. A. P. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J. Physiol. 291: 143–159, 1979.

    PubMed  CAS  Google Scholar 

  27. Edman, K. A. P., and K.-E. Andersson. The variation in active tension with sarcomere length in vertebrate skeletal muscle and its relation to fibre width. Experientia 24: 134–136, 1968.

    Article  PubMed  CAS  Google Scholar 

  28. Eisenberg, E., T. L. Hill, and Y.-D. Chen. Cross-bridge model of muscle contraction. Quantitative analysis. Biophys. J. 29: 195–227, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Elliott, G. F., J. Lowy, and C. R. Worthington. An X-ray and light diffraction study of the filament lattice of striated muscle in the living state and in rigor. J. Mol. Biol. 6: 295–305, 1963.

    Article  Google Scholar 

  30. Ferenczi, M., Y. Goldman, and R. Simmons. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J. Physiol. 350: 519–543, 1984.

    CAS  Google Scholar 

  31. Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368: 113–119, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Ford, L. E., A. F. Huxley, and R. M. Simmons. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311: 219–49, 1981.

    PubMed  CAS  Google Scholar 

  33. Ford, L. E., A. F. Huxley, and R. M. Simmons. Tension transients during steady shortening of frog muscle fibres. J. Physiol. 361: 131–50, 1985.

    PubMed  CAS  Google Scholar 

  34. Goldman, Y. E., and R. M. Simmons. The stiffness of frog skinned muscle fibres at altered lateral filament spacing. J. Physiol. 378: 175–194, 1986.

    PubMed  CAS  Google Scholar 

  35. Gordon, A. M., R. E. Godt, S. K. Donaldson, and C. E. Harris. Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition. J. Gen. Physiol. 62: 550–74, 1973.

    Article  PubMed  CAS  Google Scholar 

  36. Gordon, A. M., A. F. Huxley, and F. J. Julian. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184: 170–92, 1966.

    PubMed  CAS  Google Scholar 

  37. Gordon, A. M., M. LaMadrid, Y. Chen, Z. Luo, and P.B. Chase. Calcium regulation of skeletal muscle thin filament motility in in vitro. Biophys. J. 72: 1295–1307, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Gordon, A. M., E. Homsher, and M. Regnier. Regulation of Contraction in Striated Muscle. Physiol. Rev. 80: 853–924, 2000.

    PubMed  CAS  Google Scholar 

  39. Gundersen, K., E. Leberer, T. Lomo, D. Pette, and R. Staron. Fibre types, calcium-sequestering proteins, and metabolic enzymes in denervated and chronically stimulated muscle of the rat. J. Physiol. 398: 177–189,1988.

    PubMed  CAS  Google Scholar 

  40. Guth, L., and F. Samaha. Qualitative differences of actomyosin ATPase of slow and fast mammalian muscles. Exp. Neurol. 25: 138–152, 1969.

    Article  PubMed  CAS  Google Scholar 

  41. Harada, Y., K. Sakurada, T. Aoki, D. D. Thomas, and T. Yanagida. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216: 49–68, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. He, Z., R. Chillingworth, M. Brune, J. Corrie, M. Webb, and M. Ferenczi. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. J. Physiol. 517: 839–854. 1999.

    Article  PubMed  CAS  Google Scholar 

  43. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. Lond. B. Biol. Sci. 126: 136–95, 1938.

    Article  Google Scholar 

  44. Hill, A.V. The dimensions of animals and their muscular dynamics. Sci. Progr. Twent. Cent. 38: 209–230, 1950.

    Google Scholar 

  45. Hill, D. K. Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J. Physiol. 199: 637–684, 1968.

    PubMed  CAS  Google Scholar 

  46. Holmes, K. and M. Geeves. The structural basis of muscle contraction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355: 419–431, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. Homsher, E., B. Kim, A. Bobkova, and L. S. Tobacman. Calcium regulation of thin filament movement in an in vitro motility assay. Biophys. J. 70: 1881–92, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Homsher, E., J. Lacktis, and M. Regnier. Strain-dependent modulation of phosphate transients in rabbit skeletal muscle fibers. Biophys. J. 72: 1780–91, 1997.

    Article  PubMed  CAS  Google Scholar 

  49. Homsher, E., F. Wang, and J. R. Sellers. Factors affecting movement of F-actin filaments propelled by skeletal muscle heavy meromyosin. Am. J. Physiol. 262: C714–23, 1992.

    PubMed  CAS  Google Scholar 

  50. Homsher, E., D. Lee, Morris, and L. S. Tobacman. Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol. 524: 233–243, 2000.

    Article  PubMed  CAS  Google Scholar 

  51. Hook, P. and L. Larsson. Actomyosin interaction in a novel single muscle fiber in vitro motility assay. J. Muscle Res. Cell Motil. 21: 357–365, 2000.

    Article  PubMed  CAS  Google Scholar 

  52. Hook, P., X. Li, J. Sleep, S. Hughes, and L. Larsson. In vitro motility speed of slow myosin extracted from single soleus fibres from young and old rats. J. Physiol. 520: 463–471, 1999

    Article  PubMed  CAS  Google Scholar 

  53. Hunt, A. J., F. Gittes, and J. Howard. The force exerted by a single kinesin molecule against a viscous load. Biophys. J. 67: 766–81, 1994.

    Article  PubMed  CAS  Google Scholar 

  54. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7: 255–318, 1957.

    PubMed  CAS  Google Scholar 

  55. Huxley, A. F. Reflections on muscle. Princeton, NJ: Princeton University Press, 1980.

    Google Scholar 

  56. Ishijima, A., H. Kojima, H. Higuchi, Y. Harada, T. Funatsu, and T. Yanagida. Multiple- and singlemolecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys. J. 70: 383–400, 1996.

    Article  PubMed  CAS  Google Scholar 

  57. Iwamoto, H. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers. Biophys. J. 74: 1452–64, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson, J., S. Charlton, and J. Potter. A fluorescence stopped flow analysis of Ca2+ exchange with troponin C. J. Biol. Chem. 254: 3497–3502, 1979.

    PubMed  CAS  Google Scholar 

  59. Josephson, R. K., and K. A. Edman. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation. J. Physiol. 507: 511–25, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Julian, F. J. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. 218: 117–145, 1971.

    PubMed  CAS  Google Scholar 

  61. Julian, F. J., and D. L. Morgan. Variation of muscle stiffness with tension during tension transients and constant velocity shortening in the frog. J. Physiol. 319: 193–203, 1981.

    PubMed  CAS  Google Scholar 

  62. Julian, F. J., and M. R. Sollins. Variation of muscle stiffness with force at increasing speeds of shortening. J. Gen. Physiol. 66: 287–302, 1975.

    Article  PubMed  CAS  Google Scholar 

  63. Linari, M., I. Dobbie, M. Reconditi, N. Koubassova, M. Irving, G. Piazzesi, and V. Lombardi. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Biophys. J. 74: 2459–73, 1998.

    Article  PubMed  CAS  Google Scholar 

  64. Luff, A. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm, and soleus muscles of the mouse. J. Physiol. 313: 161–171, 1981.

    PubMed  CAS  Google Scholar 

  65. Marechal, G. and G. Beckers-Bleukx. Effect of nitric oxide on the maximal velocity of shortening of mouse skeletal muscle. Pflugers Arch. 436:906–913, 1998.

    Article  PubMed  CAS  Google Scholar 

  66. McDonald, K. Ca2+ dependence of loaded shortening velocity in rat skinned cardiac myocytes and skeletal muscle fibres. J. Physiol. 525: 169–181, 2000.

    Article  PubMed  CAS  Google Scholar 

  67. McKillop, D. F., and M. A. Geeves. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys. J. 65: 693–701, 1993.

    Article  PubMed  CAS  Google Scholar 

  68. Metzger, J. M. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers. Biophys. J. 70: 409–17, 1996.

    Article  PubMed  CAS  Google Scholar 

  69. Millar, N. and E. Homsher. The effects of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. J. Biol. Chem. 265: 20234–20240, 1991.

    Google Scholar 

  70. Molloy, J. E., J. E. Burns, J.-J. Kendrick, R. T. Tregear, and D. C. White. Movement and force produced by a single myosin head. Nature 378: 209–12, 1995.

    Article  PubMed  CAS  Google Scholar 

  71. Morris, C. A., L. S. Tobacman, and E. Homsher. Modulation of thin filament activation using an inactivated cardiac troponin C in skinned skeletal muscle fibers. Biophys. J. 74: A347, 1998.

    Google Scholar 

  72. Morris, C., L.S. Tobacman, and E. Homsher. Modulation of contractile activation in skeletal muscle by a calcium-insensitive troponin C mutant. J. Biol. Chem. 276: 20245–20251, 2001.

    Article  PubMed  CAS  Google Scholar 

  73. Moss, R. L. The effect of calcium on the maximum velocity of shortening in skinned skeletal muscle fibres of the rabbit. J. Muscle Res. Cell Motil. 3: 295–311, 1982.

    Article  PubMed  CAS  Google Scholar 

  74. Moss, R. L. Effects on shortening velocity of rabbit skeletal muscle due to variations in the level of thin-filament activation. J. Physiol. 377: 487–505, 1986.

    PubMed  CAS  Google Scholar 

  75. Moss, R. L., G. G. Giulian, and M. L. Greaser. The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned skeletal muscle fibers. J. Gen. Physiol. 86: 585–600, 1985.

    Article  PubMed  CAS  Google Scholar 

  76. Moss, R., G. Diffee, M. Greaser. Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms. Rev. Physiol. Biochem. Pharmacol. 126:1–63, 1995.

    Article  PubMed  CAS  Google Scholar 

  77. Pate, E., and R. Cooke. A model for the interaction of muscle cross-bridges with ligands which compete with ATP. J. Theor. Biol. 118: 215–230, 1986.

    Article  PubMed  CAS  Google Scholar 

  78. Pate, E., and R. Cooke. A model of crossbridge action: the effects of ATP, ADP and Pi. J. Muscle Res. Cell Motil. 10: 181–196, 1989.

    Article  PubMed  CAS  Google Scholar 

  79. Pate, E., K. L. Nakamaye, K. Franks-Skiba, R. G. Yount, and R. Cooke. Mechanics of glycerinated muscle fibers using nonnucleoside triphosphate substrates. Biophys. J. 59: 598–605, 1991.

    Article  PubMed  CAS  Google Scholar 

  80. Pate, E. F., and C. J. Brokaw. Cross-bridge behavior in rigor muscle. Biophys. Struct. Mech. 7: 51–63, 1980.

    Article  PubMed  CAS  Google Scholar 

  81. Pate, E., G. Wilson, M. Bhimani, R. Cooke. Temperature dependence of the inhibitory effects of orthovanadate on shortening velocity in fast skeletal muscle fibers. Biophy. J. 66: 1554–1562, 1994.

    Article  CAS  Google Scholar 

  82. Ranatunga, K. W. Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle. J. Physiol. 329: 465–83, 1982.

    PubMed  CAS  Google Scholar 

  83. Ranatunga, K. Temperature dependence of mechanical power output in mammalian (rat) skeletal muscle. Exp. Physiol. 83:371–376, 1998.

    PubMed  CAS  Google Scholar 

  84. Rayment, I., W. Rypniewski, K. Schmidt-Base, R. Smith, D. Tomchick, M. Benning, D. Winkelmann, G. Wesenberg, and H. Holden. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science, 261:50–58, 1993

    Article  PubMed  CAS  Google Scholar 

  85. Rayment, I., H. Holden, M. Whittaker, C. Yohn, M. Morenz, K. Holmes, and R. Milligan. Structure of the actin myosin complex and its implications for muscle contraction. Science, 261: 58–65, 1993.

    Article  PubMed  CAS  Google Scholar 

  86. Regnier, M., D. M. Lee, and E. Homsher. ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis. Biophys. J. 74: 3044–58, 1998.

    Article  PubMed  CAS  Google Scholar 

  87. Reiser, P., R. Moss, G. Giuliani, M. Greaser. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J. Biol. Chem. 260: 9077–9080, 1985.

    PubMed  CAS  Google Scholar 

  88. Reiser, P., C. Kasper, M. Greaser, and R. Moss. Functional significance of myosin transitions in single fibers of developing soleus muscles. Am. J. Physiol. 23: C605–613, 1988.

    Google Scholar 

  89. Rome, L., A. Sosnick, and D. Goble. Maximum velocity of shortening of 3 fiber types from horse soleus muscle: implications for scaling with body size. J. Physiol. 431: 173–185, 1990.

    PubMed  CAS  Google Scholar 

  90. Ruppel, K., and J. Spudich. Structure-function studies of the myosin motor domain: importance of the 50 kD cleft. Mol. Biol. Cell, 7: 1123–1136, 1996.

    PubMed  CAS  Google Scholar 

  91. Sant’Ana Pereira, J., D. Pavlov, M. Nili, M. Greaser, E. Homsher, and R. Moss. Kinetic differences in cardiac myosins with identical loop 1 sequences. J. Biol. Chem. 276:4409–4415, 2001.

    Article  Google Scholar 

  92. Sciote, J., and J. Kentish. Unloaded shortening velocities of rabbit masseter fibres expressing skeletal or a-cardiac myosin heavy chains. J. Physiol. 492:659–667, 1996.

    PubMed  CAS  Google Scholar 

  93. Sellers, J. Myosin. Oxford University Press, Oxford, New York. 237 ppg., 1999.

    Google Scholar 

  94. Seow, C., and L. Ford. Shortening velocity and power output of skinned muscle fibers from mammals having a 25,000-fold range of body mass. J. Gen. Physiol. 97: 541–560, 1991.

    Article  PubMed  CAS  Google Scholar 

  95. Shih, W., Z. Gryczynski, J. Lakowicz, J. Spudich. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct state of the molecular motor myosin. Cell. 102: 683–694, 2000.

    Article  PubMed  CAS  Google Scholar 

  96. Stehle, R., and B. Brenner. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding. Biophys. J. 78: 1458–1473, 2000.

    Article  PubMed  CAS  Google Scholar 

  97. Smith, C. and I. Rayment. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 79:1590–1602, 1996.

    Article  Google Scholar 

  98. Sun, Y-B., K. Hilber, and M. Irving. Effect of active shortening on the rate of ATP utilization by rabbit psoas muscle fibers. J. Physiol. 531:781–791, 2001.

    Article  PubMed  CAS  Google Scholar 

  99. Sweeney, H., M. Kushmerick, M. Marbuchi, F. Sreter, and J. Gergely. Myosin alkali light chain and heavy chain variation correlate with altered shortening velocity of isolated skeletal muscle fibers. J. Biol. Chem. 263: 9034–9039, 1988.

    PubMed  CAS  Google Scholar 

  100. Sweeney, H., S. Rosenfeldt, F. Brown, L. Faust, J. Smith, J. Xing, L. Stein, and J. Sellers. Kinetic tuning of myosin via flexible loop adjacent to the nucleotide binding pocket. J. Biol. Chem. 273:6262–6270. 1998.

    Article  PubMed  CAS  Google Scholar 

  101. Tesi, C., F. Colomo, S. Nencini, N. Piroddi, and C. Poggesi. Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle fibers. J. Physiol. 566:847–853, 1999.

    Article  Google Scholar 

  102. Thedinga, E., N. Karim, T. Kraft, and B. Brenner. A single-fiber in vitro motility assay. In vitro sliding velocity of F-actin vs unloaded shortening velocity in skinned muscle fibers. J. Muscle Res. Cell Motil. 20:785–796, 1999.

    Article  PubMed  CAS  Google Scholar 

  103. Thompson, L. and M. Brown. Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. J. Appl. Physiol. 86: 881–886, 1999.

    Article  PubMed  CAS  Google Scholar 

  104. Uyeda, T., S. Kron, and J. Spudich. Myosin step size. Estimation from slow sliding movement of actin over low densities of heavy meromyosin. J. Mol. Biol. 214: 699–710, 1990.

    Article  PubMed  CAS  Google Scholar 

  105. Uyeda, T., K. Ruppel, and J. Spudich. Enzymatic activities correlate with chimeric substitutions at the actin-binding face of myosin. Nature, 368:567–569, 1994.

    Article  PubMed  CAS  Google Scholar 

  106. Vandenboom, R., D. R. Claflin, and F. J. Julian. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres. J Physiol. 511: 171–80, 1998.

    Article  PubMed  CAS  Google Scholar 

  107. Vergara, J., and M. DiFranco. Imaging of calcium transients during excitation-contraction coupling in skeletal muscle fibers. Adv. Exp. Med. Biol. 311: 227–36, 1992.

    Article  PubMed  CAS  Google Scholar 

  108. Weiss, A., S. Schiaffino, and L. Leinwand. Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. J. Mol. Biol. 290: 61–75, 1999.

    Article  PubMed  CAS  Google Scholar 

  109. Westerblad, H., J. Bruton, and J. Lännergren. The effect of intracellular pH on contractile function of intact single fibres of the mouse muscle declines with increasing temperature. J. Physiol. 500: 193–204, 1997.

    PubMed  CAS  Google Scholar 

  110. Woledge, R. C., N. A. Curtin, and E. Homsher. Energetic aspects of muscle contraction. Monogr Physiol Soc 41: 1–357, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Homsher, E. (2002). Determinants of Unloaded Shortening Velocity in Striated Muscle. In: Solaro, R.J., Moss, R.L. (eds) Molecular Control Mechanisms in Striated Muscle Contraction. Advances in Muscle Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9926-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9926-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6069-3

  • Online ISBN: 978-94-015-9926-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics