Skip to main content

Redox state and phosphorylation potential as macroparameters in rhythmic control of metabolism — a molecular basis for seasonal adaptation of development

  • Chapter
The Redox State and Circadian Rhythms

Abstract

The network of cellular energy metabolism is regarded as an evolutionary adaptation to a cyclical energy supply from the solar cycle of light and dark. As a working hypothesis we propose that the oscillatory feedback system of cellular energy metabolism could be the basis for the endogenous timing of development and behaviour. The interaction of environmental signals with an endogenous physiological rhythm with the qualities of a clock are assumed to occur at membrane-organized receptors coupled to signal transduction chains which modulate membrane-bound energy transduction. The energy-dependent state of membranes in turn is considered to determine the sensitivity of membrane-bound receptors. The structural and functional principles for the physiological oscillators are supposed to be the same as those underlying the theory of membrane-bound energy transduction. The metabolic network is controlled by redox and phosphorylation potential (or charge) and the modulation of the hydrophobicity of key elements. The circadian system, the clock’s periodicity, is genetically determined and provides the temporal frame for physiological and behavioural patterns that are necessary for adaptation of organisms and populations to environmental constraints. In the photoperiodic acclimation of organisms, photoredox systems most likely function in signal transduction as modulators of vectorial metabolism in general and in feedback control of oscillating transcription rates in cellular and organismic adaptation in particular. From an evolutionary point of view the circadian rhythmic cell is a hydro-electro-chemical oscillator driven or synchronized by sunlight with a temporal compartmentation of metabolism and a network of metabolic sequences to compensate for oxidative stress. The plasma membrane is the interface between apoplast (extracellular matrix) and symplast (protoplast) and as such the structure for integration of environmental and endogenous signals in cellular or organismic adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrechtovâ, J.T.P. Slavik, J. and Wagner, E. (1997) Confocal pH-topography in the shoot apex of Chenopodium rubrum in relation to different photoperiods. Endocytobiosis & Cell Res. 12, 83–94

    Google Scholar 

  • Allen, J.F., Bennett, J., Steinback, K.E. and Arntzen, Ch.J., 1981. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29.

    Article  CAS  Google Scholar 

  • Banes, A.J., Tsuzaki, M., Yamamoto, J., Fischer, T., Brigman, B., Brown, T. and Miller, L., 1995. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell Biol. 73, 349–365.

    Google Scholar 

  • Barbier-Brygoo, H., Joyard, J., Pugin, A. and Ranjeva, R., 1997. Intracellular compartmentation and plant cell signalling. TIPS 2, 214–222.

    Google Scholar 

  • Bögre, L., Ligterink, W., Heberle-Bors, E. and Hirt, H., 1996. Mechanosensors in plants. Nature 383, 489–490.

    Article  PubMed  Google Scholar 

  • Bonzon, M., Hug, M., Wagner, E. and Greppin, H., 1981. Adenine nucleotides and energy charge evolution during the induction of flowering in spinach leaves. Planta 152, 189–194.

    Article  CAS  Google Scholar 

  • Bonzon, M., Simon, P., Greppin, H. and Wagner, E., 1983. Pyridine nucleotides and redox charge evolution during the induction of flowering in spinach leaves. Planta 159, 254–260.

    Article  Google Scholar 

  • Dolmetsch, R.E., Xu, K. and Lewis, R.S. (1998) Calcium oscillation increase the efficiency and specificity of gene expression. Nature 392, 933–936.

    Article  Google Scholar 

  • Dunlap, J.C., 1999. Molecular bases for circadian clocks. Cell, 96, 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Embley, T.M. and Martin, W., 1998. A hydrogen-producing mitochondrion. Nature 396, 517519.

    Google Scholar 

  • Ermolayeva, E., Sanders, D. and Johannes, E., 1997. Ionic mechanism and role of phytochrome-mediated membrane depolarisation in caulonemal side branch initial formation in the moss Physcomitrella patens. Planta 201, 109–118.

    Article  CAS  Google Scholar 

  • Frosch, S. and Wagner, E., 1973. Endogenous rhythmicity and energy transduction. II. Phytochrome action and the conditioning of rhythmicity of adenylate kinase. NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum by temperature and light intensity cycles during germination. Can. J. Bot. 51, 1521–1528.

    Google Scholar 

  • Fukshansky, L., 1981. A quantitative study of timing in plant photoperiodism. J. Theor. Biol. 93, 63–91.

    Google Scholar 

  • Gifford, E.M. and Steward, K.D., 1965. Ultrastructure of vegetative and reproductive apices of Chenopodium album. Science 149, 75.

    Article  PubMed  Google Scholar 

  • Golden, S.S., Ishiura, M., Johnson, C.H. and Kondo, T., 1997. Cyanobacterial circadian rhythms. Annu. Rev. Plant Physiol. Plant Molec. Biol. 48, 327–354.

    Google Scholar 

  • Gooch, D. and Packer, L., 1974. Oscillatory states of mitochondria. Studies on the oscillatory mechanism of liver and heart mitochondria. Arch. Biochem. Biophys. 163, 759–768.

    Google Scholar 

  • Goodwin, B., 1969. The cell as a resonating system. In: Waddington, C.H. (ed) Towards a Theoretical Biology. Aldine, Chicago.

    Google Scholar 

  • Goodwin, B.G., 1963. Temporal organization in cells. A dynamic theory of cellular control processes. Academic Press, London.

    Google Scholar 

  • Greppin, H., Bonzon, M., Crespi, P., Crèvecœur, M., Degli Agosti, R. and Penel, C., 1990.

    Google Scholar 

  • Physiological macrofunctions and indicators of the flowering process. In: Millet, B. and Greppin, H. (eds) Intra-and Intercellular Communication in Plants. INRA, Paris, pp. 107123.

    Google Scholar 

  • Gylkhandanyan, A.V., Evtodienko, Yu.V., Zhabotinsky, A. M. and Kondrashova, M.N., 1976. Continuous Sr2+-induced oscillations of the ionic fluxes in mitochondria. FEBS Lett. 66, 44–47.

    Article  PubMed  CAS  Google Scholar 

  • Havel, L. and Durzan, D.J., 1996. Apoptosis in plants. Bot. Acta 109, 268–277.

    Google Scholar 

  • Hess, B., 1994. Molekulare und zelluläre Netzwerke. Naturwiss. Rundschau 47, 219–226.

    Google Scholar 

  • Ishiura, M., Kutsuna, S., Aoki, S, Iwasaki, H., Andersson, C.R., Tanabe, A., Golden, S.S., Johnson, C.H. and Kondo, T., 1998. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T., Dietrich, R.A. and Dangl, J.L., 1996. Initiation of runaway cell death in an Arabiclopsis mutant by extracellular superoxide. Science 273, 1853–1856.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, E., Ermolayeva, E. and Sanders, D., 1997. Red light-induced membrane potential transients in the moss Physcomitrella patens: ion channel interaction in phytochrome signalling. J. Exp. Bot. 48, 599–608.

    Google Scholar 

  • Johansson, I., Karlsson, M., Shukla, V.K., Chrispeels, M.J., Larsson, C. and Kjellbom, P., 1998. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451–459.

    PubMed  CAS  Google Scholar 

  • Könitz, W., 1965. Elektronenmikroskopische Untersuchungen an Euglena gracilis im tagesperiodischen Licht-Dunkel-Wechsel. Planta 66, 345–373.

    Article  Google Scholar 

  • Krekule, J., 1997. Photoperiodic control of flowering: Various signals and theire roles. Russian J. of Plant Physiol. 44, 129–137.

    Google Scholar 

  • Kreps, J.A. and Kay, S.A., 1997. Coordination of plant metabolism and development by the circadian clock. Plant Cell 9, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Lang, F. and Waldegger, S., 1997. Regulating cell volume. Am. Sci. 85, 456–463.

    Google Scholar 

  • Li, Y.-X. and Goldbeter, A., 1992. Pulsatile signaling in intercellular communication. Biophys. J. 61, 161–171.

    Google Scholar 

  • Li, W-H., Llopis, J., Whitney, M., Zlokarnik, G. and Tsien, R.Y. (1998) Cell-permeant caged InsP3 ester shows that Cat+ spike frequency can optimize gene expression. Nature 392, 936–941.

    Article  PubMed  CAS  Google Scholar 

  • Lonergan, Th.A., 1981. A circadian rhythm in the rate of light-induced electron flow in three leguminous species. Plant Physiol. 68, 1041–1046.

    Article  PubMed  CAS  Google Scholar 

  • Mager, P.P., 1980a. Biorhythms, system organization and bioactive compounds. I. Theoretical background. Chronobiologia 7, 55–67.

    Google Scholar 

  • Mager, P.P., 1980b. Biorhythms, system organization and bioactive compounds. II. Hysteresis at different levels of system organization. Chronobiologia 7, 69–79.

    Google Scholar 

  • Martin, W. and Müller, M., 1998. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Morré, D.J. and Morré, D.M., 1998. NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J. 16, 277–284.

    Article  Google Scholar 

  • Murakami, S. and Packer, L., 1970. Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol. 45, 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Novak, B. and Greppin, H., 1979. High-frequency oscillations and circadian rhythm of the membrane potential in spinach leaves. Planta 144, 235–240.

    Article  Google Scholar 

  • Novak, B. and Sironval, C., 1976. Circadian rhythms of the transcellular current in regenerating enucleated posterior stalk segments of Acetabularia mediterranea. Plant Sci. Lett. 6, 273–283.

    Google Scholar 

  • Olcese, J.M., 1990. The neurobiology of magnetic field detection in rodents. Progress Neurobiol. 35, 325–330.

    Article  CAS  Google Scholar 

  • Olivotto, M., Arcangeli, A., Carlà, M. and Wanke, E., 1996. Electric fields at the plasma membrane level: a neglected alement in the mechanism of cell signalling. Bio Essays 18, 495–504.

    CAS  Google Scholar 

  • Penell, R.I. and Lamb, C., 1997. Programmed cell death in plants. Plant Cell 9, 1157–1168.

    Article  Google Scholar 

  • Puu, G., 1976. Oscilatory catalytic activity in chloroplast from spinach cotyledons. IUB

    Google Scholar 

  • Tenth International Congress of Biochemistry, Abstract 14–6–025, Hamburg.

    Google Scholar 

  • Quail, P.H., 1997. The phytochromes: a biochemical mechanism of signaling in sight? Bio Essays 19, 571–579.

    CAS  Google Scholar 

  • Ruelland, E. and Miginiac-Maslow, M., 1999. Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? TIPS 4, 136–141.

    Google Scholar 

  • Schittenhelm, J., Westphal, S., Toder, S. and Wagner, E., 1993. Das antioxidative System der Fichte: Einfluss von verschiedenen Stressfaktoren. Forstw. Cbl. 112, 240–250.

    Google Scholar 

  • Singh, K.B. (1998) Transcriptional regulation in plants: The importance of combinatorial control. Plant Physiol. 118, 1111–1120.

    Google Scholar 

  • Sorensen, T.S. and Castillo, J.L., 1980. Spherical drop of cytoplasm with an effective surface tension influenced by oscillating enzymatic reactions. J. Colloid Interface Sci. 76, 399417.

    Google Scholar 

  • Staiger, D., and Heintzen, C. 1999. The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches. Chronobiol. Int. 16, 1–16.

    Google Scholar 

  • Thomine, S., Guern, J. and Barbier-Brygoo, H., 1998. Voltage-dependent block by ATP of anion channels at the plasma membrane of protoplasts from epidermal cells of Arabidopsis hypocotyls. In: Abstr. Book of 11th Internat. Workshop Plant Membr. Biol., August 9–14, 1998, Cambridge, U.K., p. 174.

    Google Scholar 

  • Trebacz, K. and Sievers, A., 1998. Action potentials evoked by light in traps of Dionaea muscipula Ellis. Plant Cell Physiol. 39, 369–372.

    Article  CAS  Google Scholar 

  • Tsuchiya, T. and Ishiguri, Y., 1981. Role of the quality of light in the photoperiodic flowering response in four latudinal ecotypes of Chenopodium rubrum L. Plant Cell Physiol. 22, 525–532.

    Google Scholar 

  • Vanden Driessche T (1994) Circadian rhythms in three unicellular organisms. The peculiarities of the organisms, the evidence brought on rhythms and their specific practical problems. Outline of recent hypotheses. Biol. Rhythm Res. 25, 345–386.

    Article  Google Scholar 

  • Vigh, L., Maresca, B. and Harwood, J.L., 1998. Does the membrane’s physical state control the expression of heat shock and other genes? TIBS 23, 369–374.

    PubMed  CAS  Google Scholar 

  • Wagner, E., 1976. Kinetics in metabolic control of time measurement in photoperiodism. J. Interdiscipl. Cycle Res. 7, 313–332.

    Google Scholar 

  • Wagner, E., 1977. Molecular basis of physiological rhythms. In: Jennings, D.H. (ed) Integration of Activity in the Higher Plant. Society for Experimental Biology, Symposium 31, University Press, Cambridge, pp. 33–72.

    Google Scholar 

  • Wagner, E., Bonzon, M. and Greppin, H., 1985. Membrane-oscillator hypothesis of metabolic control in photoperiodic time measurement and the temporal organisation of development and behaviour in plants. In: Packer, L. (ed) New Developments and Methods in Membrane Research and Biological Energy Transduction. Plenum, New York, pp. 525–546.

    Google Scholar 

  • Wagner, E. and Cumming, B.G., 1970. Betacyanin accumulation, chlorophyll content, and flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and phytochrome action. Can. J. Bot. 49, 1981–1985.

    Google Scholar 

  • Wagner, E. and Frosch, S., 1974. Endogenous rhythmicity and energy transduction. VI. Rhythmicity in reduced and oxidized pyridine nucleotide levels in seedlings of Chenopodium rubrum. J. Interdiscipl. Cycle Res. 5, 231–239.

    Google Scholar 

  • Wagner, E., Frosch, S. and Deitzer, G.F., 1974. Metabolic control of photoperiodic time measurement. J. Interdiscipl. Cycle Res. 5, 240–246.

    Google Scholar 

  • Wagner, E. and Fukshansky, L., 1985. Die zeitliche Organisation des eukaryonten Energiestoffwechsels als Grundlage für die Signalverarbeitung in Photo-und Thermoperiodismus. Ber. Dtsch. Bot. Ges. 98, 35–52.

    Google Scholar 

  • Wagner, E., Kiefer, S., Penel, C., Normann, J., Ruiz-Fernandez, S., Bonzon, M., Greppin, H., 1995. Circadian rhythms, membranes and susceptibility of environmental factors. In: Vanden Driessche, T., Guisset, J.-L., Petiau-de Vries, G.M. (eds) Membranes and Circadian Rhythms. Springer Verlag, Heidelberg, pp. 187–200.

    Google Scholar 

  • Wagner, E., Stroebele, L. and Frosch, S., 1974. Endogenous rhythmicity and energy transduction. V. Rhythmicity in adenine nucleotides and energy charge in seedlings of Chenopodium rubrum L. J. Interdiscipl. Cycle Res. 5, 77–88.

    Google Scholar 

  • Wagner, E., Tetzner, J., Haertle, U. and Deitzer, G.F., 1974. Endogenous rhythmicity and energy transduction. VIII. Kinetics in enzyme activity, redox state and energy charge as related to photomorphogenesis in seedlings of Chenopodium rubrum L., Ber. Deutsch. Bot. Ges. 87, 291–302.

    Google Scholar 

  • Wagner, E., Normann, J., Albrechtovâ, J.T.P., Walczysko, P., Bonzon, M. and Greppin, H., 1998. Electrochemical-hydraulic signalling in photoperiodic control of flowering: Is “florigen” a frequency-coded electric signal? Flowering Newsletter 26, 62–74.

    Google Scholar 

  • Wang, X., 1999. The role of phospholipase D in signaling cascades. Plant Physiol. 120, 645651.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thérèse Vanden Driessche Jean-Luc Guisset Ghislaine M. Petiau-de Vries

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wagner, E., Abrechtová, J.T.P., Normann, J., Greppin, H. (2000). Redox state and phosphorylation potential as macroparameters in rhythmic control of metabolism — a molecular basis for seasonal adaptation of development. In: Driessche, T.V., Guisset, JL., Petiau-de Vries, G.M. (eds) The Redox State and Circadian Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9556-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9556-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5516-3

  • Online ISBN: 978-94-015-9556-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics