Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 89))

Abstract

Gravisensing cells (statocytes) from plant root caps are characterized by a polar arrangement of organelles and sedimented amyloplast-based statoliths. Immunofluorescence microscopy fails to visualize prominent actin filaments in statocytes but indicates a highly dynamic cytoskeletal network, composed at least of actin, myosin-like proteins and profilin, surrounding sedimented statoliths. Experiments under microgravity demonstrated that the positioning of statoliths depends on the external gravitational force and on endocellular cytoskeleton-based forces exerted on their surfaces. Accepting the amyloplast-based statolith hypothesis, these results strongly suggest that gravisensing occurs in a close vicinity of statolith surfaces. Experiments with grass nodes revealed transient changes of the signalling molecule IP3 within few seconds after gravistimulation. The importance of mutants for dissecting the gravity-related signal transduction chains is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bähler M (1996) Myosins on the move to signal transduction. Curr Opin Cell Biol 8: 18–22

    Article  PubMed  Google Scholar 

  • Baluška F and Hasenstein KH (1997) Root cytoskeleton: Its role in perception of and response to gravity. Planta 203: S69–S78

    Article  PubMed  Google Scholar 

  • Baluška F, Volkmann D and Barlow PW (1996) Specialized zones of development in roots: View from the cellular level. Plant Physiol 112:3–4

    PubMed  Google Scholar 

  • Baluška F, Samaj J, Napier, R and Volkmann D (1999) Maize calreticulin localizes to plasmodesmata in root apex. Plant J 19: 481–487

    Article  PubMed  Google Scholar 

  • Baluška F, Vitha S, Barlow PW and Volkmann D (1997) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: A major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72: 113–121

    PubMed  Google Scholar 

  • Baluška F, Kreibaum A, Vitha S, Parker JS, Barlow PW and Sievers A (1997) Central root cap cells are depleted of endoplasmic microtubules and actin filament bundles: Implications for their role as gravity-sensing statocytes. Protoplasma 196: 212–223

    Article  PubMed  Google Scholar 

  • Barlow PW (1995) Gravity perception in plants: A multiplicity of systems derived by evolution. Plant Cell Environ 18: 951–952

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Fasano JM and Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Bögre L, Ligterink W, Heberle-Bors E and Hirt H (1996) Mechanosensors in plants. Nature 383: 489–490

    Article  PubMed  Google Scholar 

  • Braam J, Sistrunk ML, Polisensky DH, Wei X, Purugganan M, Antosiewicz DM, Campbell P and Johnson KA (1997) Plant responses to environmental stress: Regulation and functions of’the Arabidopsis TCH genes. Planta 203: S35–S41

    Article  PubMed  CAS  Google Scholar 

  • Braun M (1996) Immunocytolocalization of myosin in rhizoids of Chara globularis Thuill. Protoplasma 191: 1–8

    Article  CAS  Google Scholar 

  • Buchen B, Braun M and Sievers A (1993) Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma 172: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Burack WR and Shaw AS (2000) Signal transduction: Hanging on a scaffold. Curr Opin Cell Biol 12: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T and Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95: 15112–15117

    Article  PubMed  CAS  Google Scholar 

  • Chicurel ME, Chen CS and Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10: 232–239

    Article  PubMed  CAS  Google Scholar 

  • Davies E, Shimps B, Brown K and Stankovi DB (1999) Gravity, stress, calcium and gene expression. J Grav Physiol 6: P21–P22

    CAS  Google Scholar 

  • Ding B (1998) Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38: 279–310

    Article  PubMed  CAS  Google Scholar 

  • Evans ML and Ishikawa H (1997) Cellular specificity of the gravitropic motor response in roots. Planta 203: S115–S122

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE, Drabak B, Allan AC, Watkins PAC and Trewavas AJ (1996) Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8: 1305–1321

    PubMed  CAS  Google Scholar 

  • Freilich S, Oron E, Kapp Y, Nevo-Caspi Y, Orgad S, Segal D and Chamovitz DA (1999) The COP9 signalosome is essential for development of Drosophila melanogaster. Curr Biol 9: 1187–1190

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN and Tasaka M (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J 14: 425–430

    Article  PubMed  CAS  Google Scholar 

  • Glogauer M, Arora P, Chou D, Janmey PA, Downey GP and McCulloch CAG (1998) The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J Biol Chem 273: 1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Godbolé R, Takahashi H and Hertel R (1999) The Lazy mutation in rice affects a step between statoliths and gravity-induced lateral auxin transport. Plant Biol 1: 379–381

    Article  Google Scholar 

  • Hargrave PA and McDowell JH (1993) Rhodopsin and phototransduction. Int Rev Cytol 137: 49–97

    Article  Google Scholar 

  • Heberle-Bors CJC and Hirt H (1994) MAP kinases: Universal multipurpose signaling tools. Plant Mol Biol 24: 407–416

    Article  PubMed  Google Scholar 

  • Hejnowicz Z and Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108: 117–137

    Article  PubMed  CAS  Google Scholar 

  • Hirt H (1997) Multiple roles of MA Pkinases in plant signal transduction. Trends Plant Sci 2: 11–15

    Article  Google Scholar 

  • Ingber DE (1997) Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59: 575–559

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H and Evans ML (1992) Induction of curvature in maize roots by calcium or by thigmostimulation. Role of the postmitotic isodiametric growth zone. Plant Physiol 100:762–768

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H and Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102: 1203–1210

    PubMed  CAS  Google Scholar 

  • Janßen M, Hunte C, Schulz M and Schnabl H (1996) Tissue specification and intracellular distribution of actin isofoms in Vicia faba L. Protoplasma 191: 158–163

    Article  Google Scholar 

  • Jonak C, Ligterink W and Hirt H (1999) MAP kinases in plant signal transduction. Cell Mol Life Sci 55: 204–213

    Article  PubMed  CAS  Google Scholar 

  • Juniper BE, Groves S, Landau-Schachar B and Audus LJ (1966) Root cap and the perception of gravity. Nature 209: 93–94

    Article  Google Scholar 

  • Kandasamy MK and Meagher RB (1999) Actin-organelle interaction: Association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskel 44: 110–118

    Article  CAS  Google Scholar 

  • Kernan M and Zuker Ch (1995) Genetic approaches to mechanosensory transduction. Curr Opin Neurobiol 5: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Klahre U and Chua N-H (1999) The Arabidopsis ACTIN-RELATED PROTEIN2 (AtARP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Biol 41: 65–73

    Article  PubMed  CAS  Google Scholar 

  • Köhler RH and Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113: 81–89

    PubMed  Google Scholar 

  • Köhler RH, Cao J, Zipfle WR, Webb WW and Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276: 2039–2042

    Article  PubMed  Google Scholar 

  • Kost B, Spielhofer P and Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Laurinavi☐ius R, Sto☐kus A, Buchen B and Sievers A (1996) Structure of cress root statocytes in microgravity (BION-10 mission). Adv Space Res 17: 91–94

    Article  Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D and Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114: 789–800

    Article  PubMed  Google Scholar 

  • Lorenzi G and Perbal G (1990) Root growth and statocyte polarity in lentil seedling roots grown in microgravity or on a slowly rotating clinostat. Physiol Plant 78: 532–537

    Article  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P and Fink GR (1998) EIRl, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12: 2175–2187

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM and Gould KL (1999) The ARP2/3 complex: A multifunctional actin organizer. Curr Opin Cell Biol 11: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Marchant A, Kargul J, May ST, Müller P, Delbarre A, Perrot-Rechenmann C and Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18: 2066–2073

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, McKinney EC and Kandasamy MK (1999) Isovariant dynamics expand and buffer the responses of complex systems: The diverse plant actin gene family. Plant Cell 11:995–1005

    PubMed  CAS  Google Scholar 

  • Menzel D (1994) Tansley Review No. 77. Cell differentiation and the cytoskeleton in Acetabularia. New Phytol 128: 369–393

    Article  Google Scholar 

  • Mermall V, Post PL and Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Miège C and Maréchal É (1999) 1,2-sn-Diacylglycerol in plant cells: Product, substrate and regulator. Plant Physiol Biochem 37: 795–808

    Article  PubMed  Google Scholar 

  • Montell C (1999) Visual transduction in Drosophila. Annu Rev Cell Dev Biol 15: 231–268

    Article  PubMed  CAS  Google Scholar 

  • Monshausen G and Sievers A (1998) Weak mechanical stimulation causes hyperpolarisation in root cells of Lepidium. Bot Acta 111: 303–306

    Google Scholar 

  • Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E and Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 23: 6903–6911

    Article  Google Scholar 

  • Mundt KE, Porte J, Murray JM, Brikos C, Christensen PU, Caspari T, Hagan IM, Millar JBA, Simanis V, Hofmann K and Carr AM (1999) The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Curr Biol 9: 1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Irvine RF and Musgrave A (1998) Phospholipid signalling in plants. Biochim Biophys Acta 1389: 222–272

    Article  PubMed  CAS  Google Scholar 

  • Palme K and G älweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2: 375–381

    Article  PubMed  CAS  Google Scholar 

  • Perbal G and Driss-Ecole D (1989) Polarity of statocytes in lentil seedling roots grown in space (Spacelab Dl Mission). Physiol Plant 75: 518–524

    Article  PubMed  CAS  Google Scholar 

  • Perbal G and Driss-Ecole D (1994) Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML1 Mission of Spacelab. Physiol Plant 90: 313–318

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D, Rutin J and Sallé G (1987) Graviperception of lentil seedling roots grown in space (Spacelab Dl Mission). Physiol Plant 70: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D, Sallé G and Raffln F (1986) Perception of gravity in the lentil root. Naturwissenschaften 73: 444–446

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D, Tewinkel M and Volkmann D (1997) Statocyte polarity and gravisensitivity in seedling roots grown in microgravity. Planta 203: S57–S62

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Heilmann I and Boss WF (1999) Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA 96: 5838–5843

    Article  PubMed  CAS  Google Scholar 

  • Pickard BG and Ding JP (1992) Gravity sensing by higher plants. In: Comparative Aspects of Mechanoreceptor Systems, Pharis RP and Reid DM (eds), Heidelberg: Springer-Verlag, pp 193–281

    Google Scholar 

  • Radford JE and White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluška F, Samaj J, Volkmann D and Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19: 555–567

    Article  PubMed  CAS  Google Scholar 

  • Rosen E, Chen R and Masson PH (1999) Root gravitropism: A complex response to a simple stimulus? Trends Plant Sci 4: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Sachs F (1997) Mechanical transduction by ion channels: How forces reach the channel. In: Cytoskeletal Regulation of Membrane Function, Froehner SC (ed), New York: Rockefeller University Press, pp 209–218

    Google Scholar 

  • Sack F (1997) Plastids and gravitropic sensing. Planta 203: S63–S68

    Article  PubMed  CAS  Google Scholar 

  • Sack FD, Suyemoto M and Leopold AC (1986) Amyloplast sedimentation and organelle saltation in living columella cells. Am J Bot 73: 1692–1698

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Kadota A and Wada M (1999) Mechanically induced avoidance response of chloroplasts in fern protonemal cells. Plant Physiol 121: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Sedbrook JC, Chen R and Masson PH (1999) ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci USA 96:1140–1145

    Article  PubMed  CAS  Google Scholar 

  • Sievers A and Busch MB (1992) An inhibitor of the Ca2+-ATPase in the sarcoplasmic and endoplasmic reticula inhibits transduction of the gravity stimulus in cress roots. Planta 188: 619–622

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B and Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B, Volkmann D and Hejnowicz Z (1991) Role of the cytoskeleton in gravity perception. In: Lloyd CW (ed) The Cytoskeletal Basis of Plant Growth and Form. London: Academic Press, pp 169–182

    Google Scholar 

  • Sievers A, Kruse S, Kuo-Huang LL and Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Smith JD, Todd P and Staehelin LA (1997) Modulation of statolith mass and grouping in white clover (Trifolium repens) grown in 1-g, microgravity and on the clinostat. Plant J 12: 1361–1373

    Article  PubMed  CAS  Google Scholar 

  • Soldati T, Schwarz EC and Geissler H (1999) Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. Protoplasma 209: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Spencer RH, Chang G and Rees DC (1999) Teeling the pressure’: Structural insights into a gated mechanosensitive channel. Curr Opin Struct Biol 9: 448–454

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol 51: 257–288

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR and Zonia LE (1997) Profilin and actin-depolymerizing factor: Modulators of actin organization in plants. Trends Plant Sci 2: 275–281

    Article  Google Scholar 

  • Staves MP, Wayne R and Leopold AC (1997a) Cytochalasin D does not inhibit gravitropism in roots. Am J Bot 84: 1530–1535

    Article  PubMed  CAS  Google Scholar 

  • Staves MP, Wayne R and Leopold AC (1997b) The effect of the external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots. Am J Bot 84: 1522–1529

    Article  PubMed  CAS  Google Scholar 

  • Tasaka M, Kato T and Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4: 103–107

    Article  PubMed  CAS  Google Scholar 

  • Thuleau P, Schroeder JI and Ranjeva R (1998) Recent advances in the regulation of plant calcium channels: Evidence for regulation by G-proteins, the cytoskeleton and second messengers. Curr Opin Plant Biol 1: 424–427

    Article  PubMed  CAS  Google Scholar 

  • Tsugeki R and Fedoroff NV (1999) Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96: 12941–12946

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Baluška F, Mews M and Volkmann D (1997) Immunofluorescence detection of F- actin on low melting wax sections from plant tissue. J Histochem Cytochem 45: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Baluška F, Braun M, Samaj J, Volkmann D and Barlow PW (2000) Comparison of cryofixation and aldehyde fixation for plant actin immunocytochemistry: Aldehydes do not destroy F-actin. Histochem J, in press

    Google Scholar 

  • Volkmann D and Baluška F (1999) The actin cytoskeleton in plants: From transport networks to signaling networks. Microsc Res Tech 47: 135–154

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D and Sievers A (1979) Graviperception in multicellular organs. In: Encyclopedia of Plant Physiology, NS, vol. 7, Physiology of Movements. Haupt W and Feinleib ME (eds), Berlin: Springer-Verlag, pp 573–600

    Google Scholar 

  • Volkmann D and Tewinkel M (1996) Gravisensing of cress roots: Investigations of threshold values under specific conditions of sensor physiology in microgravity. Plant Cell Environm 19: 1195–1202

    Article  CAS  Google Scholar 

  • Volkmann D and Tewinkel M (1998) Gravisensitivity of cress roots. Adv Space Res 21: 1209–1217

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Behrens HM and Sievers A (1986) Development and gravity sensing of cress roots under microgravity. Naturwissenschaften 73: 438–441

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Winn-Börner U and Waberzeck K (1993) Graviresponsiveness of cress seedlings and structural status of presumptive statocytes from the hypocotyl. J Plant Physiol 142: 710–716

    Article  Google Scholar 

  • Volkmann D, Baluška F, Lichtscheidl IK, Driss-Ecole D and Perbal G (1999) Statoliths motions in gravity-perceiving plant cells: Does actomyosin counteract gravity? FASEB J 13: S143–S147

    PubMed  CAS  Google Scholar 

  • Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M and Sievers A (1991) Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta 185:153–161

    Article  PubMed  CAS  Google Scholar 

  • Wendt M, Kuo-Huang LL and Sievers A (1987) Gravitropic bending of cress roots without contact between amyloplasts and complexes of endoplasmic reticulum. Planta 172: 321–329

    Article  PubMed  CAS  Google Scholar 

  • White RG and Sack FD (1990) Actin microfilaments in presumptive statocytes of root caps and coleoptiles. Am J Bot 77:17–26

    Article  PubMed  CAS  Google Scholar 

  • White RG, Badelt K, Overall RL and Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180: 169–184

    Article  CAS  Google Scholar 

  • Williamson RE (1993) Organelle movements. Annu Rev Plant Physiol Plant Mol Biol 44: 181–202

    Article  Google Scholar 

  • Wu X, Jung G and Hammer JA III (2000) Functions of unconventional myosins. Curr Opin Cell Biol 12: 42–51

    Article  PubMed  CAS  Google Scholar 

  • Wunsch C and Volkmann D (1993) Immunocytological detection of myosin in the root tip cells of Lepidium sativum. Eur J Cell Biol Suppl 61: p 46

    Google Scholar 

  • Yang Z (1996) Signal transduction proteins in plants: An overview. In: Signal Transduction in Plant Growth and Development. Verma DPS (ed), Wien/New York: Springer-Verlag, pp 1–37

    Chapter  Google Scholar 

  • Zieschang HE and Sievers A (1991) Graviresponse and the localization of its initiating cells in Phleum pratense L. Planta 184: 468–477

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. J. Staiger F. Baluška D. Volkmann P. W. Barlow

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Volkmann, D., Baluška, F. (2000). Actin Cytoskeleton Related to Gravisensing in Higher Plants. In: Staiger, C.J., Baluška, F., Volkmann, D., Barlow, P.W. (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9460-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9460-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5504-0

  • Online ISBN: 978-94-015-9460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics