Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 4))

Abstract

Endosperm is a seed storage tissue formed within the angiosperm embryo sac from a second fertilization of the central cell. Generally, endosperm cells are triploid, rich in cellular reserves, and are compactly arranged without intercellular spaces. Reserves are stored in the form of carbohydrates, protein, and lipids, although specific ratios of these components vary depending on the species. Three general patterns of endosperm development are recognized: nuclear, cellular, and helobial. In nuclear, the primary endosperm cell enlarges by expansion of the central vacuole and many nuclei are formed in the peripheral cytoplasm by free nuclear divisions. The mechanism of cell wall formation, especially that of the very first anticlinal (radial) walls, has been controversial for about 90 years. Replication of nuclear DNA without subsequent mitosis, or endopolyploidization, has been described in the endosperm of many species. The function of DNA amplification is still unresolved. Stored reserves accumulate in endosperms in specific spatial patterns. Most of the endosperm mutations in crop plants, such as maize, originally selected from morphological characteristics have been shown to be involved in various aspects of storage product accumulation, such as starch or protein, or both. The morphogenetic potential of endosperm in flowering plants is extraordinary and will continue to be important in biotechnology. Although some progress has been made to identify specific interactions between endosperm and embryos during seed development, it is clearly quite meager.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABA:

abscisic acid

DAP:

days after pollination

ER:

endoplasmic reticulum

kD:

kilodaltons

PCD:

programmed cell death

RER:

rough endoplasmic reticulum

References

  • Asghar, R., and DeMason, D.A. (1990) Developmental changes in the cotyledons of Lupinus luteus L. during and after germination. Amer. J. Bot. 77: 1342–1353.

    Article  CAS  Google Scholar 

  • Asghar, R., and DeMason, D.A. (1992) Differential activities of acid phosphatase from adaxial and abaxial regions of Lupinus luteus (Fabaceae) cotyledons. Amer. J. Bot. 79: 1134–1144.

    Article  CAS  Google Scholar 

  • Aspinall, G.O. (1983) The Polysaccharides, Vol. 2. Academic Press, New York.

    Google Scholar 

  • Bajer, A.S., and Mole-Bajer, J. (1986) Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J. Cell Biol. 102: 263–281.

    Article  PubMed  CAS  Google Scholar 

  • Bass, H.W., Webster, C., O’Brian, G.R., Roberts, J.K.M., and Boston, R.S. (1992) A maize ribosome-inactivating protein is controlled by the transcriptional activator Opaque-2. Plant Cell 4: 225–234.

    PubMed  CAS  Google Scholar 

  • Batcheler, C., Ross, J.H.E., and Murphy, D.J. (1994) Synthesis and targeting of Brassica napus oleosin in transgenic tobacco. Plant Sci. 104: 39–47.

    Article  Google Scholar 

  • Bechtel, D.B., and Pomeranz, Y (1977) Ultrastructure of the mature ungerminated rice (Oryza sativa) caryopsis. The caryopsis coat and the aleurone cells. Amer. J. Bot. 64: 966–973.

    Article  Google Scholar 

  • Bennett, M.D. (1973) Nuclear characters in plants. Brookhaven Symp. Biol. 25: 344–366.

    Google Scholar 

  • Berjak, P., Farrant, J.M., Mycock, D.J., and Pammenter, N.W. (1990) Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci. & Technol. 18: 197–310.

    Google Scholar 

  • Bewley, J.D., and Black, M. (1994) Seeds: Physiology of Development and Germination. Second Edition. Plenum Press.

    Google Scholar 

  • Bhatnagar, S.P., and Sawhney, V. (1981) Endosperm — Its morphology, ultrastructure, and histochemistry. Int. Rev. Cytol. 73: 55–102.

    Article  Google Scholar 

  • Bhave, M.R., Lawrence, S., Barton, C., and Hannah, L.C. (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2: 581–588.

    PubMed  CAS  Google Scholar 

  • Black, M. (1991) Involvement of ABA in the physiology of developing and mature seeds. In: Davies, W.J., and Jones, H.G. (eds) Abscisic Acid: Physiology and Biochemistry, pp. 99–124, Bios. Scientific Publishers, Oxford, U.K.

    Google Scholar 

  • Boesewinkel, F.D., and Bouman, F. (1984) The seed: Structure. In: Johri, B.M. (ed) Embryology of Angiosperms, pp. 567–610, Springer-Verlag, Berlin..

    Chapter  Google Scholar 

  • Boesewinkel, F.D., and Bouman, F. (1995) Seed morphology and development. In: Kigel, J., and Galili, G. (eds) Seed Development and Germination, pp. 1–24, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Bosnes, M., Harris, E., Aigeltinger, L., and Olsen, O.-A. (1987) Morphology and ultrastructure of 11 barley shrunken endosperm mutants. Theor. and Appl. Gen. 74: 177–187.

    Article  Google Scholar 

  • Bosnes, M., Weideman, F., and Olsen, O.-A. (1992) Endosperm differentiation in barley wild-type and sex-mutants. Plant Journal 2: 661–674.

    Article  Google Scholar 

  • Boston, R.S., Fontes, E.B.P., Shank, B.B., and Wrobel, R.L. (1991) Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants. Plant Cell 3: 497–505.

    PubMed  CAS  Google Scholar 

  • Boyer, C.D., and Hannah, L.C. (1994) Kernel mutants of corn. In: Hallauer, A.R. (ed) Specialty Corns, pp. 1–28, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Boyer, C.D., and Shannon, J.C (1983) The use of endosperm genes for sweet corn improvement. Plant Breeding Reviews 1: 139–161.

    Article  CAS  Google Scholar 

  • Bradford, K.J., and Chandler, P.M. (1992) Expression of ‘dehydrin-like’ proteins in embryos and seedlings of Zizania palustris and Oryza sativa during dehydration. Plant Physiol. 99: 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Brink, R.A., and Cooper, D.C. (1947) The endosperm in seed development. Bot. Rev. 13: 423–541.

    Article  Google Scholar 

  • Brown, H.T. (1906) On the culture of the excised embryos of barley on nutrient solutions containing nitrogen in different forms. Trans. Guinnes Res. Lab. 1: 288–299.

    Google Scholar 

  • Brown, R.C., Lemmon, B.E., and Olsen, O.-A. (1994) Endosperm development in barley: Microtubule involvement in the morphogenetic pathway. Plant Cell 6: 1241–1252.

    PubMed  Google Scholar 

  • Brown, R.C., Lemmon, B.E., and Olsen, O.-A. (1996a) Polarization predicts the pattern of cellularization in cereal endosperm. Protoplasma 192: 168–177.

    Article  Google Scholar 

  • Brown, R.C., Lemmon, B.E., and Olsen, O.-A. (1996b). Development of the endosperm in rice (Oryza sativa L.): cellularization. J. Plant Res. 109:301–313.

    Article  Google Scholar 

  • Ceniza, M.S., Ueda, S., and Sugimura, Y (1992) In vitro culture of coconut endosperm: callus induction and its fatty acids. Plant Cell Rep. 11, 546–549.

    Article  CAS  Google Scholar 

  • Chandra Sekhar, K.N., and DeMason, D.A. (1988) Quantitative ultrastructure and protein composition of date palm (Phoenix dactylifera) seeds: a comparative study of endosperm vs embryo. Amer. J. Bot. 75: 323–329.

    Article  Google Scholar 

  • Chandra Sekhar, K.N., and DeMason, D.A. (1990) Identification and immunocytochemical localization of α-galactosidase in resting and germinating date palm (Phoenix dactylifera L.) seeds. Planta 181: 53–61.

    Google Scholar 

  • Chang, M.T., and M.G. Neuffer, M.G. (1994) Endosperm-embryo interactions in maize. May-dica 39:9–18.

    Google Scholar 

  • Chourey, P.S., Cheng, W.-H., Taliercio, E.W., and Im, K.H. (1995) Genetic aspects of sucrose-metabolizing enzymes in developing maize seed. In: Madore, M.A., and Lucas, W.J. (eds) Carbon Partitioning and Source-Sink Interactions in Plants, pp. 239–245, Amer. Soc. Plant Physiol., Rockville, MD.

    Google Scholar 

  • Chu, L.-J., and J.C. Shannon, J.C (1975) In vitro cultures of maize endosperm — A model system for studying in vivo starch biosynthesis. Crop Sci. 15: 814–819.

    Article  CAS  Google Scholar 

  • Citharel, L., and Citharel, J. (1987) Dualité des corps protéiques du mésophylle adaxial et abaxial des cotylédons de quelques espèces de la tribu des Génistées (Légumineuses). Can. J. Bot. 65: 1870–1875.

    Article  Google Scholar 

  • Clore, A.M., Dannenhoffer, J.M., and Larkins, B.A. (1996) EF-1α is associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. Plant Cell 8: 2003–2014.

    PubMed  CAS  Google Scholar 

  • Coe, E.H., Jr., Neuffer, M.G., and Hoisington, D.A. (1988) The genetics of corn. In: Sprague, G.F. and Dudley, J.W. (eds) Corn and Corn Improvement, pp. 81–258, Third Ed. Amer. Soc. Agronomy, Madison, WI.

    Google Scholar 

  • Corke, F.M.K., Hedley, C.L., and Wang, T.L. (1990a) An analysis of seed development in Pisum sativum L. Cellular development and the deposition of storage protein in immature embryos grown in vivo and in vitro. Protoplasma 155: 127–135.

    Article  Google Scholar 

  • Corke, F.M.K., Hedley, C.L., and Wang, T.L. (1990b) An analysis of seed development in Pisum sativum L. In vitro manipulation of embryo development using xenobiotic compounds. Protoplasma 155: 136–143.

    Article  Google Scholar 

  • Creech, R.G. (1965) Genetic control of carbohydrate synthesis in maize endosperm. Genetics 52: 1175–1186.

    PubMed  CAS  Google Scholar 

  • Dangl, J.L., Dietrich, R.A., and Richberg, M.H. (1996). Death don’t have no mercy: cell death patterns in plant-microbe interactions. Plant Cell. 8: 1793–1807.

    PubMed  CAS  Google Scholar 

  • Davies, E., Comer, E.C., Lionberger, J.M., Stankovic, B., and Abe, S. (1993). Cytoskeleton-bound polysomes in plants. III. Polysome-cytoskeleton-membrane interactions in corn endosperm. Cell Biol. Inter. 17: 331–340.

    Article  CAS  Google Scholar 

  • DeMason, D.A. (1986) Endosperm structure and storage reserve histochemistry in the palm, Washingtonia fllifera. Amer. J. Bot. 73: 1332–1340.

    Article  CAS  Google Scholar 

  • DeMason, D.A. (1994) Controls of germination in noncereal monocotyledons. Adv. Struct. Biol. 3: 285–310.

    Google Scholar 

  • DeMason, D.A., and Chandra Sekhar, K.N. (1990) Electrophoretic characterization and immunological localization of coconut (Cocos nucifera L.) endosperm storage proteins. Bot. Gaz. 151:302–313.

    Article  CAS  Google Scholar 

  • DeMason, D.A., Chandra Sekhar, K.N., and Harris, M. (1989) Endosperm development in the date palm (Phoenix dactylifera) (Arecaceae). Amer. J. Bot. 76, 1255–1265.

    Article  Google Scholar 

  • DeMason, D.A., Sexton, R., and Reid, J.S.G. (1983) Structure, composition and physiological state of the endosperm of Phoenix dactylifera. L. Ann. Bot. 52: 71–80.

    Google Scholar 

  • DeMason, D.A., Madore, M.A., Chandra Sekhar, K.N., and Harris, M.J. (1992) Role of α- galactosidase in cell wall metabolism of date palm (Phoenix dactylifera L.) endosperm. Protoplasma 166: 177–184.

    Article  CAS  Google Scholar 

  • DeMason, D.A., Stillman, J.I., and Ellmore, G.S. (1989) Acid phosphatase localization in seedling tissues of the palms, Phoenix dactylifera and Washingtonia fllifera, and its relevance to controls of germination. Can. J. Bot. 67: 1103–1110.

    CAS  Google Scholar 

  • Denyer, K., Hylton, CM., Jenner, CF., and Smith, A.M. (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196: 256–265.

    Article  CAS  Google Scholar 

  • Diaz, I., and P. Carbonero, (1992) Isolation of protoplasts from developing barley endosperm: a tool for transient expression studies. Plant Cell Rep. 10: 595–598.

    Article  Google Scholar 

  • Dickinson, D.B., and Preiss, J. (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol. 44: 1058–1062.

    Article  PubMed  CAS  Google Scholar 

  • Doehlert, D.C., Kuo, T.M., Juvik, J.A., Beers, E.R, and Duke, S.H. (1993) Characteristics of carbohydrate metabolism in sweet corn (sugary-1) endosperms. J. Amer. Soc. Hort. Sci. 118:661–666.

    Google Scholar 

  • Doehlert, D.C., Smith, L.J., and Duke, E.R. (1994) Gene expression during maize kernel development. Seed Sci. Res. 4: 299–305.

    Article  CAS  Google Scholar 

  • Douglass, S.K., Juvik, J.A., and Splittstoesser, W.E. (1993) Sweet corn seedling emergence and variation in kernel carbohydrate reserves. Seed Science Technol. 21: 433–445.

    Google Scholar 

  • Dute, R.R., and Peterson, C.M. (1992) Early endosperm development in ovules of soybean, Glycine max (L.) Merr. (Fabaceae). Ann. Bot. 69: 263–271.

    Google Scholar 

  • Edwards, M., Scott, C., Gidley, M.J., and Reid, J.S.G. (1992) Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. Planta 187: 67–74.

    Article  CAS  Google Scholar 

  • Eeuwens, C.J., and Schwabe, W.W. (1975) Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones. J. Exp. Bot. 26: 1–14.

    Article  CAS  Google Scholar 

  • Esau, K. (1965) Plant Anatomy. Wiley and Sons, Inc.

    Google Scholar 

  • Esau, K. (1977) Anatomy of Seed Plants. Wiley and Sons, Inc.

    Google Scholar 

  • Faranda, S., Genga, A., Viotti, A., and Manzocchi, L.A. (1994) Stably transformed cell lines from protoplasts of maize endosperm suspension cultures. Plant Cell, Tissue and Organ Culture 37: 39–46.

    Article  CAS  Google Scholar 

  • Farrant, J.M., Pammenter, N.W., and Berjak, P. (1992) Development of the recalcitrant (homoiohydrous) seeds of Avicennia marina: anatomical, ultrastructural and biochemical events associated with develoment from histodifferentiation to maturation. Ann. Bot. 70: 75–86.

    CAS  Google Scholar 

  • Farrant, J.M., Pammener, N.W., and Berjak, P. (1993) Seed development in relation to desiccation tolerance: A comparison between desiccation-sensitive (recalcitrant) seeds of Avicennia marina and desiccation-tolerant types. Seed Sci. Res. 3: 1–13.

    Google Scholar 

  • Farrant, J.M., Pammener, N.W, Berjak, P., Farnsworth, E.J., and Vertucci, C.W. (1996) Presence of dehydrin-like proteins and levels of abscisic acid in recalcitrant (dessiccation sensitive) seeds may be related to habitat. Seed Sci. Res. 6: 175–182.

    Article  CAS  Google Scholar 

  • Felker, F.C. (1987) Ultrastructure of maize endosperm cultures. Amer. J. Bot. 74: 1912–1920.

    Article  Google Scholar 

  • Ferguson, J.E., Dickinson, D.B., and Rhodes, A.M. (1979) Analysis of endosperm sugars in a sweet corn inbred (Illinois 677a) which contains the sugary enhancer (se) gene and comparison of se with other corn genotypes. Plant Physiol. 63: 416–420.

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage, W.E., Pramanik, S.K., and Bewley, J.D. (1994) The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperate trees. Planta 193: 478–485.

    Article  CAS  Google Scholar 

  • Fincher, G.B. (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 305–346.

    Article  CAS  Google Scholar 

  • Fineran, B.A., Wild, D.J.C., and Ingerfeld, M. (1982) Initial wall formation in the endosperm of wheat, Triticum aestivum: a reevaluation. Can. J. Bot. 60: 1776–1795.

    Article  Google Scholar 

  • Fontes, E.B.P., Shank, B.B., Wrobel, R.L., Moose, S.P., O Brian, G.R., Wurtzel, E.T., and Boston, R.S. (1991) Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell 3: 483–496.

    PubMed  CAS  Google Scholar 

  • Frey-Wyssling, A., Grieshaber, E., and Mühlethaler, K. (1963) Origin of spherosomes in plant cells. J. Ultrastruc. Res. 8: 506–516.

    Article  Google Scholar 

  • Fu, J.R., Zhang, B.Z., Wang, X.P., Qiao, Y.Z., and Huang, X.L. (1990) Physiological studies on desiccation, wet storage and cryopreservation of recalcitrant seeds of three fruit species and their excised embryonic axes. Seed Sci. & Technol. 18: 743–754.

    Google Scholar 

  • Gallie, D.R., and Young, T.E. (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Plant Physiol. 106: 929–939.

    Article  PubMed  CAS  Google Scholar 

  • Gifford, D.J., Greenwood, J.S., and Bewley, J.D. (1982) Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communis L. cv. Hale seeds. Plant Physiol. 69: 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  • Giovinazzo, G., Manzocchi, L.A., Bianchi, M.W., Coraggio, I., and Viotti, A. (1992) Functional analysis of the regulatory region of a zein gene in transiently transformed protoplasts. Plant Mol. Biol. 19: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Giroux, M.J., Boyer, C., Felix, G., and Hannah, L.C. (1994) Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol. 106, 713–722.

    PubMed  CAS  Google Scholar 

  • Gonzales, J.W., Rhodes, A.M., and Dickinson, D.B. (1974) A new inbred with high sugar content in sweet corn. HortScience 9: 79–80.

    CAS  Google Scholar 

  • Gori, P. (1987) The fine structure of the developing Euphorbia dulcis endosperm. Ann. Bot. 60: 563–569.

    Google Scholar 

  • Greenberg, J.T. (1996). Programmed cell death: a way of life for plants. Proc. Natl. Acad. Sci. 93: 12094–12097.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, J.S., and Bewley, J.D. (1982) Seed development in Ricinus communis (castor bean). I. Descriptive morphology. Can. J. Bot. 60: 1751–1760.

    Article  Google Scholar 

  • Greenwood, J.S., and Bewley, J.D. (1984) Subcellular distribution of phytin in the endosperm of developing castor bean: a possibility for its synthesis in the cytoplasm prior to deposition within protein bodies. Planta 160: 113–120.

    Article  CAS  Google Scholar 

  • Greenwood, J.S., and Bewley, J.D. (1985) Seed development in Ricinus communis (castor bean). III. Pattern of storage protein and phytin accumulation in the endosperm. Can. J. Bot. 63: 2121–2128.

    Article  CAS  Google Scholar 

  • Gustafson, J.P. and Lukaszewski, A.J. (1985) Early seed development in Triticum — Secale amphiploids. Can. J. Gen. and Cytol. 27: 542–548.

    Google Scholar 

  • Hannah, L.C., Giroux, M., and C. Boyer, C. (1993) Biotechnological modification of carbohydrates for sweet maize and maize improvement. Sci. Hortic. 55: 177–197.

    Article  CAS  Google Scholar 

  • Hannig, E. (1904) Zur Physiologie pflanzlicher Embryoen. I. Ãœber die Kultur van Cruciferen-Embryonen ausserhalb des Embryosacks. Bot. Z. 62: 45–80.

    Google Scholar 

  • Hawker, J.S., and Buttrose, M.S. (1980) Development of the almond nut (Prunus dulcis (Mill.) D. A. Webb). Anatomy and chemical composition of fruit parts from anthesis to maturity. Ann. Bot. 46:313–321.

    CAS  Google Scholar 

  • Hepler, PK., and Jackson, W.T. (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J. Cell Biol. 38: 437–466.

    Article  PubMed  CAS  Google Scholar 

  • Herman, E.M. (1987) Immunogold-localization and synthesis of an oil-body membrane protein in developing soybean seeds. Planta 172: 336–345.

    Article  CAS  Google Scholar 

  • Herman, E.M. (1995) Cell and molecular biology of seed oil bodies. In: Kigel, J., and Galili, G. (eds) Seed Development and Germination, pp. 195–214, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Hood, L.F., and Liboff, M. (1983) Starch ultrastruture. In: Bechtel, D.B. (ed) New Frontiers in Food Microstructure, pp. 341–370, Amer. Assoc. Cereal Chemists. St. Paul, MN.

    Google Scholar 

  • Huang, A.H.C. (1994) Structure of plant seed oil bodies. Current Opinion in Structural Biology 4: 493–498.

    Article  CAS  Google Scholar 

  • Hueros, G., Varotto, S., Salamini, F., And Thompson, R.D. (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. Plant Cell 7: 747–757.

    PubMed  CAS  Google Scholar 

  • James, M.G., Robertson, D.S., and Myers, A.M. (1995) Characterization of the maize gene sugary 1, a determinant of starch composition in kernels. Plant Cell 7: 417–429.

    PubMed  CAS  Google Scholar 

  • Johri, B.M., and Rao, P.S. (1984) Experimental embryogenesis. In: Johri, B.M. (ed) Emryology of Angiosperms, pp. 735–802, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Keeling, PL., Baird, S., and Tyson, R.H. (1989) Isolation and properties of protoplasts from endosperm of developing wheat grain. Plant Sci. 65: 55–62.

    Article  Google Scholar 

  • Kerr, T., and Anderson, D.B. (1944) Osmotic qualities in growing cotton bolls. Plant Physiol. 19: 338–349.

    Article  PubMed  CAS  Google Scholar 

  • Khoo, U., and Wolfe, M.J. (1970) Origin and development of protein granules in maize endosperm. Amer. J. Bot. 57: 1042–1050.

    Article  Google Scholar 

  • Kiesselbach, T.A., and Walker, E.R. (1952). Structure of certain specialized tissues in the kernel of corn. Amer. J. Bot. 39: 561–569.

    Google Scholar 

  • Knowles, R.V., McMullen, M., Yerk, G., Phillips, R.L., Kraemer, S., and Srienc, F. (1992) Endosperm mitotic activity and endoreduplication in maize affected by defective kernel mutations. Genome 35: 68–77.

    Article  Google Scholar 

  • Knowles, R.V., and Phillips, R.L. (1988) Endosperm development in maize. Int. Rev. Cytol. 112:97–136.

    Article  Google Scholar 

  • Kermode, A.R. (1990) Regulatory mechanisms involved in the transition from seed development to germination. Critical Rev. Plant Sci. 9: 155–195.

    Article  CAS  Google Scholar 

  • Krishnan, H.B., Franceschi, V.R., and Okita, T.W. (1986) Immunochemical studies on the role of the Golgi complex in protein-body formation in rice seeds. Planta 169: 471–480.

    Article  CAS  Google Scholar 

  • La Rue, C.D. (1947) Growth and regeneration of the endosperm of maize in culture. Amer. J. Bot. 34: 585–586 (abstr).

    Google Scholar 

  • La Rue, C.D. (1949) Cultures of the endosperm of maize. Amer. J. Bot. 36, 798 (abstr).

    Google Scholar 

  • Lee, B.T., Murdoch, K., Topping, J., Jones, M.G.K., and Kreis, M. (1991) Transient expression of foreign genes introduced into barley endosperm protoplasts by PEG-mediated transfer or into intact endosperm tissue by microprojectile bombardment. Plant Sci. 78: 237–246.

    Article  CAS  Google Scholar 

  • Lending, C.R., Chesnut, R.S., Shaw, K.L., and Larkins, B.A. (1989) Immunolocalization of avenin and globulin storage proteins in developing endosperm of Avena sativa L. Planta 178: 315–324.

    Article  CAS  Google Scholar 

  • Lending, C.R., and Larkins, B.A. (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011–1023.

    PubMed  CAS  Google Scholar 

  • Lending, C.R., Kriz, A.L., Larkins, B.A., and Bracker, C.E. (1988) Structure of maize protein bodies and immunolocytochemical localization of zeins. Protoplasma 143: 51–62.

    Article  CAS  Google Scholar 

  • Lin, B.-Y. (1978) Structural modifications of the female gametophyte associated with the indeterminate gametophyte (ig) mutant in maize. Can. J. Genet. Cytol. 29: 249–257.

    Google Scholar 

  • Lin, B.-Y. (1984) Ploidy barrier to endosperm development in maize. Genetics 107: 103–115.

    PubMed  CAS  Google Scholar 

  • Lodish, H., Baltimore, D., Berk, A., Zipursky, S.L., Matsudaira, P., and Darnell, J. (1995) Molecular Cell Biology, 3rd Edition. WH. Freeman and Co., New York.

    Google Scholar 

  • Lohmer, S., Naddaloni, M., Motto, M., Di Fonzo, N., Hartings, H., Salamini, F., and Thompson, R.D. (1991) The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. The EMBO J. 10: 617–624.

    CAS  Google Scholar 

  • Lopes, M.A., and Larkins, B.A. (1993) Endosperm origin, development, and function. Plant Cell. 5: 1383–1399.

    PubMed  CAS  Google Scholar 

  • Lott, J.N.A. (1981) Protein bodies in seeds. Nordic J. Bot. 1: 421–432.

    Article  Google Scholar 

  • Lott, J.N.A. (1982) Microanalysis of seed tissue. In: Bechtel, D.B. (ed.) New Frontiers in Food Microstructure, pp. 317–338, Amer. Assoc. Cereal Chemists. St. Paul, MN..

    Google Scholar 

  • Lott, J.N.A., Greenwood, J.S., and Batten, G.D. (1995) Mechanisms and regulation of mineral nutrient storage during seed development. In: Kigel, J. and Galili, G. (eds) Seed Development and Germination, pp. 215–235, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Lur, H.-S., and Setter, T.L. (1993a) Role of auxin in maize endosperm development. Plant Physiol. 103: 273–280.

    PubMed  CAS  Google Scholar 

  • Lur, H.-S., and Setter, TL. (1993b) Endosperm development of maize defective kernel (dek) mutants. Auxin and cytokinin levels. Ann. Bot. 72: 1–6.

    Article  CAS  Google Scholar 

  • Lyznik, L.A., and Tsai, C.Y. (1989) Protein synthesis in endosperm cell cultures of maize (Zea mays L.). Plant Sci. 63: 105–114.

    Article  CAS  Google Scholar 

  • Manzocchi, L.A. (1991) Stable endosperm cell suspension cultures from wild-type and opaque-2 maize. Plant Cell Rep. 9: 555–558.

    Article  CAS  Google Scholar 

  • Manzocchi, L.A., Bianchi, M.W., and Viotti, A. (1989) Expression of zein in long term cultures of wildtype and opaque-2 maize endosperms. Plant Cell Rep. 7: 639–643.

    Google Scholar 

  • Marinos, N.G. (1970) Embryogenesis of the pea (Pisum sativum). I. The cytological environment of the developing embryo. Protoplasma 70: 261–279.

    Article  Google Scholar 

  • Marocco, A., Santucci, A., Cerioli, S., Motto, M., Di Fonzo, N., Thompson, R., and Salamini, F. (1991) Three high-lysine mutations control the level of ATP-binding HSP70-like proteins in the maize endosperm. Plant Cell 3: 507–515.

    PubMed  CAS  Google Scholar 

  • Marshall, S.W. (1987) Sweet com. In: Watson, S.A., and Ramstad, P.E. (eds) Com: Chemistry and Technology, pp. 431–445, Amer. Assoc. Cereal Chemists, Inc., St. Paul, MN.

    Google Scholar 

  • Martin, A.C. (1946) The comparative internal morphology of seeds. Amer. Midl. Naturalist 36:513–660.

    Article  Google Scholar 

  • Mauney, J.R. (1961) The culture in vitro of immature cotton embryos. Bot. Gaz. 122: 205–209.

    Article  Google Scholar 

  • MacDonald, F.D., and Preiss, J. (1985) Partial purification and characterization of granule-bound starch synthases from normal and waxy maize. Plant Physiol. 78: 849–852.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1978) Development of the maize endosperm as revealed by clones. In: Subtel-ny, S., and Sussex, I.M. (eds) The Clonal Basis of Development, pp. 217–237, Academic Press, New York.

    Google Scholar 

  • Meier, H. (1958) On the structure of cell walls and cell wall mannans from ivory nuts and from dates. Biochim. Biophys. Acta 28: 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Meier, H., and Reid, J.S.G. (1977) Morphological aspects of galactomannan formation in the endosperm of Trigonella foenum-graecum L. (Leguminosae). Planta 133: 243–248.

    Article  CAS  Google Scholar 

  • Meier, H., and Reid, J.S.G. (1982) Reserve polysaccharides other than starch in higher plants. In: Loewus, F.A., and Tanner, W. (eds) Plant Carbohydrates I: Intracellular Carbohydrates, pp. 418–471, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Miflin, B.J., and Shewry, P.R. (1979) The synthesis of proteins in normal and high lysine barley seeds. In: Laidman, D., and Wyn Jones, R.G. (eds) Recent Advances in the Biochemistry of Cereals, pp. 239–273, Academic Press, London.

    Google Scholar 

  • Miller, M.E., and Chourey, P.S. (1992) The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4: 297–305.

    PubMed  CAS  Google Scholar 

  • Morrison, I.N., and O’Brien, T.P. (1976) Cytokinesis in the developing wheat grain; Division with and without a phragmoplast. Planta 130: 57–67.

    Article  Google Scholar 

  • Murray, D.R. (1988) Nutrition of the Angiosperm Embryo. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Newcomb, W. (1973) The development of the embryo sac of sunflower Helianthus annuus after fertilization. Can. J. Bot. 51: 879–890.

    Article  Google Scholar 

  • Newcomb, W. (1978) The develoment of cells in the coenocytic endosperm of African blood lily Haemanthus katherinae. Can. J. Bot. 56: 483–501.

    Google Scholar 

  • Neuffer, M.G., and Sheridan, W.F. (1980) Defective kernel mutants of maize. I. Genetics and lethality studies. Genetics 95: 929–944.

    Google Scholar 

  • Olsen, O.-A., Potter, R.H., and Kalla, R. (1992) Histo-differentiation and molecular biology of developing cereal endosperm. Seed Sci. Res. 2: 117–131.

    Google Scholar 

  • Pan, D., and Nelson, O.E. (1984) A debranching enzyme deficiency in endosperms of sugary-1 mutants of maize. Plant Physiol. 74: 324–328.

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz, Y, and Bechtel, D.B. (1978) Structure of cereal grains as related to end use properties. In: Hultin, H.O., and Milner, M. (eds) Postharvest Biology and Biotechnolgy, pp. 244–266, Food & Nutrition Press, Westport, Conn.

    Google Scholar 

  • Quayle, T.J.A., Hetz, W, and Feix, G. (1991) Characterization of a maize endosperm culture expressing zein genes and its use in transient transformation assays. Plant Cell Rep. 9: 544–548.

    Article  CAS  Google Scholar 

  • Raghavan, V. (1986) Embryogenesis in Angiosperms: A Developmental and Experimental Study. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Raghavan, V., and Srivastava, P.S. (1982) Embryo culture. In: Johri, B.M. (ed) Experimental Embryology of Vascular Plants, pp. 195–230, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Raghavan, V, and Torrey, J.G. (1963) Growth and morphogenesis of globular and older embryos of Capsella in culture. Amer. J. Bot. 50: 540–551.

    Article  Google Scholar 

  • Rangel, B., Platt, K.A., and Thomson, WW. Ultrastructural aspects of the cytoplasmic origin and accumulation of oil in olive fruit (Olea europaea L.) Physiol. Plant, (in press).

    Google Scholar 

  • Rietsema, J., Satina, S., and Blakeslee, A.F. (1953) The effect of sucrose on the growth of Datura stramonium embryos in vitro. Amer. J. Bot. 40: 538–545.

    Article  CAS  Google Scholar 

  • Rijven, A.H.G.C. (1952) In vitro studies on the embryo of Capsella bursa-pastoris. Acta Bot. Neerl. 1: 157–200.

    Google Scholar 

  • Roberts, E.H. (1973) Predicting the storage life of seeds. Seed Sci. and Technol. 1: 499–514.

    Google Scholar 

  • Ryczkowski, M. (1960) Changes of the osmotic value during development of the ovule. Planta 55: 343–356.

    Article  Google Scholar 

  • Ryczkowski, M. (1969) Changes in osmotic value of the central vacuole and endosperm sap during the growth of the embryo and ovule. Z. Pflanzenphysiol 61: 422–429.

    Google Scholar 

  • Sanwo, M.M., and DeMason, D.A. (1992) Characteristics of α-amylase during germination of two high-sugar sweet corn cultivars of Zea mays L. Plant Physiol. 99: 1184–1192.

    Article  PubMed  CAS  Google Scholar 

  • Sanwo, M.M., and DeMason, D.A. (1993) A comparison of α-amylase isozyme profiles in selected Su and high sugar sweet corn (sh-2, su-1, su-1 se) lines (Zea mays L.). Int. J. Plant Sci. 154: 395–405.

    Article  CAS  Google Scholar 

  • Sanwo, M.M., and DeMason, D.A. (1994) Gibberellic acid (GA3)-induced enhancement of α-amylase activity in the aleurone of shurnken-2 maize kernels. Amer. J. Bot. 81:987–996.

    Article  CAS  Google Scholar 

  • Saravitz, C.H., and Boyer, C.D. (1987) Starch characteristics in cultures of normal and mutant maize endosperm. Theor. Appl. Genet. 73: 489–495.

    Article  CAS  Google Scholar 

  • Schel, J.H.N., Kieft, H., and Van Lammeren, A.A.M. (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays). Can. J. Bot. 62: 2842–2853.

    Article  Google Scholar 

  • Schmidt, R.J., Burr, F.A., and Burr, B. (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238: 960–963.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R.J., Ketudat, m, Aukerman, M.J., and Hoschek, G. (1992) Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4: 689–700.

    PubMed  CAS  Google Scholar 

  • Schulz, P., and Jensen, W.A. (1969) Capsella embryogenesis: The suspensor and the basal cell. Protoplasma 67: 139–163.

    Google Scholar 

  • Schwall, M., and Feix, G. (1988) Zein promoter activity in transiently transformed protoplasts from maize. Plant Sci. 56: 161–166.

    Article  CAS  Google Scholar 

  • Schwartzenbach, A.M. (1971) Observations on spherosomal membranes. Cytobiologie 4:145–147.

    Google Scholar 

  • Selmar, D., Frehner, M., and Conn, E.E. (1989) Purification and properties of endosperm protoplasts of Hevea brasiliensis L. J. Plant Physiol. 135: 105–109.

    Article  CAS  Google Scholar 

  • Shannon, J.C. (1982) Maize endosperm cultures. In: Sheridan, W.F. (ed) Maize for Biological Research, pp. 397–400, Plant Mol. Biol. Assoc, Charlottesville, VA.

    Google Scholar 

  • Shannon, J.C., and Batey, J.W. (1973) Inbred and hybrid effects on establishment of in vitro cultures of Zea mays L. endosperm. Crop Sci. 13: 491–493.

    Article  Google Scholar 

  • Shannon, J.C., and Garwood, D.L. (1984) Genetics and physiology of starch development. In: Whistler, R.L., Bemiller, J.N., and Paschall, E.F. (eds) Starch: Chemistry and Technology, pp. 25–86, Academic Press, Orlando, FL.

    Chapter  Google Scholar 

  • Shaw, J.R., and Hannah, L.C (1992) Genomic nucleotide sequence of wild-type shrunken-2 allele of Zea mays. Plant Physiol. 98: 1214–1216.

    Article  PubMed  CAS  Google Scholar 

  • Shotwell, M.A., and Larkins, B.A. (1989) The molecular biology and biochemistry of seed storage proteins. In: Marcus, A. (ed) The Biochemistry of Plants, Vol. 15: A Comprehensive Treatise, pp. 297–345, Academic Press, New York.

    Google Scholar 

  • Shure, M., Wessler, S. and Federoff, N. (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Sivak, M.N., and Preiss, J. (1995) Starch synthesis in seeds. In: Kigel, J., and Galili, G. (eds) Seed Development and Germination, pp. 139–168, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Smirnova, E.A., Wawrowsky, K.A., and Bajer, A.S. (1992) Microtubule nucleating centers reflect microtubule polarity in interphase and mitosis of higher plant Haemanthus. Mol. Biol. Cell 3: 343a.

    Google Scholar 

  • Smith, J.G. (1973) Embryo development in Phaseolus vulgaris: II. Analysis of selected inorganic ions, ammonia, organic acids, amino acids and sugars in the endosperm liquid. Plant Physiol. 51: 454–458.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, P.S. (1982) Endosperm culture. In: Johri, B.M. (ed) Experimental Embryology of Vascular Plants, pp. 175–193, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Srivastava, P.S., and Johri, B.M. (1992) Endosperm culture. In: Lindsey, K. (ed) Plant Tissue Culture Manual, pp. E3, 1–21, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Stankovic, B., Abe, S., and Davies, E. (1993) Co-localization of polysomes, cytoskeleton, and membranes with protein bodies from corn endosperm. Protoplasma 177: 66–72.

    Article  Google Scholar 

  • Steeves, T. A., and Sussex, I.M. (1989) Patterns in Plant Development. Cambridge University Press.

    Book  Google Scholar 

  • Straus, J., and La Rue, C.D. (1954) Maize endosperm tissue grown in vitro. I. Culture requirements. Amer. J. Bot. 41: 687–694.

    Article  CAS  Google Scholar 

  • Tabata, M., and Motoyoshi, E (1965) Hereditary control of callus formation in maize endosperm cultured in vitro. Japan J. Genet. 40: 343–355.

    Article  Google Scholar 

  • Taylor, J.R.N., Schussler, L., and Liebenberg, N.W. (1985) Protein body formation in starchy endosperm of developing Sorghum bicolor (L.) Moench. seeds. S. Afr. J. Bot. 51: 35–40.

    Google Scholar 

  • Tsai, C.Y., and Nelson, O.E. (1966) Starch deficient mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science 151: 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.Y., Salmini, F., and Nelson, O.E. (1970) Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 46: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, T., and Messing, J. (1991) A homologous expression system for cloned zein genes. Theor. Appl. Genet. 82: 93–100.

    Article  CAS  Google Scholar 

  • Van Lammeren, A.A.M. (1988) Structure and function of the microtubular cytoskeleton during endosperm development in wheat: an immunofluorescence study. Protoplasma 146: 18–27.

    Article  Google Scholar 

  • Vertucci, C.W., and Farrant, J.M. (1995) Acquisition and loss of desiccation tolerance. In: Kigel, J., and Galili, G. (eds) Seed Development and Germination, pp. 237–271, Marcel, Dekker, Inc., New York.

    Google Scholar 

  • Vijayaraghavan, M.R., and Prabhakar, K. (1984) The endosperm. In: Johri, B.M. (ed) Embryology of Angiosperms. pp, 319–376, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • XuHan, X., and Van Lammeren, A.A.M. (1993) Microtubular configurations during the cellularization of coenocytic endosperm in Ranunculus sceleratus L. Sexual Plant Reproduction. 6: 127–132.

    Article  Google Scholar 

  • XuHan, X., and van Lammeren, A.A.M. (1994) Microtubular configurations during endosperm development in Phaseolus vulgaris. Can. J. Bot. 72: 1489–1495.

    Article  Google Scholar 

  • Wang, H.L., Offler, C.E., and Patrick, J.W. (1995a) The cellular pathway of photosynthate transfer in the developing wheat grain. II. A structural analysis and histochemical studies of the pathway from the crease phloem to the endosperm cavity. Plant, Cell and Environ. 18: 373–388.

    Article  Google Scholar 

  • Wang, H..L., Patrick, J.W, Offler, C.E., and Wang, X.E. (1995b) The cellular pathway of photosynthate transfer in the developing wheat grain. III. A structural analysis and physiological studies of the pathway from the endosperm cavity to the starchy endosperm. Plant, Cell and Environ. 18: 389–407.

    Article  CAS  Google Scholar 

  • Wang, T.L., and Hedley, C.L. (1991) Seed development in peas: knowing your three ‘r’s’ (or four, or five). Seed Sci. Res. 1: 3–14.

    Article  Google Scholar 

  • Wang, T.L., and Hedley, C.L. (1993) Genetic and developmental analysis of the seed. In: Casey, R., and Davies, D.R. (eds) Peas: Genetics, Molecular Biology and Biotechnology, pp. 83–120, CAB, International, Wallingford, U.K.

    Google Scholar 

  • Yeung, E.C. (1980) Embryogeny of Phaseolus: The role of the suspensor. Z. Pflanzenphysiol. 96: 17–28.

    Google Scholar 

  • Yeung, E.C., and Cavey, M.J. (1988) Cellular endosperm formation in Phaseolus vulgaris. I. Light and scanning electron microscopy. Can. J. Bot. 66: 1209–1216.

    Article  Google Scholar 

  • Yeung, E.C., and Clutter, M.E. (1978) Embryogeny of Phaseolus coccineus: Growth and microanatomy. Protoplasma 94: 19–40.

    Article  Google Scholar 

  • Youle, R.J., and Huang, A.H.C (1976) Protein bodies from the endosperm of castor bean: subfractions, protein components, lectins and changes during germination. Plant Physiol. 58: 703–709.

    Article  PubMed  CAS  Google Scholar 

  • Youle, R.J., and Huang, A.H.C (1981) Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Am. J. Bot. 68: 44–48.

    Article  CAS  Google Scholar 

  • Young, T.Y., Gallie, D.R., and DeMason, D.A. Ethylene mediated programmed cell death during maize endosperm development of Su and sh2 genotypes. Plant Physiol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Demason, D.A. (1997). Endosperm Structure and Development. In: Larkins, B.A., Vasil, I.K. (eds) Cellular and Molecular Biology of Plant Seed Development. Advances in Cellular and Molecular Biology of Plants, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8909-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8909-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4878-3

  • Online ISBN: 978-94-015-8909-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics