Skip to main content

Drug Delivery Aspects of Biotechnology Products

  • Chapter

Abstract

In recent years, there have been enormous advances in the field of protein and peptide engineering and an increased understanding of the way in which biological response modifiers function in the body. It is now possible, through the use of recombinant DNA techniques or by solid phase protein synthesis, to produce on a commercial scale a large variety of regulatory agents that are therapeutically applicable. The list of these response modifiers is continually expanding and includes interferons, interleukins, monoclonal antibodies, colony-stimulating factors, human insulin of recombinant DNA origin, human growth hormones, anticoagulants, and agents that have potential in inflammation and contraception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shah, H.K., and Rodgers, R.J. 1990. Biopharmaceutical sales and forecasts. In Spectrum biotechnology overview,March. Little Decision Resources.

    Google Scholar 

  2. Manning, M.C., Patel, K., and Borchardt, R.T. 1989. Stability of protein pharmaceuticals. Pharm. Res. 6: 903–918.

    Article  CAS  Google Scholar 

  3. Yoon, J.K., and Burgess, D.J. 1989. Investigation of Interfacial stability of proteins using a surface oscillatory flow technique. Proc. Int. Sym. Control. Release Biact. Mater. 16: 340–341.

    Google Scholar 

  4. Brennan, J.R., Gebhart, S.S.P., and Blackard, W.G. 1985. Pump induced insulin aggregation. A problem with the biostator. Diabetes 34: 353–359.

    Article  CAS  Google Scholar 

  5. James, D.E., Jenkins, A.B., Kraegen, E.W., and Chisholm, D.J. 1981. Insulin precipitation in artificial infusion devices. Diabetologia 21: 554–557.

    CAS  Google Scholar 

  6. Lougheed, W.D., Woulfe-Flanagan, H., Clement, J.R., and Albisser, A.M. 1980. Insulin aggregation in artificial delivery systems. Diabetologia 19: 1–9.

    Article  CAS  Google Scholar 

  7. Peterson, L., Caldwell, J., and Hoffman, J. 1976. Insulin adsorbance to polyvinylchloride surface with implications for constant infusion therapy. Diabetes 25: 7274.

    Article  Google Scholar 

  8. Sefton, M.V. 1982. Implantable micropump for insulin delivery. Effect of a rate controlling membrane. ACS Adv. Chem. Ser. 199: 511–522.

    CAS  Google Scholar 

  9. Chawla, A.S., Hinberg, I., Blais, P., and Johnson, D. 1985. Aggregation of insulin containing surfactants, in contact with different materials. Diabetes 34: 420–424.

    Article  CAS  Google Scholar 

  10. Iwamoto, G.K., Van Wagenen, R.A., and Andrade, J.D. 1982. Insulin adsorption. Intrinsic tyrosine interfacial fluorescence. J. Colloid Interface Sci. 86: 581–585.

    Article  CAS  Google Scholar 

  11. Massey, E.H., and Sheliga, T.A. 1988. Human insulin (HI) isophane suspension (NPH) with improved physical stability. Pharm. Res. 5: S34.

    Google Scholar 

  12. Lougheed, W.D., Albisser, A.M., Martindale, H.M., Chow, J.C., and Clement, J.R. 1983. Physical stability of insulin formulations. Diabetes 32: 424–432.

    Article  CAS  Google Scholar 

  13. Sato, S., Ebert, C.D., and Kim, S.W. 1983. Prevention of insulin self-association and self-adsorption. J. Pharm. Sci. 72: 228–232.

    Article  CAS  Google Scholar 

  14. Twardowski, Z.J., Nolph, K.D., McGary, T.J., and Moore, H.L. 1983. Influence of temperature and time on insulin adsorption to plastic bags. Am. J. Hosp. Pharm. 40: 583–586.

    CAS  Google Scholar 

  15. Twardowski, Z.J., Nolph, K.D., McGary, T.J., Moore, H.L., Collin, P., Ausman, R.K., and Slimack, W.S. 1983. Insulin binding to plastic bags: A methodologic study. Am. J. Hosp. Pharm. 40: 575–579.

    CAS  Google Scholar 

  16. Twardowski, Z.J., Nolph, K.D., McGary, T.J., and Moore, H.L. 1983. Nature of insulin binding to plastic bags. Am. J. Hosp. Pharm. 40: 579–581.

    CAS  Google Scholar 

  17. Arakawa, T., and Timasheff, S.N. 1984. Mechanism of protein salting in and salting out by divalent cation salts: Balance between hydration and salt binding. Biochemistry 23: 5912–5928.

    Article  CAS  Google Scholar 

  18. Arakawa, T., and Timasheff, S.N. 1982. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 22: 6545–6552.

    Article  Google Scholar 

  19. Ahmad, T., and Bigelow, C.C. 1986. Thermodynamic stability of proteins in salt solutions: A comparison of the effectiveness of protein stabilizers. J. Protein Chem. 5: 355–367.

    Article  CAS  Google Scholar 

  20. Bhat, R., and Ahluwalia, J.C. 1985. Effect of calcium chloride on the conformation of proteins. Int. J. Peptide Protein Res. 30: 145–152.

    Article  Google Scholar 

  21. Ahmed, F. 1985. Thermodynamic characterization of the partially denatured states of ribonuclease A in calcium chloride and lithium chloride. Can. J. Biochem. Cell. Biol. 63: 1058–1063.

    Article  Google Scholar 

  22. Almog, R. 1983. Effects of neutral salts on the circular dichroism spectra of ribonuclease A. Biophys. Chem. 17:111–118.

    Google Scholar 

  23. Stellwagen, E., and Babul, J. 1975. Stabilization of the globular structure of ferricytochrome C by chloride in acidic solvents. Biochemistry 14: 5135–5140.

    Article  CAS  Google Scholar 

  24. Gekko, K., and Timasheff, S.N. 1981. Mechanism of protein stabilization by glycerol: Preferential hydration in glycerol-water mixtures. Biochemistry 20: 4667–4676.

    Article  CAS  Google Scholar 

  25. Gekko, K., and Timasheff, S.N. 1981. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20: 4677–4686.

    Article  CAS  Google Scholar 

  26. Lee, J.C., and Timasheff, S.N. 1981. The stabilization of proteins by sucrose. J. Biol. Chem. 256: 7193–7201.

    CAS  Google Scholar 

  27. Lee, J.C., and Timasheff, S.N. 1974. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry 13: 257–265.

    Article  CAS  Google Scholar 

  28. Lee, J.C., and Timasheff, S.N. 1975. The reconstitution of microtubules from purified calf brain tubulin. Biochemistry 14: 5183–5187.

    Article  CAS  Google Scholar 

  29. Bohnert, J.L., and Horbett, T.A. 1986. Changes in adsorbed fibrinogen and albumin interactions with polymers indicated by decreases in detergent elutability. J. Colloid Interface Sci. 3: 363–377.

    Article  Google Scholar 

  30. Piatigorsky, J., Horwitz, J., and Simpson, R.T. 1977. Partial dissociation and renaturation of embryonic chick S-crystallin. Characterization by ultracentrifugation and circular dichroism. Biochim. Biophys. Acta 490: 279–289.

    Article  CAS  Google Scholar 

  31. Tandon, S., and Horowitz, P.M. 1987. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent. J. Biol. Chem. 262: 4486–4491.

    CAS  Google Scholar 

  32. Robinson, A. B., and Rudd, C.J. 1974. Deamination of Glutaminyl and Asparanginyl Residues in Peptides and Proteins. In Current topics in cellular regulations, Vol. 8. B.L. Horecker and E.R. Stadtman, eds. New York: Academic Press. Pp. 247–295.

    Google Scholar 

  33. Kossiakoff, A.A. 1988. Tertiary structure is a principal determinant to protein deamidation. Science 240: 191–194.

    Article  CAS  Google Scholar 

  34. Graf, L., Hajos, G., Patthy, A., and Cseh, G. 1973. The influence of deamidation on the biological activity of porcine adrenocorticotropic hormone (ACTH). Metab. Res. 5: 142–143.

    Article  CAS  Google Scholar 

  35. Dixon, H.B. F., Moore, S., Stack-Dunne, M.P., and Young, F.G. 1951. Chromatography of adrenotropic hormone on ion-exchange columns. Nature (London) 168: 1011–1045.

    Article  Google Scholar 

  36. Kuehl, F.A., Jr., Meisinger, M.A.P., Brink, N.G., and Folkers, K. 1953. Pituitary hormones. 6. The purification of corticotropin-ß by counter-current distribution. J. Am. Chem. Soc. 75: 1955–1959.

    Article  Google Scholar 

  37. Rasmussen, H., and Craig, L.C. 1962. 3. Parathyroid hormone. The parathyroid polypeptide. Recent Prog. Horm. Res. 18: 269–295.

    Google Scholar 

  38. Vale, W., Spiess, J., Rivier, C., and Rivier, J. 1981. Characterization of a 41-residue bovine hypothalamic peptide that stimulates secretion of corticotropic and ß-endorphin. Science 213: 1394–1397.

    Article  CAS  Google Scholar 

  39. Dedman, M.L., Farmer, T.H., and Morris, C.J.O.R. 1961. Studies on pituitary adrenocorticotrophin. 3. Identification of the oxidation-reduction center. Biochem. J. 78: 348–352.

    CAS  Google Scholar 

  40. Riniker, V.B., Neher, R., Maier, R., Kahnt, F.W., Byfield, P.G.H., Gudmundsson, T.V., Galante, L., and MacIntyre, I. 1968. 199. Menschliches calcitonin I. Isolierung and charakterisierung. HeIv. Chem. Acta 51: 1738–1742.

    Google Scholar 

  41. Morley, J.S., Tracey, H.J., and Gregory, R.A. 1965. Structure function relationships in the active C-terminal tetrapeptide sequence of gastrin. Nature (London) 207: 1356–1359.

    Article  CAS  Google Scholar 

  42. Jori, G., Galiazzo, G., Marzotto, A., and Scoffone, E. 1968. Dye-sensitized selective photooxidation of methionine. Biochim. Biophys. Acta 154: 1–9.

    Article  CAS  Google Scholar 

  43. Kahne, D., and Still, W.C. 1988. Hydrolysis of a peptide bond in neutral water. J. Am. Chem. Soc. 110: 7529–7534.

    Article  CAS  Google Scholar 

  44. Ahern, T.J., and Klibanov, A.M. 1985. The mechanism of irreversible enzyme inactivation at 100°C. Science 228: 1280–1284.

    Article  CAS  Google Scholar 

  45. Tomlinson, E., and Livingston, C. 1989. Therapeutic peptides and proteins. Pharm. J. 243: 646–648.

    Google Scholar 

  46. Abuchowski, A. 1987. Drug delivery/pharmacokinetics using PEG-modified proteins. J. Cell. Biochem. 11A: 174.

    Google Scholar 

  47. Koziej, P., Mutter, M., Gremlich, H.U., and Holzemann, G. 1985. Conformational studies of synthetic polyethylene glycol bound substance P and its lower analogues. Z. Naturforsch. 40B: 1570–1574.

    Google Scholar 

  48. Mutter, M., Mutter, H., Uhlmann, R., and Bayer, E. 1976. Konformation sumtersuchungen and Oligoalanin, substanz P and der myoglobin sequenz (66–73) der zirkulardichroismus von polyathylenglykol-gebundenen peptiden. Biopolymers 15: 917–927.

    Article  CAS  Google Scholar 

  49. Rajasekharan, P.V.N., and Mutter, M. 1981. Conformational studies of poly(oxyethylene)-bound peptides and protein sequences. Acct. Chem. Res. 14: 122–130.

    Article  Google Scholar 

  50. Ribiero, A.A., Saltman, R.P., Goodman, M., and Mutter, M. 1982. ‘H-NMR studies of polyoxyethylene-bound homo-oligo-L-methionines. Biopolymers 21: 2225–2239.

    Google Scholar 

  51. Hashimoto, M., Takada, K., Kiso, Y., and Muanishi, S. 1989. Synthesis of palmitoyl derivatives of insulin and their biological activities. Pharm. Res. 6: 171–176.

    Article  CAS  Google Scholar 

  52. Chow, D.D., and Hwang, K.J. 1987. An investigation of the formulation of an insulin-based drug delivery and drug targeting system. J. Pharm. Sci. 76: S49.

    Google Scholar 

  53. Towler, D.A., Eubanks, S.R., Towery, D.S., Adams, S:P., and Glaser, L. 1987. Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase. J. Biol. Chem. 262: 1030–1036.

    Google Scholar 

  54. Ovchinnikov, Y.A., Abdulaev, N.G., and Bogachuk, A.S. 1988. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett. 230: 1–5.

    Article  CAS  Google Scholar 

  55. Fojo, A.T., Whitney, P.L., and Awad, M.W., Jr. 1983. Effects of acetylation and guanidination on alkaline conformations of chymotrypsin. Arch. Biochem. Biophys. 224: 636–642.

    Article  CAS  Google Scholar 

  56. Gardner, M.L.G. 1984. Intestinal assimilation of intact peptides and proteins from the diet-A neglected field. Biol. Rev. 59: 289–331.

    Article  CAS  Google Scholar 

  57. Burger, H.G., and Patel, Y.C. 1977. TSH and TRH: Their physiological regulation and the clinical applications of TRH. In Clinical neuroendocrinology, Chapt. 3. L. Martini and G.M. Besser, eds. New York: Academic Press. Pp. 67–131.

    Google Scholar 

  58. Roger, C.S., Heading, C.E., and Wilkinson, S. 1980. Absorption of two tyrosine containing tetra peptides from the ileum of the rat. IRCS J. Med. Sci. 8: 648.

    Google Scholar 

  59. Hichens, M. 1983. A comparison of thyrotropin-releasing hormone with analogues: Influence of disposition upon pharmacology. Drug Metab. Rev. 14: 77–98.

    Article  CAS  Google Scholar 

  60. Yokohama, S., Yamashita, K., Toguchi, H., Takeuchi, J., and Kitamori, N. 1984. Absorption of thyrotropin-releasing hormone after oral administration of TRH tar-tarate monohydrate in the rat, dog and human. J. Pharm. Dyn. 7: 101–111.

    Article  CAS  Google Scholar 

  61. Tagesson, C., Anderson, P.A., Anderson, T., Bolin, T., Kallberg, M., and Sjodahl, R. 1983. Passage of molecules through the wall of the gastrointestinal tract; measurement of intestinal permeability to polyethylene glycols in the 634–1338 dalton range (PEG 1000). Scand. J. Gastroenterol 18: 481–486.

    Article  CAS  Google Scholar 

  62. Humphrey, M.J., and Ringrose, P.S. 1986. Peptides and related drugs: A review of their absorption, metabolism and excretion. Dr. Metab. Rev. 17 (3, 4): 283–310.

    Article  CAS  Google Scholar 

  63. Silk, D.B.A. 1981. Peptide transport. Clin. Sci. 60: 607–615.

    CAS  Google Scholar 

  64. Cui, S., Kajiwara, M., Ishii, K., Aoki, K., Sakamoto, J., Matsumiya, T., and Oka, T. 1986. The enhancing effects of amastatin, phosphoramindon and captopril on the potency of [Mets]-enkephalin in rat vas deferens. Japan. J. Pharmcol. 42: 43–49.

    Article  CAS  Google Scholar 

  65. Saffran, M., Kumar, G.S., Savariar, C., Burnham, J.C., Williams, F., and Neckers, C.D. 1986. A new approach to the oral administration of insulin and other peptide drugs. Science 233: 1081–1084.

    Article  CAS  Google Scholar 

  66. Engel, R.H., and Riggi, S.J. 1969. Intestinal absorption of heparin facilitated by sulfated or sulfonated surfactants. J. Pharm. Sci. 58: 706–710.

    Article  CAS  Google Scholar 

  67. Shichiri, M., Yamasaki, Y., Kawamori, R., Kikuchi, M., Hakui, N., and Abe, H. 1978. Increased intestinal absorption of insulin: An insulin suppository. J. Pharm. Pharmacol. 30: 806.

    Article  CAS  Google Scholar 

  68. Kidron, M., Eldor, A., Lichtenberg, D., Touitou, E., Ziv, E., and Bar-On, H. 1979. Enteral administration of heparin. Tromb. Res. 16: 833–835.

    Article  CAS  Google Scholar 

  69. Kidron, M., Bar-On, H., Berry, E.M., and Ziv, E. 1982. The absorption of insulin from various regions of the rat intestine. Life Sci. 31: 2837.

    Article  CAS  Google Scholar 

  70. Ziv, E., Eldor, A., Kleinman, Y., Bar-On, H., and Kidron, M. 1983. Bile salts facilitate the absorption of heparin from the intestine. Biochem. Pharmacol. 32: 773–776.

    Article  CAS  Google Scholar 

  71. Ziv, E., Kidron, M., Berry, E.M., and Bar-On, H. 1981. Bile salts promote the absorption of insulin from the rat colon. Life Sci. 29: 803–809.

    Article  CAS  Google Scholar 

  72. Ziv, E., Kleinman, Y., Bar-On, H., and Kidron, M. 1984. In Lessons from animal diabetes. E. Shafrier and A.E. Renold, eds. London: Libbey.

    Google Scholar 

  73. Muranishi, S. 1985. Modification of intestinal absorption of drugs by lipoidal adjuvants. Pharm. Res. 2: 108–118.

    Article  Google Scholar 

  74. Kajii, H., Horie, T., Hayashi, M., and Awazu, S. 1985. Fluorescence study on the interaction of salicylate with rat small intestinal epithelial cells: Possible mechanism for promoting effects of salicylate on drug absorption in vivo. Life Sci. 37: 523–530.

    CAS  Google Scholar 

  75. Hirai, S., Yasiki, T., Matsuzawa, T., and Mima, H. 1981. Absorption of drugs from the nasal mucosa of rat. Int. J. Pharm. 7: 317–325.

    Article  CAS  Google Scholar 

  76. Schanker, L.S., and Johnson, J.M. 1961. Increased Intestinal absorption of foreign organic compounds in the presence of EDTA. Biochem. Pharmacol. 8: 421–422.

    Article  CAS  Google Scholar 

  77. Wood, A.J., Maurer, G., Niederberger, W., and Beveridge, T. 1983. Cyclosporine: Pharmacokinetics, metabolism and drug interaction. Transplant. Proc. 15: 2409–2412.

    CAS  Google Scholar 

  78. Chemma, M., Palin, K.J., and Davis, S.S. 1987. Lipid vehicles for intestinal lymphatic drug absorption. J. Pharm. Pharmacol. 39: 55–56.

    Article  Google Scholar 

  79. Reymond, J., Sucker, H., and Vonderscher, J. 1988. In vivo model for cyclosporin intestinal absorption in lipid vehicles. Pharm. Res. 5: 677–679.

    CAS  Google Scholar 

  80. Teng, C.D. 1989. Studies on some physical and biological properties of compacted protein matrices. Ph.D. thesis, University of Illinois at Chicago.

    Google Scholar 

  81. Killander, D., Dohlwitz, A., Engstedt, L., Franzen, S., Gahrton, G., Gulbring, B., Holm, G., Holmberg, A., Hoglund, S., Killander, A., Lockner, D., Mellstedt, H., Moe, P.J., Palmblad, J., Reizenstein, P., Skarberg, K.O., Swedberg, B., Uden, A.M., Wadman, B., Wide, L., and Ahstrom, L. 1976. Hypersensitive reactions and antibody formation during L-asparaginase treatment of children and adults with acute leukemia. Cancer 37: 220–228.

    Article  CAS  Google Scholar 

  82. Langer, R. 1989. Biomaterials in controlled drug delivery: New perspectives from biotechnological advances. Pharm. Tech. 13 (8): 18–30.

    Google Scholar 

  83. Davis, S.S., Ilium, L., McVie, J.G., and Tomlinson, E. 1984. Microspheres and drug therapy. Amsterdam: Elsevier.

    Google Scholar 

  84. Tomlinson, E., and McVie, J.G. 1983. New directions in cancer chemotherapy 2. Targeting with microspheres. Pharm. Ind. 281–284.

    Google Scholar 

  85. Ilium, L. and Davis, S.S. 1982. The targeting of drugs parenterally by use of microspheres. J. Parent. Sci. Technol. 36: 242–248.

    Google Scholar 

  86. Ballanti, J.A. 1985. Immunology III. Philadelphia: Saunders.

    Google Scholar 

  87. Ilium, L., Jones, P.D.E., and Davis, S.S. 1984. Drug targeting using monoclonal antibody-coated nanoparticles. In Microspheres and drug therapy: Pharmaceutical, immunological and medical aspects. S.S. Davis, L. Ilium, J.G. McVie, and E. Tomlinson, eds. Amsterdam: Elsevier. Pp. 353–363.

    Google Scholar 

  88. DeDuve, C., DeBarsay, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F. 1974. Commentary, Lysosomotropic agents. Biochem. Pharmacol. 23: 2495–2531.

    Article  CAS  Google Scholar 

  89. Fidler, I.J. 1980. Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science 208: 1469–1471.

    Article  CAS  Google Scholar 

  90. Baldwin, R.W., and Garnet, M.C. 1955. Monoclonal antibodies for cancer detection and therapy. London: Academic Press.

    Google Scholar 

  91. Trouet, A., Deprez-De Compeneere, D., and DeDuve, C. 1972. Chemotherapy through lysosomes with a DNA-Daunorubicin complex. Nature (New Biol.) 239: 110–112.

    Article  CAS  Google Scholar 

  92. Ghitescu, L., Fixman, A., Simionescu, M., and Simionescu, N. 1986. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: Receptor-medicated trranscytosis. J. Biol. Chem. 102: 1304–1311.

    CAS  Google Scholar 

  93. Kopecek, J., and Duncan, R. 1987. Poly[N-(2-hydroxypropyl)-methacrylamide] macromolecules as drug carrier systems. In Polymers in controlled drug delivery. L. Ilium and S.S. Davis, eds. Bristol, U.K.: Wright. Pp. 152–187.

    Google Scholar 

  94. Szoka, F.J., and Paphadjopoulas, D. 1980. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9: 467–508.

    Article  CAS  Google Scholar 

  95. Godfredsen, C.F., Van Berkel, Th.J.C., Kruijt, J.K., and Goethais, A. 1983. Cellular localization of stable solid liposomes in the liver of rats. Biochem. Pharmacol. 32: 3389–3396.

    Google Scholar 

  96. Ostro, M.J. 1983. Liposomes. New York: Dekker.

    Google Scholar 

  97. Burgess, D.J., and Carless, J.E. 1985. Manufacture of gelatin/gelatin coacervate microcapsules. Int. J. Pharm. 27: 61–70.

    Article  CAS  Google Scholar 

  98. Burgess, D.J., Davis, S.S., and Tomlinson, E. 1987. Potential use of albumin microspheres as a drug delivery system. 1. Preparation and in vitro release of steroids. Int. J. Pharm. 39: 129–136.

    Article  CAS  Google Scholar 

  99. Widder, K., Flouret, G., and Senyei, A. 1979. Magnetic microspheres: Synthesis of a novel parenteral drug carrier. J. Pharm. Sci. 68: 79–82.

    Article  CAS  Google Scholar 

  100. Oppenheim, R.C. 1981. Solid colloidal drug delivery systems: Nanoparticles, Int. J. Pharm. 8: 217–234.

    Article  CAS  Google Scholar 

  101. Birrenback, G., and Speiser, F. 1976. Polymerized micelles and their use as adjuvants. J. Pharm. Sci. 65: 1763–1766.

    Article  Google Scholar 

  102. Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., and Speiser, P. 1979. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: Preparation, morphological and sorptive properties. J. Pharm. Pharmacol. 31: 331–332.

    Article  CAS  Google Scholar 

  103. Schoeft, G.1., and French J.E. 1968. Vacular permeability to particulate fat: Morphological observations on vessels of lactating mammary gland and of lung. Proc. Roy. Soc. London [Biol.] 169: 153–165.

    Article  Google Scholar 

  104. Wilson, G. 1986. Genes therapy: Rationale and realization. In Site-specific drug delivery. E. Tomlinson and S.S. Davis, eds. Chichester, U.K.: Wiley. Pp. 149–164.

    Google Scholar 

  105. Karlson, S., Humphries, R.K., Gluzman, Y., and Nienhuis, A.W. 1985. Transfer of genes into hematopoietic cells using recombinant DNA viruses. Proc. Natl. Acad. Sci. U.S.A. 82: 158–162.

    Article  Google Scholar 

  106. Gallo, J.M., Hung, C.T., and Perrier, D.G. 1983. Analysis in albumin microsphere preparation. Int. J. Pharm. 22: 63–74.

    Article  Google Scholar 

  107. Waser, P.G., Muller, V., Krueuter, J., Berger, S., Munz, K., Kaiser, E., and Pfluger, B. 1987. Localization of colloidal particles (liposomes, hexyclyanoacrylate nanoparticles and albumin nanoparticles) by histology and autoradiography in mice. Int. J. Pharm. 39: 213–227.

    Article  CAS  Google Scholar 

  108. Royer, G.P., Lee, T.K., and Sokoloski, T.D. 1983. Entrapment of bioactive compounds within native albumin beads. J. Parenteral Sci. Technol. 37 (2): 34–37.

    CAS  Google Scholar 

  109. Ihler, G.M. 1986. Methods of drug delivery. New York: Pergamon.

    Google Scholar 

  110. Kwok, K.K., Groves, M.J., and Burgess, D.J. 1989. Sterile microencapsulation of BCG in alginate-poly(1-lysine) by an air spraying technique. Proc. Int. Sym. Control. Release Bioact. Mater. 16: 242–342.

    Google Scholar 

  111. Schakenraad, J., Oosterbaan, J., Nieuwenhuis, P., Molenaar, I., Olojslager, J., Potman, W., Eenink, M., and Feijen, J. 1988. Biodegradable hollow fibers for the controlled release of drugs. Biomaterials 9: 116–120.

    Article  CAS  Google Scholar 

  112. Hsieh, D.S.T., Langer, R., and Folkman, J. 1981. Magnetic modulation of release of macromolecules from polymers. Proc. Natl. Acad. Sci. U.S.A. 78: 1863–1867.

    Article  CAS  Google Scholar 

  113. Guy, R.H., and Hadgraft, J. 1988. Physicochemical aspects of percutaneous penetration and its enhancement. Pharm. Res. 5 (12): 753–758.

    Article  CAS  Google Scholar 

  114. Chien, Y.W., Siddiqui, O., Sun, Y., Shi, W.M., and Liu, J.C. 1987. Transdermal inotphoretic delivery of therapeutic peptides/proteins. 1. Insulin. Ann. N.Y. Acad. Sci. 507: 32–51.

    Article  CAS  Google Scholar 

  115. Burnette, R.R., and Marrero, D. 1986. Comparison between the iontrophoretic transparent of thyrotropin releasing hormone across excised nude mouse skin. J. Pharm. Sci. 75: 738–743.

    Article  CAS  Google Scholar 

  116. Nanavaty, M., Brucks, R., Grimes, H., and Siegel, F.P. 1989. An ATR-FTIR approach to study the effect of ultrasound on human skin. Proc. Int. Sym. Control. Release Bioact. Mater. 16: 310–311.

    Google Scholar 

  117. Golden, G.M., Guzek, D.B., Kennedy, A.H., and Potts, R.P. 1987. Stratum corneum lipid phase transitions and water barrier properties. Biochemistry 26: 2382–2388.

    Article  CAS  Google Scholar 

  118. Su, K.S.E. 1986. Intranasal delivery of peptides and proteins. Pharm. Int. 7: 8–11.

    CAS  Google Scholar 

  119. Su, K.S.E., Campanale, K.M., Medelsohn, L.G., Kerschner, G.A., and Gries, C.L. 1985. Nasal delivery of polypeptides. 1. Nasal absorption of enkephalins in rats. J. Pharm. Sci. 74: 394–398.

    Article  CAS  Google Scholar 

  120. Hanson, M., Gazdick, G., Cahill, J., and Augustine, M. 1986. Intranasal delivery of the peptide salmon calcitonin. In Delivery systems for peptide drugs. S.S. Davis, L. Ilium, and E. Tomlinson, eds. New York: Plennum. Pp. 233–242.

    Google Scholar 

  121. Sandow, J., and Petri, W. 1985. Intranasal administration of peptides. Biological activity and therapeutic efficacy. In Transnasal systemic medications. Y.W. Chien, Ed. Amsterdam: Elsevier. Pp. 183–199.

    Google Scholar 

  122. Gordon, G.S., Moses, A.C., Silver, R.D., Flier, J.S., and Carey, M.C. 1985. Nasal absorption of insulin: Enhancement by hydrophobic slats. Proc. Natl. Acad. Sci. U.S.A. 82: 7419–7423.

    Article  CAS  Google Scholar 

  123. Davies, H.W., Scott, G.M., Robinson, J.A., Higgins, P.G., Wootton, R., and Tyrrell, D.A.J. 1983. Comparative intranasal pharmacokinetics of interferon using 2 spray systems. J. Interferon Res. 3: 443–449.

    Article  CAS  Google Scholar 

  124. Stratford, R.E., Jr., and Lee, V.H. L. 1986. Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit: Implications of peptide delivery. Int. J. Pharm. 30: 73–82.

    Article  CAS  Google Scholar 

  125. Nishihata, T., Rytting, J.H. Higuchi, T., and Caldwell, L. 1981. Enhanced rectal absorption of insulin and heparin in rats in the presence of nonsurfactant adjuvants. J. Pharm. Sci. 33: 334–335.

    CAS  Google Scholar 

  126. Wespi, H.J., and Rehsteiner, H.P. 1966. Erfahrungen mit Syntocinon und ODABuccaltabletten. Gynaecologia 162: 414–418.

    CAS  Google Scholar 

  127. Chang, H.S., Park, H., Kelly, P., and Robinson, J.R. 1985. Bioadhesive polymers as platforms for oral controlled drug delivery. 2. Synthesis and evaluation of some swelling water-insoluble bioadhesive polymers. J. Pharm. Sci. 74: 399–405.

    Article  Google Scholar 

  128. Park, H., and Robinson, J.R. 1986. Physico-chemical properties of water insoluble polymers important to mucin/epithelial adhesion. In Advances in drug delivery systems. J.M. Anderson and S.W. Kim, eds. Amsterdam: Elsevier. Pp. 47–60.

    Google Scholar 

  129. Peppas, N.A., and Buri, P.A. 1986. Surface interfacial and molecular aspects of polymer bioadhesion on soft tissues. In Advances in drug delivery systems. J.M. Anderson and S.W. Kim, eds. Amsterdam: Elsevier. Pp. 257–265.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burgess, D.J. (1993). Drug Delivery Aspects of Biotechnology Products. In: Pezzuto, J.M., Johnson, M.E., Manasse, H.R. (eds) Biotechnology and Pharmacy. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8135-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8135-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-03871-6

  • Online ISBN: 978-94-015-8135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics