Skip to main content

The Planck constant of a curve

  • Chapter
Fractal Geometry and Analysis

Part of the book series: NATO ASI Series ((ASIC,volume 346))

Abstract

We discuss the dimension, entropy and confusion coefficient of rectifiable curves. These concepts have a quantum mechanic interpretation. A Heisenberg uncertainty principle applies to chaotic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.V. Berry, J. Goldberg, Renormalization of curlicues, Nonlinearity 1 (1988), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  2. T.A. Cook, The Curves of Life, Dover Publications, New York, 1979.

    Google Scholar 

  3. L. Callot, M. Diener, Variations en spirale 1984; unpublished paper from the University of Oran.

    Google Scholar 

  4. E.A. Coutsias, N.D. Kazarinoff, Disorder renormalization, theta functions and cornu spirals, Physica 26 D (1987), 295–310.

    Google Scholar 

  5. Ch. Davis, D.E. Knuth, Number representations and dragon curves I, J. Recreational Math. 3 (1970), 61–81

    Google Scholar 

  6. Ch. Davis, D.E. Knuth, Number representations and dragon curves I, J. Recreational Math. 3 (1970), 133–149.

    Google Scholar 

  7. F.M. Dekking, M. Mendès France, Uniform distribution modulo one: a geometrical viewpoint, J. Reine Angew. Math. 329 (1981), 143–153.

    MathSciNet  MATH  Google Scholar 

  8. F.M. Dekking, M. Mendès France, A.J. van der Poorten, Folds!, Math. Intelligencer 4 (1982), 130–138, 173–181, 190–195.

    Google Scholar 

  9. J.-M. Deshouillers, Geometric aspect of Weyl sums, in: Elementary and Analytic Theory of Numbers, Banach Center Publications, vol. 17, PWN Polish Scientific Publishers, Warsaw 1985.

    Google Scholar 

  10. Y. Dupain, T. Kamae, M. Mendès France, Can one measure the temperature of a curve ?, Arch. Rational Mech. Anal. 94 (1986), 155–163

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Dupain, T. Kamae, M. Mendès France, Can one measure the temperature of a curve ?, Arch. Rational Mech. Anal. 98 (1987), 395.

    Article  MathSciNet  Google Scholar 

  12. M.E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), 1225–1229.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), 357–364.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.E. Gage, On an area-preserving evolution equation for plane curves, Contemporary Math. 51 (1986), 51–62.

    Article  MathSciNet  Google Scholar 

  15. M.A. Grayson, A short note on the evolution of a surface by its mean curvature, Duke Math. J. 58 (1989), 555–558.

    Article  MathSciNet  MATH  Google Scholar 

  16. G.H. Hardy, J.E. Littlewood, The trigonometric series associated with the elliptic 8-functions, Acta Math. 37 (1914), 193–239.

    Article  MathSciNet  Google Scholar 

  17. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Wiley Interscience, John Wiley & Sons, New York, 1974.

    Google Scholar 

  18. D.H. Lehmer, Incomplete Gauss sums, Mathematika 23 (1976), 125–135.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.H. Loxton, The graphs of exponential sums, Mathematika 30 (1983), 153–163.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Mendès France, Chaotic curves, in: Rhythms in Biology and Other Fields of Applications, Proc. Journ. Soc. Math. France, Luminy 1981, Lecture Notes in Biomathematics 49, Springer-Verlag, Berlin-Heidelberg-New York, 1983, 352–367.

    Google Scholar 

  21. M. Mendès France, Entropie, dimension et thermodynamique des courbes planes, in: Séminaire de théorie des nombres, Paris 1981–82, Séminaire Delange-Pisot-Poitou, Birkhäuser, 1983, 153–177.

    Google Scholar 

  22. M. Mendès France, Folding paper and thermodynamics, Phys. Rep. 103 (1984), 161–172.

    Google Scholar 

  23. M. Mendès France, Dimension et entropie des courbes régulières, in: Fractals, dimensions non entières et applications (sous la direction de G. Cherbit), Masson, Paris, 1987, 329–339.

    Google Scholar 

  24. M. Mendès France, Chaos implies confusion, in: Number Theory and Dynamical Systems (M. Dodson and J. Vickers, eds.), London Math. Soc. Lecture Notes 134, Cambridge Univ. Press, 1989, 137–152.

    Google Scholar 

  25. M. Mendès France, G. Tenenbaum, Dimension des courbes planes, papiers pliés, suites de Rudin-Shapiro, Bull. Soc. Math. France 109 (1981), 207–215.

    MathSciNet  MATH  Google Scholar 

  26. A. Nabutovsky, Isotopies and non-recursive functions in real algebraic geometry, in: Real Analytic and Algebraic Geometry (M. Gabbiati and A. Tognoli, eds.), Lecture Notes in Mathematics 1420, Springer-Verlag, Berlin-Heidelberg-New York, 1990, 194–205.

    Google Scholar 

  27. G. Rauzy, Propriétés statistiques des suites arithmétiques, Collection SUP, Presses Universitaires de France, 1976.

    Google Scholar 

  28. R. Rigon, Private communication, 1989.

    Google Scholar 

  29. L.A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, 1976.

    Google Scholar 

  30. A.A. Schiffer, C.J. van Wyk, Convex hulls of piecewise-smooth Jordan curves, J. Algorithms 8 (1987), 66–94.

    Article  MathSciNet  Google Scholar 

  31. II. Steinhaus, Length, shape and area, Colloq. Math. 3 (1954), 1–13.

    MathSciNet  MATH  Google Scholar 

  32. R. Thom, Stabilité structurelle et morphogénèse, Deuxième édition, Inter Éditions, Paris, 1977.

    Google Scholar 

  33. C. Tricot, Rectifiable and fractal sets, this volume.

    Google Scholar 

  34. A.J. van der Poorten, R.R. Moore, On the thermodynamics of curves and other curlicues, in: Proc. Conf. on Geometry and Physics (Canberra 1989), Proc. Center. Math. Anal., Australian Nat. Univ., 1989, 82–109.

    Google Scholar 

  35. I.M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Interscience Publishers, 1954.

    Google Scholar 

  36. H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313–352.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. White, Some recent developments in Differential geometry, Math. Intelligencer 11 (1989), 41–47.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Zygmund, Trigonometric Series, 2nd ed., 2 volumes, Cambridge University Press, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mendès France, M. (1991). The Planck constant of a curve. In: Bélair, J., Dubuc, S. (eds) Fractal Geometry and Analysis. NATO ASI Series, vol 346. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7931-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7931-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7933-9

  • Online ISBN: 978-94-015-7931-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics