Skip to main content

Neural Control of Vertebrate Locomotion - Central Mechanisms and Reflex Interaction with Special Reference to the Cat

  • Chapter
Feedback and Motor Control in Invertebrates and Vertebrates

Abstract

How the nervous systems of vertebrates make their respective bodies swim or walk is the subject of this paper. Our knowledge has increased markedly over the last decades. The movements of a walking mammal in its natural habitat depend upon a precise adaptation of each step to the terrain and the overall goal of the animal. Each species generates its characteristic type of propulsive locomotor movements, here referred to as the basic locomotor synergy. This article deals with how this synergy is generated and, in particular, with the interaction between sensory and central elements of the control system in cat. The complex mechanisms underlying the precise movements necessary to place the foot on a predetermined spot in each step are only now starting to become unravelled (see Chapter 28 by Dr Forssberg) and will not be dealt with here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, O., Forssberg, H., Grillner, S. & Wallén, P. (1981). Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can. J. Physiol. & Pharmacol., 59, 713–726.

    Article  Google Scholar 

  • Andersson, O. & Grillner, S. (1981). Peripheral control of the cat’s step cycle. I. Phase dependent effects of ramp-movements of the hip during “fictive locomotion”. Acta physiol. scand, 113, 89–101.

    Article  Google Scholar 

  • Andersson, O. & Grillner, S. (1983). Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during “fictive locomotion”. Acta physiol. scancd., 118, 229–239.

    Article  Google Scholar 

  • Arshavsky, Yu. L, Gelfand, I.M. & Orlovsky, G.N. (1963). The cerebellum and control of rhythmical movements. Trends Neurosci.,6, 417–422.

    Article  Google Scholar 

  • Bard, P. & Macht, M. (1958). The behaviour of chronically decerebrate cats. In Neurological Basis of Behaviour. Eds. Wolstenholme, G-E-W. & O’Connor, C.M. Churchill, London, pp, 55–75.

    Google Scholar 

  • Barnes, W-J-P. (1977). Proprioceptive influences on motor output during walking in the crayfish. J. physiol., Paris, 73, 543–564.

    Google Scholar 

  • Bjursten, I.-M., Norrsell, K. & Norrsell, U. (1976). Behavioural repertory of cat without cerebral cortex from infancy. Expl. Brain Res., 25, 115–130.

    Article  Google Scholar 

  • Brown, T.G. (1911). The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. B, 84, 308–319.

    Article  Google Scholar 

  • Budakova, N. (1973). Stepping movements in the spinal cat due to DOPA administration. Fiziol Zh. SSSR, 59, 1190–1198.

    Google Scholar 

  • Davis, W-J. (1973). Neuronal organization and ontogeny in the lobster swimmeret sysem. In Control of Posture and Locomotion.Eds, Stein, R.B., Pearson, K.G., Smith, R.S. & Redford, J.B.. Plenum, New York, pp. 437–455.

    Google Scholar 

  • Davis, W.J. (1976). Organizational concepts in the central motor networks of invertebrates. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G.. Plenum, New York. pp. 265–292.

    Google Scholar 

  • Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, N.Y., 210, 492–498.

    Article  Google Scholar 

  • Duysens, J. & Pearson, K.G. (1960). Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res., 187, 321–332.

    Article  Google Scholar 

  • Eidelberg, E., Walden, J.G. & Nguyen, L.H. (1981). Locomotor control in macaque monkeys. Brain, 104, 647–664.

    Article  Google Scholar 

  • English, A.W. (1980). Interlimb coordination during stepping in the cat: effects of dorsal column section. J. Neurophysiol., 44, 270–279.

    Google Scholar 

  • Forssberg, H. (1979). “The stumbling correction reaction”-a phase dependent compensatory reaction during locomotion. J. Neurophysiol., 42, 936–953.

    Google Scholar 

  • Forssberg, H. & Grillner, S. (1973). The locomotion of the acute spinal cat injected with Clonidine i.v. Brain Res., 50, 184–186.

    Google Scholar 

  • Forssberg, H., Grillner, S. & Halbertsma, J. (1980). The locomotion of the low spinal cat I. Coordination within a hindlimb. Acta physiol scand., 106, 269–281.

    Article  Google Scholar 

  • Forssberg, H., Grillner, S., Halbertsma, J. & Rossignol, S. (1980). The locomotion of the low spinal. cat. II. Interlimb coordination. Acta physiol. scand., 108, 283–295.

    Article  Google Scholar 

  • Forssberg, H., Grillner, S. & Rossignol, S. (1977). Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res., 132, 121–139.

    Article  Google Scholar 

  • Garcia-Rill, E., Skinner, R.D., Jackson, M.B. & Smith, M.M. (1983). Connections of the mesencephalic locomotor region (MLR). II. Afferents and efferents. Brain Res. Bull., 10, 63–71.

    Article  Google Scholar 

  • Griliner, S. (1973). Locomotion in the spinal cat. In Control of Posture and Locomotion. Eds. Stein, R.B., Smith, R.S. & Redford, J.B., Plenum, New York, pp. 515–535.

    Google Scholar 

  • Griliner, S. (1575). Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol. Rev., 55, 247–304.

    Google Scholar 

  • Griliner, S. (1977). On the neural control of movement-a comparison of different basic rhythmic behaviors. In Function and Formation of Neural Systems. Ed. Stent, G.S., Berlin, Dahlem Konferenzen, pp. 197–224.

    Google Scholar 

  • Grillner, S. (1978). Command neurones or central program controlling system? Behav. & Brain Sci., 1, 23–25.

    Article  Google Scholar 

  • Griliner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology, Section 1, The Nervous System, Vol. 2, Motor Control. Ed. Brooks, V.B., American Physiological Society, Bethesda, pp. 1179–1236.

    Google Scholar 

  • Griliner, S. (1982). Possible analogies in the control of innate motor acts and the production of sound in speech In Speech Motor Control, Vol. 36. Eds. Grillner, S., Lindblom, B., Lubker, J. & Persson, A.. Pergamon, Oxford & New York, pp. 217–229.

    Google Scholar 

  • Griliner, S. & Rossignol, S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res., 146, 269–277.

    Article  Google Scholar 

  • Grillner, S., Rossignol, S. & Wallén, P. (1977). The adaptation of a reflex response to the ongoing phase of locomotion in fish. Expl. Brain Res., 30, 1–11.

    Article  Google Scholar 

  • Griliner, S. & Wallén, P. (1962). On peripheral control mechanisms acting on the central pattern generators for swimming in the dogfish. J. exp. Biol., 98, 1–22.

    Google Scholar 

  • Grillner, S. & Wallén, P. (1965). Central pattern generators for locomotion with special reference to vertebrates. Annu. Rev. Neurosci.,8, 255–261.

    Google Scholar 

  • Grillner, S., Williams, T. & Lagerbäck, P.A. (1984). The edge cell, a possible intraspinal mechanoreceptor. Science, N.Y., 225, 500–503.

    Article  Google Scholar 

  • Grillner, S. & Zangger, P. (1975). How detailed is the central pattern generator for locomotion? Brain Res., 88, 367–371.

    Article  Google Scholar 

  • Grillner, S. & Zangger, P. (1979). On the central generation of locomotion in the low spinal cat. Expl. Brain Res., 54, 241–261.

    Google Scholar 

  • Grillner, S. & Zangger, P. (1984). The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion. Acta physiol. scand., 120, 393–405.

    Article  Google Scholar 

  • Halbertsma, J.M. (1983). The stride cycle of the cat: the modelling of locomotion by computarized analysis of automatic recordings. Acta pihysiol. scand., Suppl. 521.

    Google Scholar 

  • Holst, E. von (1955). Erregungsbildung und Erregungsleitung im Fischrfckenmark. Pflügers Arch, ges. Physiol., 255, 343–359.

    Google Scholar 

  • Jordan, I. (1983). Factors determining motoneuron rhythmiciby during fictive locomotion. Symp. Soc. exp. Biol., 37, 425–444.

    Google Scholar 

  • Julien, C., Barbeau, H. & Rossignol, S. (1982). Gain changes in cutaneous reflexes during locomotion in the adult chronic spinal cat. Soc. Neurosci. Abstr., 8, 168.

    Google Scholar 

  • Kulagin, A.S. & Shik, M.L. (1970). Interaction of symmetrical limbs during controlled locomotion. Biophysics, 15, 171–178.

    Google Scholar 

  • Kupfermann, I. & Weiss, K.R. (1978). The command neuron concept. Behav. & Brain Sci., 1, 3–59.

    Article  Google Scholar 

  • Lundberg, A. (1969). Reflex control of stepping. The Hansen Memorial Lecture V. Universitetsforlaget, Oslo, pp. 1–42.

    Google Scholar 

  • MacMillan, D.I., Altman, J.S. & Kien, J. (1985). Intersegmental coordination in the crayfish swimmeret system reconsidered. J. exp. Zool., 228, 157–162.

    Article  Google Scholar 

  • Miller, S. & van der Meche, FJG.A. (1976). Coordinated stepping of all four limbs in the high spinal cat. Brain Res., 109, 595–598.

    Article  Google Scholar 

  • O’Donovan, M.J., Pinter, M.J., Dum, R.P. & Burke, R.E. (1982). Action of FDL and FHL muscles in intact cats: functional dissociation between anatomical synergists. J. Neurophysiol., 47, 1126–1145.

    Google Scholar 

  • Orlovsky, G.N. & Shik, M.L. (1976). Control of locomotion: a neurophysiological analysis of the cat locomotor system. In International Review of Physiology, Vol 10, Neurophysiology, II Ed. Porter, R.. Universiby Park Press, Baltimore, pp. 281–517.

    Google Scholar 

  • Paul, D.H. & Roberts, B.L. (1984). Inputs to the cerebellum of the dogfish Scyliorhinus canicula during behavioural movement. In Abstracts of the International Symposium on Feedback and Motor Control. Universiby of Glasgow, p. 61.

    Google Scholar 

  • Pearson, K.G. & Duysens, J. (1976). Function of segmental reflexes in the control of stepping in cockroaches and cats. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G. Plenum, New York, pp. 519–557.

    Google Scholar 

  • Pearson, K.G., Reye, D.N. & Robertson, R.M. (1983). Phase. dependent influences of wing stretch receptors on flight rhythm in the locust. J. Neurophysiol., 49, 1168–1181

    Google Scholar 

  • Perret, C. & Cabelguen, J.M. (1960). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res., 187, 333–352.

    Article  Google Scholar 

  • Phillipson, M. (1905). L’autonomie et la centralisation dans le système nerveux des animaux. Trav. Lab. Physiol. Inst. Solvay, 7, 1–208.

    Google Scholar 

  • Risling, M. & Hildebrand, C. (1982). Occurrence of unmyelinated axon profiles at distal, middle and proximal levels in the ventral root L7 of cats and kittens. J. Neurol. Sci., 56, 219–231

    Article  Google Scholar 

  • Rossignol, S. & Gauthier, I. (1980). An analysis of mechanisms controlling the reversal of crossed spinal reflexes. Brain Res., 182, 31–45.

    Article  Google Scholar 

  • Selverston, A.I. (1976). Neural mechanisms for rhythmic motor pattern generation in a simple system. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G.. Plenum, New York, pp. 377–399.

    Google Scholar 

  • Shik, M.L. (1966). Control of walking and running by means of electrical stimulation of the mid. brain. Biophysics, 11, 756–765.

    Google Scholar 

  • Shik, M.I. & Orlovsky, G.N. (1976). Neurophysiology of locomotor automatism. Physiol. Rev., 56, 465–501.

    Google Scholar 

  • Smith, J.L., Smith, L., Zernicke, R.F. & Hoy, M. (1982). Locomotion in exercised and nonexercised cats cordotomized at 2 or 12 weeks of age. Expl. Neurol., 76, 395–413.

    Article  Google Scholar 

  • Stein, P.S.G. (1971). Intersegmental coordination of swimmeret motoneuron activiby in crayfish. J. Neurophysiol., 34, 310–318.

    Google Scholar 

  • Stein, P.S.G. (1974). Neural control of interappendage phase during locomotion. Am. Zool., 14, 1003–1016.

    Google Scholar 

  • Stein, P.S.G. (1978). Motor systems, with special reference to the control of locomotion. Annu. Rev. Neurosci.,1, 61–81.

    Article  Google Scholar 

  • Udo, M., Matsukawa, K., Kamei, H. & Oda, Y. (1980). Cerebellar control of locomotion: effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J. Neurophysiol., 44, 119–154.

    Google Scholar 

  • Wallén, P. (1980). On the mechanisms of a phase dependent reflex occurring during locomotion in dogfish. Expl. Brain Res., 39, 193–202.

    Article  Google Scholar 

  • Wallén, P. & Williams, T.L. (1984). Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J. Physiol., 347, 225–259.

    Google Scholar 

  • Wilson, D.M. (1964). The origin of the flight motor command in grasshoppers. In Neural Theory and Modeling. Ed. Reiss, R.F.. Universiby Press, Stanford, pp 331–345.

    Google Scholar 

  • Wilson, D.M. & Waldron, I. (1968). Models for the generation of the motor output pattern in flying locusts. Proc IEEE, 56, 1058–1064.

    Article  Google Scholar 

  • Zomlefer, M.R., Provencher, J., Blanchette, G. & Rossignol, S. (1984). Electromyographic study of lumbar back muscles during locomotion in acute high decerebrate and in low spinal cats. Brain Res., 290, 249–260.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Grillner, S. (1985). Neural Control of Vertebrate Locomotion - Central Mechanisms and Reflex Interaction with Special Reference to the Cat. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics