Skip to main content

The Role of Movement-Related Feedback in The Control of Locomotion in Fish and Lamprey

  • Chapter
Feedback and Motor Control in Invertebrates and Vertebrates

Abstract

In its natural habitat, a fish must continuously adapt its swimming movements to the existing environmental conditions as it pursues its various aims. A coral reef. dwelling fish, for example, will manoeuvre its body into a position suitable for nibbling vegetation from a coral, while simultaneously coping with often powerful water currents. To capture its victim a predatory fish must be able not only to accelerate suddenly, but also to avoid any obstacles such as rocks or seaweed. A swimming fish will benefit from a quick withdrawal reflex in response to a noxious stimulus, but it must be able to integrate this response with the swimming movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, O., Forssberg, H., Grillner, S. & Lindquist, M. (1978). Phasic gain control of the transmission in cutaneous reflex pathways to motorneurons during ‘fictive’ locomotion. Brain Res., 149, 503–507.

    Article  Google Scholar 

  • Andersson, O., Forssberg, H., Grillner, S. & Wallén, P. (1981). Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can. J. Physiol & Pharmacol, 59, 713–726.

    Article  Google Scholar 

  • Bethe, A. (1899). Die Locomotion des Haifisches (Scyllium) and ihre Beziehungen zu den einzelnen Gehirntheilen und zum Labyrinth. Pflügers Arch. ges. Physiol., 76, 470–495.

    Article  Google Scholar 

  • Blight, A.R. (1977). The muscular control of vertebrate swimming movements. Biol. Rev., 52, 181–218.

    Article  Google Scholar 

  • Bone, Q. & Chubb, A.D. (1975). The structure of stretch receptor endings in the fin muscles of rays. J. mar, biol. Ass. U K., 55, 939–943.

    Article  Google Scholar 

  • Bone, Q. & Chubb, A.D. (1976). On the structure of corpuscular proprioceptive endings in sharks. J. mar. biol. Ass. U K., 56, 925–928.

    Article  Google Scholar 

  • Brodin, L. & Grillner, S. (1984). Excitatory amino acid receptors and the initiation of fictive swimming in the lamprey spinal cord in vitro. Neurosci. Lett. Suppl., 18, 386.

    Google Scholar 

  • Brodin, L., Grillner, S. & Rovainen, C.M. (1985). NMDA, kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord. Brain Res, (In press).

    Google Scholar 

  • Cohen, A. & Wallén, P. (1980). The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey spinal cord. Expl. Brain Res., 41, 11–18.

    Article  Google Scholar 

  • Droge, M.H. & Leonard, R.B. (1983a). Swimming pattern in intact and decerebrated stingrays. J. Neurophysiol., 50, 162–177.

    Google Scholar 

  • Droge, M.H. & Leonard, R.B. (1983b). Swimming rhythm in decerebrated, paralysed stingrays: normal and abnormal coupling. J. Neurophysiol., 50, 178–191.

    Google Scholar 

  • Forssberg, H., Grillner, S., Rossignol, S. & Wallén, P. (1976). Phasic control of reflexes during locomotion in vertebrates. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D.G. Plenum, New York, pp 647–674.

    Google Scholar 

  • Gray, J. (1936). Studies in animal locomotion. IV. The neuromuscular mechanism of swimming in the eel. J. exp. Biol., 13, 170–180.

    Google Scholar 

  • Gray, J. (1950). The role of peripheral sense organs during locomotion in the vertebrates. Symp. Soc. exp. Biol., 4, 112–126.

    Google Scholar 

  • Gray, J. & Sand, A. (1936). The locomotory rhythm of the dogfish (Scyllium canicula). J. exp. Biol., 13, 200–209.

    Google Scholar 

  • Griliner, S., (1974). On the generation of locomotion in the spinal dogfish. Expl. Brain Res., 20, 459–470.

    Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev., 35, 247–304.

    Google Scholar 

  • Grillner, S. & Kashin, S. (1976). On the generation and performance of swimming in fish. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D G. Plenum, New York, pp 181–202.

    Google Scholar 

  • Grillner, S., McClellan, A. & Perret, C. (1981). Entrainment of the spinal pattern generators for swimming by mechanosensitive elements in the lamprey spinal cord in vitro. Brain Res., 217, 380–386.

    Article  Google Scholar 

  • Griliner, S., McClellan, A. & Sigvardt, K. (1982). Mechanosensitive neurones in the spinal cord of the lamprey. Brain Res.255, 169–173.

    Google Scholar 

  • Grillner, S., McClellan, A., Sigvardt, K., Walleén, P. & Wilén, M. (1981). Activation of NMDA. receptors elicits ‘fictive locomotion’ in lamprey spinal cord in vitro. Acta physiol. Scand., 113, 549–551.

    Article  Google Scholar 

  • Grillner, S., Perret, C. & Zangger, P. (1976). Central generation of locomotion in the spinal dogfish. Brain Res., 109, 255–269.

    Article  Google Scholar 

  • Grillner, S., Rossignol, S., & Wallén, P. (1977). The adaptation of a reflex response to the ongoing phase of locomotion in fish. Expl. Brain Res., 30, 1–11.

    Article  Google Scholar 

  • Grillner, S. & Wallén, P. (1977). Is there a peripheral control of the central pattern generators for swimming in dogfish? Brain Res., 127, 291–295.

    Article  Google Scholar 

  • Griliner, S. & Wallén, P. (1982). On peripheral control mechanisms acting on the central pattern generators for swimming in the dogfish. J. exp. Biol., 98, 1–22.

    Google Scholar 

  • Griliner, S. & Wallén, P. (1984). How does the lamprey CNS make the lamprey swim? J. exp. Biol., 112, 337–357.

    Google Scholar 

  • Grillner, S., Wallén, P., McClellan, A., Sigvardt, K., Williams, T. & Feldman, J. (1983). The neural generation of locomotion in the lamprey: an incomplete account. In Neural Origin of Rhythmic Movements. Eds. Roberts, A. & Roberts, B. Symp. Soc. exp. Biol., 37, 285–303.

    Google Scholar 

  • Grillner, S., Williams, T. & Lagerbäck, P.-A. (1984). The edge cell, a possible intraspinal mechanoreceptor. Science, N.Y., 223, 500–503.

    Article  Google Scholar 

  • Holst, E. von (1935a). Erregungsbildung und Erregungsleitung im Fischrükenmark. Pflügers Arch. ges. Physiol., 235, 345–359.

    Article  Google Scholar 

  • Holst, E. von (1935b). Uber den Process der zentralnervösen Koordination. Pflügers Arch. ges. Physiol., 236, 149–158.

    Article  Google Scholar 

  • Kappers, L.K.A., Huber, G.C. & Crosby, E.C. (1936). The Comparative Anatomy of the Nervous System of Vertebrates Including Man. Macmillan, London.

    Google Scholar 

  • Kolmer, W. (1905). Zur Kenntnis des Rirkenmarks von Ammocoetes. Arb. anat. Inst., Wiesbaden, 29, 165–214.

    Google Scholar 

  • Lissmann, H.W. (1946a). The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canicula, Acanthi as vulgaris) I. Reflex behaviour. J. exp. Biol., 23, 143–161.

    Google Scholar 

  • Lissmann, H.W. (1946b). The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canicula, Acanthias vulgaris) II.The effect of deafferentation. J. exp, Biol., 23, 162–176.

    Google Scholar 

  • Le Mare, D.W. (1936). Reflex and rhythmical movements in the dogfish. J. exp. Biol., 134, 429–442.

    Google Scholar 

  • Maeda, N., Miyoshi, S. & Toh, H. (1983). First observation of a muscle spindle in fish. Nature, Lond., 302, 61–62.

    Article  Google Scholar 

  • Pavlidis, T. (1973). Biomechanical Oscillators: their Mathematical Analysis. Academic Press, New York.

    Google Scholar 

  • Poon, M.L.T. (1960). Induction of swimming in lamprey by L-DOPA and amino acids. J. comp. Physiol., 136, 337–344.

    Article  Google Scholar 

  • Retzius, G. (1891). Zur Kenntnis des centralen Nervensystems von Myxine glutinosa. Biol. Unters., 11, 47–53.

    Google Scholar 

  • Roberts, B.L. (1969a). Spontaneous rhythms in the motoneurons of spinal dogfish (Scyliorhinus canicula). J. mar, biol. Ass. U K., 49, 33–49.

    Article  Google Scholar 

  • Roberts, B.I. (1969b). The response of a proprioceptor to the undulatory movements of dogfish. J. exp. Biol., 51, 775–785.

    Google Scholar 

  • Rovainen, C.M. (1967). Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus) I. Muller and Mauthner cells. J. Neurophysiol., 30, 1000–1023.

    Google Scholar 

  • Rovainen, C.M. (1974). Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J. comp. Neurol., 154, 189–206.

    Article  Google Scholar 

  • Stein, P.S.G. (1976). Mechanisms of interlimb phase control. In Neural Control of Locomotion. Eds. Herman, R.M., Grillner, S., Stein, P.S.G. & Stuart, D. G. Plenum, New York, pp 465–487.

    Google Scholar 

  • Steiner, I. (1886). Uber das Centralnervensystem der grünen Eidechse, nebst weiteren Untersuchungen ‘über das des Haifisches. Sber. preuss. Akad. Wiss., 32, 539–543.

    Google Scholar 

  • Tao. Cheng, J.-O., Hirosawa, K. & Nakajima, Y. (1981). Ultrastructure of the crayfish stretch receptor in relation to its function. J. comp. Neurol., 200, 1–21.

    Article  Google Scholar 

  • Wallén, P. (1980). On the mechanisms of a phase. dependent reflex occurring during locomotion in dogfish. Expl. Brain Res., 39, 193–202.

    Article  Google Scholar 

  • Wallen, P. & Lansner, A. (1984). Do the motoneurones constitute a part of the spinal network generating the swimming rhythm in the lamprey? J. exp. Biol., 113, 493–497.

    Google Scholar 

  • Wallen, P. & Williams, T.I. (1984). Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal lamprey. J. Physiol., 347, 225–239.

    Google Scholar 

  • Watkins, J.C. (1981). Pharmacology of excitatory amino acid transmitters. In Amino Acid Neurotransmitters. Eds. deFeudis, F.V. & Mandel, P. Raven Press, New York, pp 205–212.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 W.J.P. Barnes and M.H. Gladden

About this chapter

Cite this chapter

Wallén, P., Williams, T.L. (1985). The Role of Movement-Related Feedback in The Control of Locomotion in Fish and Lamprey. In: Barnes, W.J.P., Gladden, M.H. (eds) Feedback and Motor Control in Invertebrates and Vertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7084-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7084-0_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7086-4

  • Online ISBN: 978-94-011-7084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics