Skip to main content

Retrotransposons of rice: their regulation and use for genome analysis

  • Chapter
Oryza: From Molecule to Plant

Abstract

Retrotransposons were extensively surveyed in rice using two molecular methods. The total copy number of retrotransposons in the rice genome was estimated to be about 1000 and 32 families were isolated, showing that retrotransposons are a major class of transposable elements in rice. Although these retrotransposons appear inactive during normal growth conditions, 5 out of 32 families were active under tissue culture conditions. The most active element, Tos17, was studied in detail. Its activity was show to be regulated mainly at the transcriptional level. The analysis of target sites of transposition indicated that activation of Tos17 is an important cause of tissue culture-induced mutations in rice. Tissue culture-induced activation of Tos17 was used to develop the site-selected mutagenesis system, in which mutants carrying a Tos17 insertion in the gene of interest can be identified among rice plants regenerated from tissue culture by the PCR using one primer for the ends of Tos17 and another for the gene of interest. This system will contribute to understanding the functions of rice genes whose sequences are being determined by the rice genome project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj YSP: Somaclonal variation: origin, induction, cryopreservation, and implications in plant breeding. In Bajaj YSP (ed) Somaclonal variation in crop, pp. 4–48. Springer-Verlag, Berlin (1991).

    Google Scholar 

  2. Ballinger DG, Benzer S: Targeted gene mutations in Drosophila Proc Natl Acad Sei USA 86: 9402–9406 (1989).

    Article  CAS  Google Scholar 

  3. Bancroft I, Dean C: Transposition pattern of the maize element Ds in Arabidopsis thaliana Genetics 134: 1221–1229 (1993).

    PubMed  CAS  Google Scholar 

  4. Bancroft I, Jones JDG, Dean C: Heterologous transposon tagging of the DRL1 locus in Arabidopsis Plant Cell 5: 631–638 (1993).

    PubMed  CAS  Google Scholar 

  5. Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP: Cloning and characterization of the maize Anl gene. Plant Cell 7: 75–84 (1995).

    PubMed  CAS  Google Scholar 

  6. Bingham P, Zachar Z: Retrotransposons and the FB transposon from Drosophila melanogaster In: Berg DE, Howe MM (eds) Mobile DNA, pp. 485–502. American Society for Microbiology, Washington, DC (1989).

    Google Scholar 

  7. Bingham PM, Levis R, Rubin G: Cloning of DNA sequences from the white locus of D. melonagaster by a novel and general method. Cell 25: 693–704 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. Brettell RIS, Dennis ES, Scowcroft WR, Peacock WJ: Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol Gen Genet 202: 235–239 (1986).

    Article  CAS  Google Scholar 

  9. Boeke JD: Transposable elements in Saccharomyces cerevisiae In: Berg DE, Howe MM (eds) Mobile DNA, pp. 335–374. American Society for Microbiology, Washington, DC (1989).

    Google Scholar 

  10. Boeke JD, Garfinkel DJ, Styles CA, Fink GR: Ty elements transpose through an RNA intermediate. Cell 40: 491–500 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. Bureau TE, White SE, Wessler SR: Transduction of a cellular gene by a plant retroelement. Cell 77: 479–480 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. Casacuberta JM, Grandbastien MA: Characterization of LTR sequences involved in the protoplasts specific expression of the tobacco Tntl retrotransposon. Nucl Acids Res 21: 2087–2093 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW: Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis Mol Gen Genet 241: 504–514 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. Das L, Martienssen R: Site-selected transposon mutagenesis at the hfc109 locus in maize Plant Cell 7: 287–294 (1995).

    CAS  Google Scholar 

  15. Dennis ES, Brettell RIS, Peacock WJ: A tissue culture induced Adh null mutant of maize results from a single base change. Mol Gen Genet 210: 181–183 (1987).

    Article  CAS  Google Scholar 

  16. Doolittle RF, Feng D-F, Johnson MS, McClure MA: Origin and evolutionary relationships of retroviruses. Q Rev Biol 64, 1–30 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. Echalier G: Drosophila retrotransposons: interactions with genome. Adv Virus Res 36: 33–103 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. Evans DA, Sharp WR: Single mutations in tomato plants regenerated from tissue culture. Science 221: 949–951 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. Finnegan DJ: Eukaryotic transposable elements and genome evolution. Trends Genet 5: 103–107 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A: Ty1-copia group retrotransposons are ubiquitous and heterogenous in higher plants. Nucl Acids Res 20: 3639–3644 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. Flavell AJ, Smith DB, Kumar A: Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231: 233–242 (1992).

    PubMed  CAS  Google Scholar 

  22. Flavell AJ, Pearce SR, Kumar A: Plant transposable elements and the genome. Curr Opin Genet Dev 4: 838–844 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. Fukuchi A, Nakamura A, Hirano H, Hirochika H, Kikuchi F: Linkage analysis for a semidwarfing gene sd-1 on chromosome 1. Rice Genetic Newsletter 9: 50–52 (1992).

    Google Scholar 

  24. Fukuchi A, Kikuchi F, Hirochika H: DNA fingerprinting of cultivated rice with rice retrotransposon probes. Jnp J Genet 68: 195–204 (1993).

    Article  CAS  Google Scholar 

  25. Grandbastien, M-A: Retroelements in higher plants. Trends Genet. 8: 103–108 (1992).

    PubMed  CAS  Google Scholar 

  26. Grandbastien M-A, Spielman A, Caboche M: Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. Grandbastien M-A, Audeon C, Casacuberta JM, Grappin P, Lucas H, Moreau C, Pouteau S: Functional analysis of the tobacco Tntl retrotransposon. Genetica 93: 181–189 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Green MM: Mobile DNA elements and spontaneous gene mutation. In: Lambert ME, McDonald JF, Weinstein IB (eds) Eukaryotic Transposable Elements as Mutagenic Agents, pp. 41–50. Cold Spring Harbor Laboratory Press, New York (1988).

    Google Scholar 

  29. Haring MA, Rommens CMT, Nijkamp HJJ, Hille J: The use of transgenic plants to understand tranposition mechanisms and to develop transposon tagging strategies. Plant Mol Biol 16: 449–461 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. Hirochika H: Activation of tobacco retrotransposons during tissue culture. EMBO J 12: 2521–2528 (1993).

    PubMed  CAS  Google Scholar 

  31. Hirochika H: Activation of plant retrotransposons by stress. In: Oono K, Takaiwa F (eds) Modification of Gene Expression and Non-Mendelian Inheritance, pp. 15–21. National Institute of Agrobiological Resource, Tsukuba (1995).

    Google Scholar 

  32. Hirochika H, Fukuchi A: Transposable elements in rice plants. Jpn Agr Res Q 25: 230–237 (1992).

    CAS  Google Scholar 

  33. Hirochika H, Hirochika R: Tyl-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68: 35–46 (1993).

    Article  PubMed  CAS  Google Scholar 

  34. Hirochika H, Fukuchi A, Kikuchi F: Retrotransposon families in rice. Mol Gen Genet 233: 209–216 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S: Autonomous transposition of the tobacco retrotransposon Ttol in rice. Plant Cell 8: 725–734 (1996).

    PubMed  CAS  Google Scholar 

  36. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M: Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93: 7783–7788 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Hu W, Das OP, Messing J: Zeon-1, a member of a new maize retrotransposon family. Mol Gen Genet 248: 471–480 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. Jin Y-K, Bennetzen JL: Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bsl retroelement of maize. Plant Cell 6: 1177–1186 (1994).

    PubMed  CAS  Google Scholar 

  39. Johns MA, Mottinger J, Freeling M: A low copy number, copia-like transposon in maize. EMBO J 4: 1093–1102 (1985).

    PubMed  CAS  Google Scholar 

  40. Kaiser K, Goodwin SF: ‘Site-selected’ transposon mutagenesis of Drosophila Proc Natl Acad Sci USA 87: 1686–1690 (1990).

    Article  PubMed  CAS  Google Scholar 

  41. Koes R, Souer E, van Houwelingen A, Mur L, Spelt C, Quattrocchio F, Wing J, Oppedijk B, Ahmed S, Maes T, Gerats T, Hoogeveen P, Meesters M, Kloos D, Mol JN: Targeted gene inactivation in petunia by PCR-based dselection of transposon insertion mutants. Proc Natl Acad Sci USA 92: 8149–8153 (1995).

    Article  PubMed  CAS  Google Scholar 

  42. Konieczny A, Voytas DF, Cummings MP, Ausubel FM: A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809 (1991).

    PubMed  CAS  Google Scholar 

  43. Kricker MC, Drake JW, Radman M: Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc Natl Acad Sci USA 89: 1075–1079 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. Larkin PJ, Scowcroft WR: Somaclonal variation: a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60: 197–214 (1981).

    Article  Google Scholar 

  45. Larkin PJ, Ryan SA, Brettell RIS, Scowcroft WR: Heritable somaclonal variation in wheat. Theor Appl Genet 67: 443–455 (1984).

    Article  CAS  Google Scholar 

  46. Loake GJ, Faktor O, Lamb CJ, Dixon RA: Combination of H-box and G-box cis-elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proc Natl Acad Sci USA 89: 9230–9234 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. Lucas H, Feuerbach F, Kunert K, Grandbastien M-A, Caboche M: The tobacco retrotransposon Tntl transposes in Arabidopsis thaliana EMBO J 14: 2364–2373 (1995).

    PubMed  CAS  Google Scholar 

  48. Manninen I, Schulman AH: BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22: 829–846 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. McClintock B: The significance of responses of the genome to challenge. Science 226: 792–801 (1984).

    Article  PubMed  CAS  Google Scholar 

  50. Moore G, Cheung W, Schwazacher T, Flavell R: BIS 1, a major component of the cereal genome and a tool for studying genomic organization. Genomics 10: 469–476 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. Motohashi R, Ohtsubo E, Ohtsubo H: Identification of Tnr3, a Suppressor-Mutator/Enhancer-like transposable element from rice. Mol Gen Genet 250: 148–152 (1996).

    PubMed  CAS  Google Scholar 

  52. Mount SM, Rubin GM: Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5: 1630–1638 (1985).

    PubMed  CAS  Google Scholar 

  53. Okagaki RJ, Wessler SR: Comparison of non-mutant and mutant waxy genes in rice and maize. Genetics 120: 1137–1143 (1988).

    PubMed  CAS  Google Scholar 

  54. Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ: The Tyl-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet 250: 305–315 (1996).

    PubMed  CAS  Google Scholar 

  55. Pennisi E: From genes to genome biology. Science 272: 17361738 (1996).

    Google Scholar 

  56. Peschke VM, Phillips RL: Activation of the maize transposable element Suppressor-mutatorSpm) in tissue culture. Theor App] Genet 81: 90–97 (1991).

    Google Scholar 

  57. Peschke VM, Phillips RL, Gengenbach BG: Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807 (1987).

    Article  PubMed  CAS  Google Scholar 

  58. Peterson PA: Transposable elements in maize: their role in creating plant genetic variability. Adv Agron 51: 79–123 (1993).

    Article  CAS  Google Scholar 

  59. Pouteau S, Huttner E, Grandbastien MA, Caboche M: Specific expression of the tobacco Tntl retrotransposon in protoplats. EMBO J 10: 1911–1918 (1991).

    PubMed  CAS  Google Scholar 

  60. Pouteau S, Grandbastien M-A, Boccara M: Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J 5: 535–542 (1994).

    Article  CAS  Google Scholar 

  61. Purugganan MD, Wessler S: Molecular evolution of Magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci USA 91: 11674–11678 (1994).

    Article  PubMed  CAS  Google Scholar 

  62. Sasaki T, Song J, Koga-Ban Y, Matsui E, Fang F et al: Towards cataloguing all rice genes: large scale sequencing of randomly chosen cDNAs from a callus cDNA library. Plant J 6: 615–624 (1994).

    Article  PubMed  CAS  Google Scholar 

  63. Sentry JW, Smyth DR: An element with long terminal repeats and its variant arrangements in the genome of Lilium henryi. Mol Gen Genet 215: 349–354 (1989).

    Article  PubMed  CAS  Google Scholar 

  64. Shepard JF: Protoplasts as sources of disease resistance in plants. Annu Rev Phytopath 19: 145–166 (1981).

    Article  CAS  Google Scholar 

  65. Sun Z-X, Zheng K-L: Somaclonal variation in rice. In: Bajaj YPS (ed) Somaclonal Variation in Crop Improvement I, pp. 288–315. Springer-Verlag, Berlin (1990).

    Chapter  Google Scholar 

  66. Sundaresan V: Horizontal spread of transpososn mutagenesis: new uses for old elements. Trends Plant Sci 1: 184–190 (1996).

    Article  Google Scholar 

  67. Toh H, Kikuno R, Hayashida H, Miyata T, Kugimiya W, Inouye S, Yuki S, Saigo K: Close structural resemblance between putative polymerase of a Drosophila transposable genetic element 17.6 and Pol gene product of Molony murine leukemia virus. EMBO J 4: 1267–1272 (1985).

    PubMed  CAS  Google Scholar 

  68. Varagona MJ, Purugganan M, Wessler SR: Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820 (1992).

    PubMed  CAS  Google Scholar 

  69. Yoytas DF, Boeke JD: Yeast retrotransposons and tRNAs. Trends Genet 9: 421–427 (1993).

    Article  Google Scholar 

  70. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR: Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128 (1992).

    Article  PubMed  CAS  Google Scholar 

  71. Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Devel 5: 814–821 (1995).

    Article  CAS  Google Scholar 

  72. White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: a role of copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796 (1994).

    Article  PubMed  CAS  Google Scholar 

  73. Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86: 6201–6205 (1989).

    Article  PubMed  CAS  Google Scholar 

  74. Xiong Y, Eickbush TH: Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takuji Sasaki Graham Moore

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hirochika, H. (1997). Retrotransposons of rice: their regulation and use for genome analysis. In: Sasaki, T., Moore, G. (eds) Oryza: From Molecule to Plant. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5794-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5794-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6446-0

  • Online ISBN: 978-94-011-5794-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics