Skip to main content

Abstract

Underlying principles of echocontrast effects are outlined in this section, which aims to reflect the recent advances and detailed reports presented in subsequent chapters. To place microbubble phenomena in context, it was deemed useful to consider parallel multidisciplinary efforts in such areas as hydrodynamic cavitation, diving physiology and bubbly flow processes. Although there are many applications of ultrasound contrast, one difficult but potentially realizable objective was singled out: the quantitation of myocardial perfusion with intravenously administered gaseous bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography. Contrast studies in anatomy and function. Radiology 1968; 92: 939.

    Google Scholar 

  2. Ziskin MC, Bonakdarpour A, Weinstein DP et al. Contrast agents for diagnostic ultrasound. Invest Radiol 1972; 7: 500.

    Article  PubMed  CAS  Google Scholar 

  3. Meltzer RS, Tickner EG, Salines TP, Popp RL. The source of ultrasound contrast effect. J Clin Ultrasound 1980; 8: 121–7.

    Article  PubMed  CAS  Google Scholar 

  4. Roelandt J. Review Paper. Contrast echocardiography. Ultrasound Med Biol 1982; 8: 471–92.

    Article  PubMed  CAS  Google Scholar 

  5. Meltzer RS, Sartorius OEH, Lancee GT et al. Transmission of echocardiographic contrast through the lungs. Ultrasound Med Biol 1981; 7: 377–84.

    Article  PubMed  CAS  Google Scholar 

  6. Meltzer RS, Vermeulen HWJ, Valk NK, Verdouw PD, Lancee CT, Roelandt J. New echo-cardiographic contrast agents: transmission through the lungs and myocardial perfusion imaging. J Cardiovasc Ultrason 1982; 1: 277–82.

    Google Scholar 

  7. Carroll BA, Turner RJ, Tickner EG, Boyle DB, Young SW. Gelatin encapsulated nitrogen micro-bubbles as ultrasonic contrast agents. Invest Radiol 1980; 15: 260–6.

    Article  PubMed  CAS  Google Scholar 

  8. Tei C, Sakamaki T, Shah PM et al. Myocardial contrast echocardiography. A reproducible technique of myocardial opacification for identifying regional perfusion deficits. Circulation 1983; 67: 585–93.

    Article  PubMed  CAS  Google Scholar 

  9. Armstrong WF, West SR, Mueller EM, Dillon JC, Feigenbaum H. Assessment of location and size of myocardial infarction with contrast-enhanced echocardiography. J Am Coll Cardiol 1983; 2: 63–9.

    Article  PubMed  CAS  Google Scholar 

  10. Kaul S, Pandian NG, Okada RD, Pohost GM, Weyman AE. Contrast echocardiography in acute myocardial ischemia: I. In vivo determination of total left ventricular `area at risk’. J Am Coll Cardiol 1984; 4: 1272–82.

    Article  PubMed  CAS  Google Scholar 

  11. Kemper AJ, O’Boyle JE, Sharmer S et al. Hydrogen peroxide contrast-enhanced 2-dimensional echocardiography: Real time in vivo delineation of regional myocardial perfusion. Circulation 1983; 68: 603–11

    Article  PubMed  CAS  Google Scholar 

  12. Keller MW, Glasheen W, Kaul S. Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J Am Soc Echo 1989; 2: 48–52.

    CAS  Google Scholar 

  13. Kaul S. Quantitation of myocardial perfusion with contrast echocardiography. Am J Card Imag 1991; 5: 200–16.

    CAS  Google Scholar 

  14. Porter TR, D’Sa A, Turner C et al. Myocardial contrast echocardiography for the assessment of coronary blood flow reserve: Validations in humans. J Am Coll Cardiol 1993; 21: 349–55.

    Article  PubMed  CAS  Google Scholar 

  15. Villanueva FS, Glasheen WP, Sklenar J, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injections of contrast. Circulation 1993; 88: 596–604.

    Article  PubMed  CAS  Google Scholar 

  16. Skyba DM, Jayaweera AIR, Goodman NC, Ismail S, Camarano G, Kaul S. Quantification of myocardial perfusion with myocardial contrast echocardiography during left atrial injection of contrast: Implications for venous injection. Circulation 1994; 90: 1513–21.

    Article  CAS  Google Scholar 

  17. Keller MW, Segal SS, Kaul S, Duling BR. The behavior of sonicated albumin microbubbles in the microcirculation: A basis for their use as myocardial echo contrast agents. J Am Coll Cardiol 1988; 10: 75A.

    Google Scholar 

  18. Apfel RE. Accoustic cavitation. Methods of experimental physics. 1981; 69: 355–411.

    Article  Google Scholar 

  19. Ivey JA, Gardner EA, Fowlkes JB, Rubin JM, Carson PL. Accoustic generation of intraarterial contrast boluses. Ultrasound Med Biol 1995; 21: 757–767.

    Article  PubMed  CAS  Google Scholar 

  20. Feinstein SB, Ten Cate FJ, Zwehl W et al. Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 1984; 3 (1): 14–21.

    Article  PubMed  CAS  Google Scholar 

  21. Schlief R, Schurmann R, Balzer T, Zomack M, Niendorf HP. Saccharide based contrast agents. In: Nanda NC, Schlief R, editors. Advances in echo imaging using contrast enhancement. Dordrecht, The Netherlands: Kluwer, 1993: 71–96.

    Google Scholar 

  22. Schlief R, Schurmann R, Balzer T et al. Saccharide-based contrast agents and their application in vascular Doppler ultrasound. Adv Echo-contrast 1994; 3: 60–76.

    Google Scholar 

  23. Von Bibra H, Sutherland G, Becher H, Neudert J, Nihoyannopoulos P. Clinical evaluation of left heart Doppler contrast enhancement by saccharide-based transpulmonary contrast agent. J Am Coll Cardiol l995;25:500–8.

    Article  Google Scholar 

  24. Christiansen C, Kryvi H, Sontum PC, Skotland T. Physical and biochemical characterization of Albunex, a new ultrasound contrast agent consisting of air-filled albumin microspheres suspended in a solution of human albumin. Biotechnol Appl Biochem 1994; 19: 307–20.

    PubMed  CAS  Google Scholar 

  25. Bleeker HJ, Shung KK, Barnhart JL. Ultrasonic characterization of Albunex, a new contrast agent. J Accoust Soc Am 1990; 87: 1792–7.

    Article  Google Scholar 

  26. deJong N, Ten Cate FJ, Vletter WB, Roelandt JRTC. Quantification of transpulmonary echo-contrast effects. Ultrasound Med Biol 1993; 19: 279–88.

    Article  CAS  Google Scholar 

  27. Sonne HS, Christensen PD, Muan B, Assentoft J, Haider T, Kristensen BO. Left ventricular opacification after intravenous injection of Albunex. Int J Cardiac Imag 1995; 11: 47–53.

    Article  CAS  Google Scholar 

  28. Porter TR, Xie F, Cricsfeld A, Kilzer K. Noninvasive identification of acute myocardial ischemia and reperfusion with contrast ultrasound using intravenous Perfluoropropane-exposed sonicated Dextrose Albumin. J Am Coll Cardiol 1985; 26: 33–40.

    Article  Google Scholar 

  29. Dittrich HC, Bales GL, Kuvelas T, Hunt RM, McFerran BA, Greener Y. Myocardial contrast echocardiography in experimental coronary artery occlusion with a new intravenously administered contrast agent. J Am Soc Echocardiogr 1995; 8: 465–74.

    Article  PubMed  CAS  Google Scholar 

  30. Uhlendorf V, Hoffmann C. Non-linear accoustical response of coated microbubbles in diagnostic ultrasound. Ultrasonics Symposium 1994. IEEE; 1559–62.

    Google Scholar 

  31. Forsberg F, Liu JB, Merton A, Rawool NM, Goldberg BB. In vivo evaluation of a new ultrasound contrast agent. Ultrasonics Symposium. 1994. IEEE; 1555–8.

    Google Scholar 

  32. Unger E, Shen DK, Fritz T et al. Gas-filled liposomes as echocardiographic contrast agents in rabbits with myocardial infarcts. Invest Radiol 1993; 28: 1155–9.

    Article  PubMed  CAS  Google Scholar 

  33. Plesset MS, Prosperetti A. Bubble dynamics and cavitation. Am Rev Fluid Mech 1977; 9: 145–85.

    Article  CAS  Google Scholar 

  34. Houghton G. Theory of bubble pulsation and cavitation. J Accoust Soc Am 1963; 35: 1387–93.

    Article  Google Scholar 

  35. Minnaertk M. On musical air bubbles and the sound of running water. Phil Mag 1993; 16: 235.

    Google Scholar 

  36. Anderson AL, Hampton LD. Accoustics of gas-bearing sediments. (1) Background. J Accoust Soc Am 1980; 67: 1865–89.

    Article  Google Scholar 

  37. Tsujino T, Shima A. The behavior of gas bubbles in blood subjected to an oscillating pressure. J Biol Mech 1980; 13: 407–16.

    CAS  Google Scholar 

  38. Lauterborn W. Numerical investigation of non-linear oscillation of gas bubble in liquids. J Accoust Soc Am 1976; 59: 283–93.

    Article  Google Scholar 

  39. Eatock VC, Nishi RY. Numerical studies of the spectrum of low-intensity ultrasound scattered by bubbles. J Accoust Soc Am 1985; 77: 1692–701.

    Article  Google Scholar 

  40. Miller DL. Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emission. Ultrasonics 1981; 19: 217–24.

    Article  Google Scholar 

  41. Prosperetti A. Bubble phenomena in sound fields: Part I. Ultrasonics 1984; 22: 69–77.

    Article  Google Scholar 

  42. Prosperetti A. Bubble dynamics some things we did not know 10 years ago. In: Bubble Dynamics and Interface Phenomena, Proceedings of an IUTAN Symposium. Blake JR, Boulton-Stone JM, Thomas NH, editors. Dordrecht: Kluwer Academic Publishers, 1994: 3–16.

    Chapter  Google Scholar 

  43. Prosperetti A, Crum LA, Commander KW. Non-linear bubble dynamics. J Accoust Soc Am 1988; 83: 502–14.

    Article  CAS  Google Scholar 

  44. Wu J, Zhu Z, Du G. Non-linear behavior of a liquid containing uniform bubbles: comparison between theory and experiments. Ultrasound Med Biol 1995; 21: 545–52.

    Article  PubMed  CAS  Google Scholar 

  45. Beyer RT. Non-linear accoustics. The Naval Ship Systems Command. Washington DC: Naval Department, 1974.

    Google Scholar 

  46. D’Agostino L, Brennen CE. Accoustical absorption and scattering cross sections of spherical bubble clouds. J Accoust Soc Am 1988; 84: 2126–33.

    Article  Google Scholar 

  47. Pelekasis NA, Tsanopoulos JA. Bjerkenes forces between two bubbles. Response to a step change in pressure. J Fluid Mech 1993; 254: 467–99.

    Article  CAS  Google Scholar 

  48. Doinikov AA, Zavtrak ST. On the mutual interaction of two gas bubbles in a sound field. Phys Fluids 1995; 7: 1923–30.

    Article  CAS  Google Scholar 

  49. Epstein PS, Plesset MS. On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 1950; 18: 1505–9.

    Article  CAS  Google Scholar 

  50. deJong N, Ten Cate F, Lancee CT et al. Principles and recent developments in ultrasound contrast agents. Ultrasonics 1991; 29: 324–30.

    Article  CAS  Google Scholar 

  51. Yang WJ. Dynamics of gas bubbles in whole blood and plasma. J Bio Med 1971; 4: 119–23.

    CAS  Google Scholar 

  52. Fyrillas MM, Szeri AJ. Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants. J Fluid Mech 1995; 289: 295–314.

    Article  CAS  Google Scholar 

  53. van Liew HD, Burkhard ME. Behavior of bubbles of slowly permeating gas used for ultrasonic imaging contrast. Invest Radiol 1995; 30: 315–21.

    Article  PubMed  Google Scholar 

  54. Lieberman L. Air bubbles in water. J Appl Phys 1957; 28: 205–11.

    Article  Google Scholar 

  55. Fox FE, Herzfeld KF. Gas bubbles with organic skin as cavitation nuclei. J Accoust Soc Am 1954; 26: 984–9.

    Article  Google Scholar 

  56. Love AEH. The mathematical theory of elasticity. New York: Dover Publications, 1944.

    Google Scholar 

  57. Yount DE. Bubble nucleation in aqueous media: implications for diving physiology. Appl Sci Res 1982; 38: 37–44.

    Article  Google Scholar 

  58. deJong N, Hoff L, Skotland T, Bom B. Absorption and scatter of encapsulated gas-filled micro-spheres: Theoretical considerations and some measurements. Ultrasonics 1992; 30: 95–103.

    Article  CAS  Google Scholar 

  59. deJong N, Cornet R, Lancee CT. Higher harmonics of vibrating gas-filled microspheres. Part I: simulations. Ultrasonics 1994; 32: 447–53.

    Article  Google Scholar 

  60. Mottley J, Everbach EC, Schwarz KQ et al. Decay of ultrasound integrated back scatter from a saccharide contrast agent is accelerated by increased pressure. Circulation 1990; 82 (Suppl. 3): 28.

    Google Scholar 

  61. Shandas R, Sahn DJ, Bales G et al. Persistence of Albunex ultrasound contrast agent: in vitro study of the effects of pressure and accoustic power on particle size and the duration of contrast and Doppler enhancement. Circulation 1990; 82 (Suppl. 3): 95.

    Google Scholar 

  62. Shapiro JR, Reisner SA, Lichtenberg GS, Meltzer RS. Intravenous contrast echocardiography with use of sonicated albumin in humans: Systolic disappearance of left ventricular contrast after transpulmonary transmission. J Am Coll Cardiol 1990; 6: 1607–17.

    Google Scholar 

  63. Tickner EC, Rasor NS. An instrument for the noninvasive assessment of pulmonary hypertension. Adv Bioeng. ASME 1978; 101–3.

    Google Scholar 

  64. Ooi KK, Acosta AJ. The utilization of specially tailored air bubbles as statis pressure sensors in a jet. Trans ASME IJ Fluid Eng 1983; 106: 459–65.

    Article  Google Scholar 

  65. Ran B, Katz J. The response of microscopic bubbles to sudden change in ambient pressure. J Fluid Mech 1991; 224: 91–115.

    Article  Google Scholar 

  66. Shima A, Rajvanjhi SC, Tsujino T. Study of non-linear oscillations of bubbles in Powell Eiring fluids. J Accoust Soc Am 1985; 77: 1702–9.

    Article  Google Scholar 

  67. Tsujino T, Miura M. The motion of bubbles in blood as related to some medical problems. Nippon Kikai Gakai Ronbunshu. B Hen Trans of the Jap Soc of Mech Eng Part B 1989; 56: 74–8.

    Article  Google Scholar 

  68. Mor-avi V, Shroff SJ, Robinson KA et al. Effects of left ventricular pressure on sonicated albumin microbubbles: Evaluation using an isolated rabbit heart model. J Am Coll Cardiol 1994; 24: 1779–85.

    Article  PubMed  CAS  Google Scholar 

  69. Vuille C, Nidorf M, Morrissey RL, Newell JB, Weyman AE, Picard MH. Effect of static pressure on the disappearance rate of specific echocardiographic contrast agents. J Am Soc Echocardiogr 1994; 7: 347–54.

    PubMed  CAS  Google Scholar 

  70. Padial LR, Chen MH, Vuille C, Guerero JL, Weyman AE, Picard MH. Pulsatile pressure affects the disappearance of echocardiographic contrast agents. JAm Soc Echocardiogr 1995; 8: 285–92.

    Article  CAS  Google Scholar 

  71. Gibson FW. Measurement of the effect of air bubbles on the speed of sound in water. J Accoust Soc Am 1970; 48: 1195–7.

    Article  Google Scholar 

  72. Ophir J, Parker J. Contrast agents in diagnostic ultrasound. Ultrasound Med Biol 1989; 15: 319–33.

    Article  PubMed  CAS  Google Scholar 

  73. Morse PM, Ingard KU. Theoretical accoustics. New York: McGraw Hill, 1968: 418–27.

    Google Scholar 

  74. Nishi RY. The scattering and absorption of sound waves by a gas bubble in a viscous liquid. Acustica 1975; 33: 65–74.

    Google Scholar 

  75. Schrope V, Newhouse VL, Uhlendorf V. Simulated capillary blood flow measurements using a non-linear ultrasonic contrast agent. Ultrasonic Imag 1992; 14: 134–58.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meerbaum, S. (1997). Microbubble fluid dynamics of echocontrast. In: Nanda, N.C., Schlief, R., Goldberg, B.B. (eds) Advances in Echo Imaging Using Contrast Enhancement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5704-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5704-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6405-7

  • Online ISBN: 978-94-011-5704-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics