Skip to main content

Bioconversion and Removal of Metals and Radionuclides

  • Chapter
Book cover Perspectives in Bioremediation

Part of the book series: NATO ASI Series ((ASHT,volume 19))

Abstract

Beneficial and detoxifying mechanisms in microorganisms are described in relation to their potential exploitation for metal and radionuclide bioremediation. Metal toxicity and essentiality are amphibolous aspects of metals in regards to their homeostatic and non homeostatic metabolism. Metals are energy sources, electron acceptors, and are essential for secondary metabolism Metals are effluxed by specific systems to reduce cytoplasmic content to subtoxic levels. Metals may be converted to harmless species by specific enzymes and by the intermediates or final products of microbiological metabolism. In certain circumstances metals are precipitated as colloids, or crystals may be formed; conversely they may be removed by bioleaching, or volatilized by methylation and hydriditization. Most of these microbiological processes can be exploited to reduce metal and radionuclide contamination. Various technologies ranging from different bioreactor configurations to in situ operations have been developed An attempt of radionuclide bioremediation in situ of soil at Chernobyl, Ukraine, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aislabie, J. and Loutit, M. W. (1986) Accumulation of Cr(III) by bacteria isolated from polluted sediments, Mar. Environ. Res., 20, 221–232.

    Article  CAS  Google Scholar 

  2. Baldi, F. and Olson, G.J. (1987) Effects of cinnabar on pyrite oxidation by Thiobacillus ferrooxidans and cinnabar mobilization by a mercury resistant strain, Appl. Environ. Microbiol., 53, 772–776.

    CAS  Google Scholar 

  3. Baldi, F. Coratza, G. Manganelli, R. and Pozzi, G. (1988) A strain of Pseudomonas putida isolated from a cinnabar mine with a plasmid-determined broad-spectrum resistance to mercury, Microbios 54, 7–13.

    CAS  Google Scholar 

  4. Baldi, F., Parati, F. Semplici, F. and Tandoi, V. (1993) Biological removal of inorganic Hg(II) as gaseous elemental Hg(0) by continuous culture of a Hg-resistant Pseudomonas putida strain FB-1, World J. Microbiol. Biotechnol., 9, 275–279.

    Article  CAS  Google Scholar 

  5. Baldi, F. Pepi, M. and Filippelli, M. (1993) Methylmercury resistance in Desulfovibrio desulfuricans strains in relation to methylmercury degradation., Appl. Environ. Microbiol., 59, 2479–2485.

    CAS  Google Scholar 

  6. Baldi, F. (1994) Microbial transformation of metals in relation to the biogeochemical cycle, in G. Bidoglio and W. Stumm (eds.), Chemistry of Aquatic Systems: Local and Global Perspectives, Kluwer Academic Publisher, Dordrecht, pp. 121–152.

    Google Scholar 

  7. Baldi, F. and Filippelli, M., (1994) Importance of new specific analytical procedures in determining organi mercury species produced by microorganism cultures, in C.J. Watras and J. W Huckabee. (eds.), Mercury Pollution: Integration and Synthesis, Lewis Publisher Boca Raton, Ann Arbor, pp 527–539.

    Google Scholar 

  8. Baldi, F, Parati, F. and Filippelli, M. (1995) Dimethylmercury and dimethylmercury sulfide of microbial origin in the biogeochemical cycle of Hg. Water Air Soil Pollut, (in press).

    Google Scholar 

  9. Bayer, M.E. and Bayer, M. H., (1991) Lanthanide accumulation in the periplamsic space of Escherichia coli B, J. Bacteriol 173, 141–149.

    CAS  Google Scholar 

  10. Beveridge, T. J. and Murray, R. G. E. (1976) Uptake and retention of metals by cell walls of Bacillus subtilis, J. Bacteriol, 127, 1502–1518.

    CAS  Google Scholar 

  11. Blais, J.F., Tyagi, R.D. and Auclair, J.C. (1993) Bioleaching of metals from sewage sludge: microorganisms and growth kinetics, Wat. Res., 27, 101–110.

    Article  CAS  Google Scholar 

  12. Blakemoore, R. P.,(1982) Magnetotactic bacteria, Ann. Rev. Microbiol, 36, 217–238.

    Article  Google Scholar 

  13. Bosecker, K.(1986) Leaching of lateritic nickel ores with heterotrophic microorganisms, in J. W. Lawrence,, R.M.R. Branioa and H.G. Ebner (eds.), Fundamental and Applied Biohydrometallurgy, Elsevier, Amsterdam pp. 367–382.

    Google Scholar 

  14. Brierley, C.L. (1990) Bioremediation of metal-contaminated surface and ground-water, Geomicrobiol J., 8, 210–223.

    Article  Google Scholar 

  15. Collins, Y. E., and Stotzky, G. (1989), Factors affecting the toxicity of heavy metals to microbes, in T.J. Beveridge and R.J. Doyle (eds.), Metal Ions and Bacteria, Wiley Interscience, New York pp. 31–90.

    Google Scholar 

  16. Corpe, W. A (1975) Metal binding properties of surface materials from marine bacteria, Dev. Ind. Microbiol, 16, 249–255.

    CAS  Google Scholar 

  17. Craig, P.J. and Bartlett, P.D. (1978) The role of hydrogen sulphide in environmental transport of mercury, Nature, London, 275, 635–637

    Article  CAS  Google Scholar 

  18. Diels, L.(1990) Accumulation and precipitation of Cd and Zn ions by Alcaligenes eutrophus strains, in J. Salley, R.G.L McCready., and P.Z. Wichlaz (eds.), Biohydrometallurgy, CANMET SP89-10, Canada Center for Mineral and Energy Technology, Ottawa, pp. 369–377.

    Google Scholar 

  19. Diels, L., van Roy, S., Taghavi, S. Doyen, W., Leysen, R. Mergeay, M. (1993) The use of Alcaligenes eutrophus immobilized in a tubular membrane reactor for heavy metal recuperation, in A.E. Torma, M.L. Apel, and C.L. Brierley (eds.), Biohydrometallurgical Technologies, The Mineral, Metals and Materials Society, Warrendale, PA pp. 133–142.

    Google Scholar 

  20. Diels, L, Dong, Q. van der Lelie, D., Baeyens, W. and Mergeay, M. (1995) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals, J. Ind. Microbiol., 14, 142–153.

    Article  CAS  Google Scholar 

  21. Donnard, O.F.X., and Weber, J.H. (1988) Volatilization of tin as stannane in anoxic environments, Nature (London), 332,339–341.

    Article  Google Scholar 

  22. Eckhardt, F. E. W. (1978) Microorganisms and weathering of a sandstone monument in W. E. Krumbein, (ed), Environmental Biogeochemistry and Geomicrobiology, Ann Arbor Science, Mich, Vol II, pp 675–697.

    Google Scholar 

  23. Ehrlich, H. L., Yang, S. H. and Mainwaring, J. D. (1973) Bacteriology of manganese nodules. Fate of copper, nickel, cobalt, and iron during bacterial and chemical reduction of the manganese (IV), Z. Allg. Mikrobiol, 13, 39–48.

    Article  CAS  Google Scholar 

  24. Ehrlich, H. L.,(1990) Geomicrobiology II Ed. Marcel Dekker Inc. New York.

    Google Scholar 

  25. Ellwood, D.C. Mill; M. J. and Watson, J. H. (1991) Biomagnetic separation and extraction process for heavy metals, in J.C. Fry and G. M. Gadd, R. A., Herbert, C. W. Jones, and I. A. Watson-Craik (eds), Microbial Control of Pollution, Cambridge University Press, Cambridge pp. 89–112.

    Google Scholar 

  26. Farina, M. Esquivel, D.M.S. and Linds de Barros, H.P.G. (1990) Magnetic iron-sulphur crystals from a magnetotactic organism, Nature (London), 343, 256–258.

    Article  CAS  Google Scholar 

  27. Ferris, F. G., Shotyk, W. Fyfe, W. S. (1989) Mineral formation and decomposition by microorganisms, in T.J. Beveridge and R.J. Doyle (eds), Metal Ions and Bacteria, Wiley Interscience, New York pp. 413–441.

    Google Scholar 

  28. Filippelli, M. and F. Baldi (1993) Alkylation of ionic mercury to methylmercury and dimethylmercury by methylcobalamin: simultaneous determination by purge-and-trap GC in line with FTIR, Appl. Organometal Chem., 7, 487–493.

    Article  CAS  Google Scholar 

  29. Förstner, U., and Wittmann, G.T.W. (1979) Metal Pollution in the aquatic environment. Springer-Verlag, Berlin.

    Book  Google Scholar 

  30. Frankel, R. B., (1987) Anaerobes pumping iron, Nature (London,), 330, 208.

    Article  Google Scholar 

  31. Gadd, G. M;, and White, C. (1993) Microbial treatment of metal pollution-a working biotechnology ?, Trends Biotechnol 11, 353–359.

    Article  CAS  Google Scholar 

  32. Geesey, G. G. and Jang, L. (1989) Interactions between metal ions and capsular polymers, in T.J; Beveridge and R.J. Doyle (eds), Metal Ions and Bacteria, Wiley Interscience, New York pp. 325–357.

    Google Scholar 

  33. Gorby, Y. A. and Lovley, D. R. (1992) Enzymatic uranium precipitation (1992). Environ. Sci. Technol, 26, 205–207.

    Article  CAS  Google Scholar 

  34. Hansen, C. L., Zwolinski, G., Martin, D. and Williams, J.W. (1984) Bacterial removal of mercury from sewage, Biotechnol. Bioeng. 26, 1330–1333.

    Article  CAS  Google Scholar 

  35. Hirschler, A., Lucas, J. and Hubert, J.C.(1990) Apatite genesis, a biologically induced or biologically controlled mineral formation process ? Geomicrobiol. J., 7, 47–57.

    Article  Google Scholar 

  36. Ingledew, W. J. (1982) Thiobacillus ferrooxidans: the bioenergetics of an acidophilic chemolitotroph, Biochim. Biophys. Acta, 683, 89–117.

    Article  CAS  Google Scholar 

  37. Kelly, D.P., Norris, P.R. and Brierley, C.L., (1979) Microbiological methods for the extraction and recovery of metals, in A.T. Bull, D.C. Ellwood and C. Ratledge, Microbial Technology: Current State, Future Prospects, Cambridge University Press, Cambridge pp.263–308.

    Google Scholar 

  38. Krumbein, W. F. (1979) Calcification by bacteria and algae, in P.A Trudinger and D.J. Swaine (eds.), Biogeochemical cycling of mineral forming elements, Elsevier, Amsterdam, pp. 47–68.

    Chapter  Google Scholar 

  39. Leysen R, Vermeiren, P. Doyen, W. (1989) Preparation and Application of composite membranes, in L. Cecille, L. and J. C. Toussaint (eds.), Future Industrial Prospects of Membrane Processes, Elsevier Science Publisher, London, pp. 34–45.

    Google Scholar 

  40. Lovely, D. R., Phillips, E.J.P, Lonergan, D.J. (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol., 55, 700–706.

    Google Scholar 

  41. Lovely, D. R., Lonergan, D.J. (1990) Anaerobic oxidation of toluene, phenol and p-cresol by the dissimulatory iron-reducing organism, GS-15, Appl. Environ. Microbiol., 56, 1858–1864.

    Google Scholar 

  42. Lovely, D. R. (1991) Dissimilatory Fe(III) and Mn(III) reduction. Microbiol. Rev., 55, 259–287.

    Google Scholar 

  43. Lovely, D. R. (1995) Bioremedition of organic and metal contaminate with dissimilatory metal reduction, J. Ind. Microbiol, 14, 85–93.

    Article  Google Scholar 

  44. Lucas, J. and Prevot, L. (1985) The synthesis of apatite by bacterial activity: mechanism, Sci. GèolMèm., 11, 83–92.

    Google Scholar 

  45. Macaskie, L, E., Dean, A C., Cheetham, A. K., Jakeman, R. J. B. and Skarnulis, A J. (1987), Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells, J. Gen. Microbiol, 133, 539–544.

    CAS  Google Scholar 

  46. Marquis, R. E., Mayzel, K., and Carstensen, E. L. (1976) Cation Exchange in cell walls of gram positive bacteria, Can. J. Microbiol, 22, 975–982.

    Article  CAS  Google Scholar 

  47. Marzluf G. A.(1970), Genetic and metabolic controls for sulfate metabolism in Neurospora crassa: isolation and study of Chromate resistance and sulfate transport-negative mutants, J. Bacteriol, 102, 716–721.

    CAS  Google Scholar 

  48. Moore, M.D., and Kaplan, S. (1992) Identification of intrinsic high-level resistant to rare-earth oxides and oxyanions by members of the Proteobacteria: characterization of tellurite, selenite and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol, 174, 1505–1514.

    CAS  Google Scholar 

  49. Moore, M.D., and Kaplan, S. (1994) Members of the family Rhodospirillaceae reduce heavy-metal oxyanions to maintain redox poise during photosynthetic growth, ASM News, 60, 17–23.

    Google Scholar 

  50. Monta, R. Y. (1980) Calcite precipitation by marine bacteria, Geomicrobiol. J. 2, 63–82.

    Article  Google Scholar 

  51. Nealson, K. H. (1983) Microbial oxidation and reduction of manganese and iron, in P. Westbroek and E.W. deJong,. (eds.), Biomineralization and biological metal accumulation, D. Reidel Publishing Co., Boston, pp 459–479.

    Chapter  Google Scholar 

  52. Nealson, K H., Rosson, R. A and Myers, C. R. (1989) Mechanisms of oxidation and reduction of manganese, in T.J. Beveridge and R.J. Doyle (eds.), Metal Ions and Bacteria, Wiley Interscience, New York pp.383–411.

    Google Scholar 

  53. Nealson, K. H., Myers, C.R. (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ. Microbiol, 58, 439–443.

    CAS  Google Scholar 

  54. Nieober, E. and Richardson, D. H. S., (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions, Environ. Pollut. (Ser. B) 1, 3–26

    Article  Google Scholar 

  55. Nies, D.H. (1992) Resistance to cadmium, cobalt, zinc and nickel in microbes, Plasmid, 27, 17–28.

    Article  CAS  Google Scholar 

  56. Nies, D.H. (1995) The cobalt, zinc and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli, J. Bacteriol, 177 (in press)

    Google Scholar 

  57. Pearson, R. G. (1973) Hard and soft acids and bases, Wiley New York.

    Google Scholar 

  58. Pentecost, A. and Riding, R. (1986), Calcification in cyanobacteria, in B.S.C. Leadbeater, R. Riding (eds.), Biomineralization in lower plants and animals. Claredon Press, Oxford, pp. 73–90

    Google Scholar 

  59. Pentecost, A. and Bauld, J. (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell, Geomicrobiol J., 6, 129–135.

    Article  CAS  Google Scholar 

  60. Pepi, M and Baldi, F. (1992) Modulation of Cr(VI) toxicity by organic and inorganic sulfur species in yeasts from industrial wastes, BioMetals, 5 195–228.

    Article  Google Scholar 

  61. Pepi, M. and Baldi, F. (1995) Chromate tolerance in strain Rhodosporidium toruloides modulated by thiosulphate and sulfur amino acids, BioMetals, 8, 99–104.

    Article  CAS  Google Scholar 

  62. Rehem, H-J, (1988) Biotechnology — A Comprehensive Treatise, VCH Verlagsgesellschaft

    Google Scholar 

  63. Rivadeneyra, M A., Pèrez-Garcia, I. and Ramos-Cormenzana, A. (1992) Influence of ammonium ion on bacterial struvite production, Geomicrobiol. J. 10, 125–137.

    Article  CAS  Google Scholar 

  64. Salley, J., Mccready, R.G.L., Wichlaz, P.Z. (1989) Biohydrometallurgy, CANMET SP89-10, Canada Center for Mineral and Energy Technology, Ottawa.

    Google Scholar 

  65. Schönborn, W. and Hartmann, H. (1978) Bacterial leaching of metals from sewage sludge, Eur. J. Appl. Microbiol. Biotechnol., 5, 305–313.

    Article  Google Scholar 

  66. Shaklai, M and Tavassoli, M., (1982) Preferential localization of lanthanum to nuclear pore complexes, J. Ultrastruct Res., 81, 139–144.

    Article  CAS  Google Scholar 

  67. Silver, S. Walderhaugh, M. (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria, Microbiol. Rev., 56, 195–228.

    CAS  Google Scholar 

  68. Steinmetz, K. M. and Cohn, (1974) Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA, Biochemistry, 13, 4159–4165.

    Article  Google Scholar 

  69. Stolz, J. F. (1993) Magnetosomes. J. Gen. Microbiology, 139, 1663–1670.

    Google Scholar 

  70. Thayer, J.S. and Brinckman, F.E. (1982) The biological methylation of metals and metalloids, Adv. Organomet.Chem., 20, 313–356.

    Article  CAS  Google Scholar 

  71. Thompson, J.B. and Ferris, F.G. (1990) Cyanobacterial precipitation of gypsum, calcite, magnesite from natural alkaline lake water. Geology, 18:995–998.

    Article  CAS  Google Scholar 

  72. Torma, AE., Apel, M.L., and Brierley, C.L, (1993) Biohydrometallurgical Technologies, The Mineral, Metals and Materials Society, Warrendale, PA

    Google Scholar 

  73. Trollope, D. R. and Evans, B. (1976) Concentration of copper, iron, lead, nickel and zinc in freshwater algal bloom, Environ. Pollut., 11:109–116.

    Article  CAS  Google Scholar 

  74. Turner, J. S., and Robinson, N. J. (1995) Cyanobacterial metallothioneins: biochemistry and molecular genetics, J. Ind. Microbiol, 14, 119–125.

    Article  CAS  Google Scholar 

  75. Tyagi, R.D. Couillard, D. and Tran, F.T. (1990) Studies on microbial leaching of heavy metals from municipal sludge, Wat. Sci. Technol, 22, 229–238.

    CAS  Google Scholar 

  76. Ui, J. (1971) Mercury pollution of sea and fresh water its accumulation into water biomass, Rev. Intern. Océanogr. Méd. XXII–XXIII, 79–128.

    Google Scholar 

  77. Wackett, L. P., Horme-Johnson, W. H. and Walsh, C. T. (1989) Transition metal enzymes in bacterial metabolism, in T.J. Beveridge and R.J. Doyle (eds.), Metal Ions and Bacteria, Wiley Interscience, New York pp. 165–206.

    Google Scholar 

  78. Widdel, F. (1988) Microbiology and ecology of sulfate-reducing bacteria, in Zehnder, A. J.B. (ed.) Biology of Anaerobic Microorganisms Wiley & Sons Inc. New York, pp 416–469.

    Google Scholar 

  79. Wood, JM (1983) Selected biochemical reactions of environmental significance, Chemica Scripta, 21, 155–160.

    CAS  Google Scholar 

  80. Wood, JM (1984) Alkylation of metals and the activity of metal-alkyls, Toxicol. Environ. Chem. 1, 229–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baldi, F., Kukhar, V.P., Ulberg, Z.R. (1997). Bioconversion and Removal of Metals and Radionuclides. In: Wild, J.R., Varfolomeyev, S.D., Scozzafava, A. (eds) Perspectives in Bioremediation. NATO ASI Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5684-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5684-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6397-5

  • Online ISBN: 978-94-011-5684-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics