Skip to main content

Control of Nonlinear Differential Algebraic Equation Systems : An Overview

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 353))

Abstract

Chemical processes are inherently nonlinear and their dynamics are naturally described by systems of coupled differential and algebraic equations (DAEs); the differential equations arise from the standard dynamic balances of mass, energy and momentum, while the algebraic equations typically include thermodynamic relations, empirical correlations, quasi-steady-state relations etc. In many cases, the algebraic equations in the DAE model can be readily eliminated to obtain an equivalent ordinary differential equation (ODE) model, which can be used as the basis for controller design. On the other hand, there is a broad class of chemical processes for which the algebraic equations in the DAE models are “singular” in nature, and thus, inhibit a direct reduction of the DAE model into an ODE system. Such DAE systems with singular algebraic equations are said to have a high “index” and they are fundamentally different from ODE systems.

Financial support for this work from the National Science Foundation, Grant CTS-9320402, is gratefully acknowledged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. R. Bachmann, L. Brull, Th. Mrzigold, and U. Pallaske. On methods for reducing the index of differential algebraic equations. Comput. chem. Engng., 14:1271–1273, 1990.

    Article  CAS  Google Scholar 

  2. V. B. Bajic. Lyapunov’s Direct Method in The Analysis of Singular Systems and Networks. Shades Technical Publications, Hillcrest, Natal, 1992.

    Google Scholar 

  3. K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 1996.

    Google Scholar 

  4. S. L. Campbell. Singular Systems of Differential Equations II, volume 61 of Research Notes in Mathematics. Pitman Books Ltd., London, 1982.

    Google Scholar 

  5. S. L. Campbell. Consistent initial conditions for singular and nonlinear systems. Circ. Sys. Signal Proc, 2:45–55, 1983.

    Article  Google Scholar 

  6. Y. Chung and A. W. Westerberg. A proposed numerical algorithm for solving nonlinear index problems. Ind. Eng. Chem. Res., 29:1234–1239, 1990.

    Article  CAS  Google Scholar 

  7. J.E. Cuthrell and L. T. Biegler. Simultaneous optimization and solution methods for batch reactor control profiles. Comput. chem. Engng., 13:49–62, 1989.

    Article  CAS  Google Scholar 

  8. L. Dai. Singular Control Systems, volume 118 of Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, Heidelberg, 1989.

    Book  Google Scholar 

  9. P. Daoutidis and A. Kumar. Structural analysis and output feedback control of nonlinear multivariable processes. AIChE J., 40:647–669, 1994.

    Article  CAS  Google Scholar 

  10. V. Dolezal. Generalized solutions of semistate equations and stability. Circ. Syst. Sig. Proc, 5:391–403, 1986.

    Article  Google Scholar 

  11. M. Fliess, J. Lévine, and P. Rouchon. Index of an implicit time-varying linear differential equation: A noncommutative linear algebraic approach. Linear Algebra and its Applications, 186:59–71, 1993.

    Article  Google Scholar 

  12. R. Gani and I. T. Cameron. Modelling for dynamic simulation of chemical processes: The index problem. Chem. Eng. Sci., 47:1311–1315, 1992.

    Article  CAS  Google Scholar 

  13. C. W. Gear. Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput, 9:39–47, 1988.

    Article  Google Scholar 

  14. E. Hairer, C. Lubich, and M. Roche. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, volume 1409 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, 1989.

    Google Scholar 

  15. A. Isidori. Nonlinear Control Systems. Springer-Verlag, London, third edition, 1995.

    Book  Google Scholar 

  16. R. B. Jarvis and C. C. Pantelides. A differentiation-free algorithm for solving high-index DAE systems. In AIChE annual meeting 92, Miami Beach, FL, 1992.

    Google Scholar 

  17. H. Krishnan and N. H. McClamroch. Tracking in control systems described by nonlinear differential-algebraic equations with applications to constrained robot systems. In Proc. of Amer. Contr. Conf, page 837, San Francisco, CA, 1993.

    Google Scholar 

  18. A. Kumar. Control of Nonlinear Differential Algebraic Equation Systems: Theory and Chemical Process Applications. PhD thesis, Dept. of Chem. Eng. & Mat. Sci., University of Minnesota, Minneapolis MN, 1997.

    Google Scholar 

  19. A. Kumar, P. D. Christofides, and P. Daoutidis. Singular perturbation modeling of nonlinear processes with non-explicit time-scale separation. Chem. Eng. Sci., page in press, 1997.

    Google Scholar 

  20. A. Kumar and P. Daoutidis. Feedback control of nonlinear differential-algebraic-equation systems. AIChE J., 41(3):619–636, 1995.

    Article  CAS  Google Scholar 

  21. A. Kumar and P. Daoutidis. Dynamic feedback regularization and control of nonlinear differential-algebraic-equation systems. AIChE J., 42:2175–2198, 1996.

    Article  CAS  Google Scholar 

  22. A. Kumar and P. Daoutidis. State-space realizations of linear differential-algebraic-equations systems with control-dependent state space. IEEE Trans. Automat. Contr., 41:269–274, 1996.

    Article  Google Scholar 

  23. A. Lefkopoulos and M. A. Stadherr. Index analysis of unsteady-state chemical process systems — ii. strategies for determining the overall flowsheet index. Comput. chem. Engng., 17:415–430, 1993.

    Article  CAS  Google Scholar 

  24. B. Leimkuhler, L. R. Petzold, and C. W. Gear. Approximation methods for the consistent initialization of differential-algebraic equations. SI AM J. Numer. Anal, 28:205–226, 1991.

    Article  Google Scholar 

  25. F. L. Lewis. A survey of linear singular systems. Circ. Syst. Sig. Proc, 5:3–36, 1986.

    Article  Google Scholar 

  26. N. H. McClamroch. Feedback stabilization of control systems described by a class of nonlinear differential-algebraic equations. Syst. & Contr. Lett., 15:53–60, 1990.

    Article  Google Scholar 

  27. H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control Systems. Springer-Verlag, New York, 1990.

    Book  Google Scholar 

  28. C. C. Pantelides. The consistent initialization of differential-algebraic systems. SI AM J. Sci Stat. Comput., 9:213–231, 1988.

    Article  Google Scholar 

  29. C. C. Pantelides, D. Gritsis, K. R. Morison, and R. W. H. Sargent. The mathematical modelling of transient systems using differential-algebraic equations. Comput. chem. Engng., 12:449–454, 1988.

    Article  CAS  Google Scholar 

  30. C. C. Pantelides, R. W. H. Sargent, and V. S. Vassiliadis. Optimal control of multistage systems described by differential-algebraic equations. In AIChE annual meeting 92, Miami Beach, FL, 1992.

    Google Scholar 

  31. L. R. Petzold. Differential/algebraic equations are not ode’s. SIAM J. Sci. Stat. Comput., 3:367–384, 1982.

    Article  Google Scholar 

  32. J. W. Ponton and P. J. Gawthrop. Systematic construction of dynamic models for phase equilibrium processes. Comput. chem. Engng., 15:803–808, 1991.

    Article  CAS  Google Scholar 

  33. J. G. Renfro, A. M. Morshedi, and O. A. Asbjornsen. Simultaneous optimization and solution of systems described by differential/algebraic equations. Comput. chem. Engng., 11:503–517, 1987.

    Article  CAS  Google Scholar 

  34. W. C. Rheinboldt. Differential-algebraic systems as differential equation on manifolds. Math. Comput., 43:473–482, 1984.

    Article  Google Scholar 

  35. J. Unger, A. Kröner, and W. Marquardt. Structural analysis of differential-algebraic equation systems — theory and applications. Comput. chem. Engng., 19:867–882, 1995.

    Article  CAS  Google Scholar 

  36. W. Yim and S. N. Singh. Feedback linearization of differential-algebraic systems and force and position control of manipulators. In Proc. of Amer. Contr. Conf., pages 2279–2283, San Francisco, CA, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, A., Daoutidis, P. (1998). Control of Nonlinear Differential Algebraic Equation Systems : An Overview. In: Berber, R., Kravaris, C. (eds) Nonlinear Model Based Process Control. NATO ASI Series, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5094-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5094-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6140-7

  • Online ISBN: 978-94-011-5094-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics