Skip to main content

Epithelial stem-like cells of the rodent liver

  • Chapter

Abstract

The idea that rodent liver contains stem-like* epithelial cells that can give rise to hepatocytes and biliary epithelial cells has developed from evidence that has accumulated from nearly 100 years of investigation into the biology of the liver. Early in this century, investigators recognized potential lineage relationships among biliary epithelial cells, transitional cells and hepatocytes in several rodent models of liver regeneration (MacCallum, 1902, 1904; Muir, 1908; Milne, 1909). Studies on hepatocarcinogenesis produced additional evidence that hepatocytes could be generated through the proliferation and differentiation of transitional cells possessing features of both ductular cells and hepatocytes (Price et al., 1952; Firminger, 1955). Subsequently, Wilson and Leduc (1958) suggested that cells contained in the cholangioles or terminal bile ductules constitute a compartment of stem-like cells that can proliferate and generate hepatocytes in some forms of liver injury. Since then, the concept of the liver stem cell has been the subject of considerable debate and discussion, and several reviews have appeared recently (Fausto, 1990; Sell, 1990; Aterman, 1992; Thorgeirsson, 1993; Fausto, 1994; Sell, 1994; Alison, Golding and Sarraf, 1996; Golding et al., 1996; Grisham and Coleman, 1996; Grisham and Thorgeirsson, 1997). The debate surrounding the liver stem cell is fueled by the fact that stem cells and their phenotypic characteristics are largely intuitive concepts. As is true for other tissues, putative stem cells of the liver have not been identified microscopically and have not been isolated from the normal liver in pure form.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R.W. and Grisham, J.W. (1970) Explant culture of rat liver. I. Method, morphology and cytogenesis. Laboratory Investigation, 22, 50–62.

    PubMed  CAS  Google Scholar 

  • Alison, M.R., Golding, M.H.C. and Sarraf, C.E. (1996) Pluripotent liver stem cells: facultative stem cells located in the biliary tree. Cell Proliferation, 29, 373–402.

    PubMed  CAS  Google Scholar 

  • Alison, M.R., Golding, M., Sarraf, CE. et al. (1996) Liver damage in the rat induces hepatocyte stem cells from biliary epithelial cells. Gastroenterology, 110, 1182–1190.

    PubMed  CAS  Google Scholar 

  • Alpini, G., Aragona, E., Dabeva, M. et al. (1992) Distribution of albumin and alpha-fetoprotein mRNAs in normal, hyperplastic, and preneoplastic rat liver. American Journal of Pathology, 141, 623–632.

    PubMed  CAS  Google Scholar 

  • Alpini, G., Phillips, J.O., Vroman, B. and LaRusso, N.F. (1994) Recent advances in the isolation of liver cells. Hepatology, 20, 494–514.

    PubMed  CAS  Google Scholar 

  • Arber, N., Zajicek, G. and Ariel, I. (1988) The streaming liver II. Hepatocyte life history. Liver, 8, 80–87.

    PubMed  CAS  Google Scholar 

  • Aterman, K. (1992) The stem cells of the liver — A selective review. Journal of Cancer Research and Clinical Oncology, 118, 87–115.

    PubMed  CAS  Google Scholar 

  • Baldwin, G.C. (1992) The biology of granulocyte-macrophage colony-stimulating factor: effects on hematopoietic and nonhematopoietic cells. Developmental Biology, 151, 352–362.

    PubMed  CAS  Google Scholar 

  • Ballard, F.J. and Hanson, R.W. (1967) Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. Biochemical Journal, 104, 866–871.

    PubMed  CAS  Google Scholar 

  • Baribault, H. and Marceau, N. (1986) Dexamethasone and dimethylsulfoxide as distinct regulators of growth and differentiation of cultured suckling hepatocytes. Journal of Cellular Physiology, 129, 77–84.

    PubMed  CAS  Google Scholar 

  • Bausher, J. and Schaeffer, W.I. (1974) A diploid rat liver cell culture. 1. Characterization and sensitivity to aflatoxin B1 In Vitro, 9, 286–293.

    CAS  Google Scholar 

  • Bennoun, M., Rissel, M., Engelhardt, N. et al. (1993) Oval cell proliferation in early stages of hepatocarcinogenesis in Simian virus 40 large T antigen transgenic mice. American Journal of Pathology, 143, 1326–1336.

    PubMed  CAS  Google Scholar 

  • Berry, M.N. and Friend, D.S. (1966) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. Journal of Cell Biology, 43, 506–520.

    Google Scholar 

  • Betto, H., Kaneda, K., Yamamoto, T. et al. (1996) Development of intralobular bile ductules after spontaneous hepatitis in Long-Evans mutant rats. Laboratory Investigation, 75, 43–53.

    PubMed  CAS  Google Scholar 

  • Birkenmeier, E.H., Gwynn, B., Howard, S. et al. (1989) Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/ enhancer binding protein. Genes and Development, 3, 1146–1156.

    PubMed  CAS  Google Scholar 

  • Bisgaard, H.C. and Thorgeirsson, S.S. (1991) Evidence for a common cell of origin for primitive epithelial cells isolated from rat liver and pancreas. Journal of Cellular Physiology, 147, 333–343.

    PubMed  CAS  Google Scholar 

  • Block, G.D., Locker, J., Bowen, W.C. et al. (1996) Population expansion, clonal growth, and specific differentiation patterns of primary cultures of hepatocytes induced by HGF/SF, EGF and TGFα in a chemically defined (HGM) medium. Journal of Cell Biology, 132, 1133–1149.

    PubMed  CAS  Google Scholar 

  • Blouin, M.J., Lamy, I., Loranger, A. et al. (1995) Specialization switch in differentiating embryonic rat liver progenitor cells in response to sodium butyrate. Experimental Cell Research, 217, 22–30.

    PubMed  CAS  Google Scholar 

  • Blumenfeld, M., Maury, M., Chouard, T. et al. (1991) Hepatic nuclear factor 1 (HNF1) shows a wider distribution than products of its known target genes in developing mouse. Development, 113, 589–599.

    PubMed  CAS  Google Scholar 

  • Boswald, M., Harasim, S. and Maurer-Schultze, B. (1990) Tracer dose and availability time of thymidine and bromodeoxyuridine: application of bromodeoxyuridine in cell kinetic studies. Cell and Tissue Kinetics, 23, 169–181.

    PubMed  CAS  Google Scholar 

  • Bralet, M.-P., Branchereau, S., Brechot, C. and Ferry, N. (1994) Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. American Journal of Pathology, 144, 896–905.

    PubMed  CAS  Google Scholar 

  • Braun, L., Goyette, M., Yaswen, P. et al. (1987) Growth in culture and tumorigenicity after transfection with the ras oncogene of liver epithelial cells from carcinogen-treated rats. Cancer Research, 47, 4116–4124.

    PubMed  CAS  Google Scholar 

  • Bucher, N.L.R. and Swaffield, M.N. (1964) The rate of incorporation of labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Research, 24, 1611–1626.

    PubMed  CAS  Google Scholar 

  • Casdo, S. and Zaret, K.S. (1991) Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Development, 113, 217–225.

    Google Scholar 

  • Cereghini, S., Ott, M.-O., Power, S. and Maury, M. (1992) Expression patterns of vHNF1 and HNF1 homeoproteins in early postimplantation embryos suggest distinct and sequential developmental roles. Development, 113, 217–225.

    Google Scholar 

  • Chapekar, M.S., Huggett, A.C., Cheng, C.C. et al. (1990) Isolation and characterization of a rat liver epithelial cell line resistant to the antiproliferative effects of transforming growth factor β (type 1). Cancer Research, 50, 3600–3604.

    PubMed  CAS  Google Scholar 

  • Chen, J.-R., Tsao, M.-S. and Duguid, W.P. (1995) Hepatocytic differentiation of cultured rat pancreatic ductal epithelial cells after in vivo implantation. American Journal of Pathology, 147, 707–717.

    PubMed  CAS  Google Scholar 

  • Chessebeuf, M., Olsson, A., Bournot, P. et al. (1974) Long term cell culture of rat liver epithelial cells retaining some hepatic functions. Biochimie, 56, 1365–1379.

    PubMed  CAS  Google Scholar 

  • Coleman, W.B. and Presnell, S.C. (1996) Plasticity of the hepatocyte phenotype in vitro: complex phenotypic transitions in proliferating hepatocyte cultures suggest bipotent differentiation capacity of mature hepatocytes. Hepatology, 24, 1542–1546.

    PubMed  CAS  Google Scholar 

  • Coleman, W.B., Wennerberg, A.E., Smith, G.J. and Grisham, J.W. (1993) Regulation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. American Journal of Pathology, 142, 1373–1382.

    PubMed  CAS  Google Scholar 

  • Coleman, W.B., Smith, G.J. and Grisham, J.W. (1994) Development of dexamethasone-inducible tyrosine aminotransferase activity in WB-F344 rat liver epithelial stemlike cells cultured in the presence of sodium butyrate. Journal of Cellular Physiology, 161, 463–469.

    PubMed  CAS  Google Scholar 

  • Coleman, W.B., McCullough, K.D., Esch, G.L. et al. (1997) Evaluation of the differentiation potential of WB-F344 rat liver epithelial stem-like cells in vivo: differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficiant rat liver. American Journal of Pathology, 151, 353–359.

    PubMed  CAS  Google Scholar 

  • Coon, H.G. (1968) Clonal culture of differentiated cells from mammals: rat liver cell culture. Carnegie Institute of Washington Yearbook, 68, 419–421.

    Google Scholar 

  • Cotsarelis, G., Cheng, S., Dong, G. et al. (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell, 57, 201–209.

    PubMed  CAS  Google Scholar 

  • Dabeva, M.D. and Shafritz, D.A. (1993) Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. American Journal of Pathology, 143, 1606–1620.

    PubMed  CAS  Google Scholar 

  • Dabeva, M.D., Alpini, G., Hurston, E. and Shafritz, D.A. (1993) Models for hepatic progenitor cell activation. Proceedings of the Society for Experimental Biology and Medicine, 204, 242–252.

    PubMed  CAS  Google Scholar 

  • De Wolf-Peeters, C., De Vos, R. and Desmet, V. (1972) Electron microscopy and histo-chemistry of canalicular differentation in fetal and neonatal rat liver. Tissue and Cell, 4, 379–388.

    PubMed  Google Scholar 

  • Diamond, L., McFall, R., Tashiro, Y. and Sabatini, D. (1973) The WIRL-3 rat liver cell lines and their transformed derivatives. Cancer Research, 33, 2627–2636.

    PubMed  CAS  Google Scholar 

  • DuBois, A.M. (1963) The embryonic liver, in The Liver: Morphology, Biochemistry, and Physiology (ed C.H. Rouiller), Academic Press, New York, pp. 1–39.

    Google Scholar 

  • Dunsford, H.A. and Sell, S. (1989) Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris hepatomas. Cancer Research, 49, 4887–4893.

    PubMed  CAS  Google Scholar 

  • Dunsford, H.A., Maset, R., Salman, J. and Sell, S. (1985) Connection of ductlike structures induced by a chemical hepatocarcinogen to portal bile ducts in the rat liver detected by injection of bile ducts with a pigmented barium gelatin medium. American Journal of Pathology, 118, 218–224.

    PubMed  CAS  Google Scholar 

  • Dunsford, H.A., Sell, S. and Chisari, F.V. (1990) Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Research, 50, 3400–3407.

    PubMed  CAS  Google Scholar 

  • Earp, H.S., Austin, K.S., Blaisdell, J. et al. (1986) Epidermal growth factor (EGF) stimulates EGF receptor synthesis. Journal of Biological Chemistry, 261, 4777–4780.

    PubMed  CAS  Google Scholar 

  • Earp, H.S., Hepler, J.R., Petch, L.A. et al. (1988) Epidermal growth factor (EGF) and hormones stimulate phosphoinositide hydrolysis and increase EGF receptor protein synthesis and mRNA levels in rat liver epithelial cells: evidence for protein kinase C-dependent and-independent pathways. Journal of Biological Chemistry, 263, 13868–13874.

    PubMed  CAS  Google Scholar 

  • Edwards, J.L. and Klein, R.E. (1961) Cell renewal in adult mouse tissues. American Journal of Pathology, 38, 437–455.

    PubMed  CAS  Google Scholar 

  • Ekblom, P. and Thesleff, I. (1985) Control of kidney differentiation by soluble factors secreted by the embryonic liver and yolk sac. Developmental Biology, 110, 29–38.

    PubMed  CAS  Google Scholar 

  • El-Fouly, M.H., Trosko, J.E. and Chang, C.C. (1987) Scrape-loading and dye transfer: a rapid and simple technique to study gap junctional intercellular communication. Experimental Cell Research, 168, 422–430.

    PubMed  CAS  Google Scholar 

  • Elias, H. (1955) Origin and early development of the liver in various vertebrates. Acta Hepatologica, 3, 1–56.

    Google Scholar 

  • Emeis, J.J. and Planque, B. (1976) Heterogeneity of cells isolated from rat liver by pronase digestion: ultrastructure, cytochemistry, and cell culture. Journal of the Reticuloendothelial Society, 20, 11–29.

    PubMed  CAS  Google Scholar 

  • Ernst, M.J., Chen, C.-C. and Feigelson, P. (1977) Induction of tyrosine aminotransferase synthesis in isolated liver cell suspensions: absolute dependence of induction on glucocorticoids and glucagon or cyclic AMP. Journal of Biological Chemistry, 252, 6783–6791.

    Google Scholar 

  • Evarts, R.P., Nagy, P., Marsden, E. and Thorgeirsson, S.S. (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis, 8, 1737–1740.

    PubMed  CAS  Google Scholar 

  • Evarts, R.P., Nagy, P., Nakatsukasa, H. et al. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Research, 49, 1541–1547.

    PubMed  CAS  Google Scholar 

  • Evarts, R., Hu, Z., Omori, N. et al. (1996) Precursor-product relationship between oval cells and hepatocytes: comparison between tritiated thymidine and bromodeoxyuridine as tracers. Carcinogenesis, 17, 2143–2151.

    PubMed  CAS  Google Scholar 

  • Fabrikant, J.I. (1968a) The spatial distribution of parenchymal cell proliferation during regeneration of the liver. Johns Hopkins Medical Bulletin, 120, 137–147.

    Google Scholar 

  • Fabrikant, J.I. (1968b) The kinetics of cellular proliferation in regenerating liver. Journal of Cell Biology, 36, 551–565.

    PubMed  CAS  Google Scholar 

  • Fabrikant, J.I. (1969) Size of proliferating pools in regenerating liver. Experimental Cell Research, 55, 277–279.

    PubMed  CAS  Google Scholar 

  • Factor, V.M. and Radaeva, S.A. (1993) Oval cells-hepatocytes relationships in Dipin-induced hepatocarcinogenesis in mice. Experimental Toxicology and Pathology, 45, 239–244.

    CAS  Google Scholar 

  • Factor, V.M., Radaeva, S.A. and Thorgeirsson, S.S. (1994) Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. American Journal of Pathology, 145, 409–422.

    PubMed  CAS  Google Scholar 

  • Farber, E. (1956) Similarities in the sequence of early histologic changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Research, 16, 142–148.

    PubMed  CAS  Google Scholar 

  • Farber, E. and Cameron, R. (1980) The sequential analysis of cancer development. Advances in Cancer Research, 31, 125–226.

    PubMed  CAS  Google Scholar 

  • Faris, R.A. and Hixson, D.C. (1989) Selective proliferation of chemically altered rat liver epithelial cells following hepatic transplantation. Transplantation, 48, 87–92.

    PubMed  CAS  Google Scholar 

  • Faris, R.A., McBride, A., Yang, L. et al. (1994) Isolation, propagation, and characterization of rat serosal mesothelial cells. American Journal of Pathology, 145, 1432–1443.

    PubMed  CAS  Google Scholar 

  • Fausto, N. (1990) Hepatocyte differentiation and liver progenitor cells. Current Opinion in Cell Biology, 2, 1036–1042.

    PubMed  CAS  Google Scholar 

  • Fausto, N. (1994) Liver stem cells, in The Liver: Biology and Pathobiology (eds I.M. Arias, J.L. Boyer, N. Fausto et al.), Raven Press, New York, pp. 1501–1518.

    Google Scholar 

  • Fausto, N. and Webber, E.M. (1994) Liver regeneration, in The Liver: Biology and Pathobiology, 3rd edn (eds I.M. Arias, J.L. Boyer, N. Fausto et al.), Raven Press, New York, pp. 1059–1084.

    Google Scholar 

  • Fausto, N., Thompson, H.L. and Braun, L. (1987) Purification and culture of oval cells from rat liver, in Cell Separation Methods and Selected Applications, Volume 4 (eds T.G. Pretlow II and T.R. Pretlow), Academic Press, Orlando, Florida, pp. 45–77.

    Google Scholar 

  • Fausto, N., Lemire, J.M. and Shiojiri, N. (1992) Oval cells in liver carcinogenesis: cell lineages in hepatic development and the identification of facultative stem cells in normal liver, in The Role of Cell Types in Carcinogenesis (ed A.E. Sirica), CRC Press, Boca Raton, Florida, pp. 89–108.

    Google Scholar 

  • Fausto, N., Lemire, J.M. and Shiojiri, N. (1993) Cell lineages in hepatic development and the identification of progenitor cells in normal and injured liver. Proceedings of the Society for Experimental Biology and Medicine, 204, 237–241.

    PubMed  CAS  Google Scholar 

  • Feracci, H., Connolly, T.P., Margolis, R.N. and Hubbard, A.L. (1987) The establishment of hepatocyte surface polarity during fetal liver development. Developmental Biology, 123, 73–84.

    PubMed  CAS  Google Scholar 

  • Firminger, H.L (1995) Histopathology of carcinogenesis and tumors of the liver in rats. Journal of the National Cancer Institute, 15, 1427–1441.

    Google Scholar 

  • Fujimoto, S., Mizutani, N., Mizota, C. and Tamaki, N. (1986) The level of β-alanine amino-transferase activity in regenerating and differentiating rat liver. Biochimica et Biophysica Acta, 882, 106–112.

    PubMed  CAS  Google Scholar 

  • Fujio, K., Evarts, R.P., Hu, Z. et al. (1994) Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Laboratory Investigation, 70, 511–516.

    PubMed  CAS  Google Scholar 

  • Fukuda-Taira, S. (1981) Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. Journal of Embryology and Experimental Morphology, 63, 111–125.

    PubMed  CAS  Google Scholar 

  • Fukui, Y., Yamamoto, A., Kyoden, T. et al. (1990) Quantitative immunogold localization of dipeptidylpeptidase IV (DPPIV) in rat liver cells. Cell Structure and Function, 15, 117–125.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Shimada, T., England, P. et al. (1987) Enrichment and characterization of clonogenic epithelial cells from adult rat liver and initiation of epithelial cell strains. In Vitro Cellular and Developmental Biology, 23, 339–348.

    PubMed  CAS  Google Scholar 

  • Gaasbeek-Janzen, J.W., Westenend, P.J., Charles, R. et al. (1988) Gene expression in derivatives of embryonic foregut during prenatal development in the rat. Journal of Histochemistry and Cytochemistry, 36, 1223–1230.

    PubMed  CAS  Google Scholar 

  • Gall, J.A.M. and Bhathal, P.S. (1990) Development of intrahepatic bile ducts in rat foetal liver expiants in vitro. Journal of Experimental Pathology, 71, 41–50.

    PubMed  CAS  Google Scholar 

  • Garfield, S., Huber, B.E., Nagy, P. et al. (1988) Neoplastic transformation and lineage switching of rat liver epithelial cells by retrovirus-associated oncogenes. Molecular Carcinogenesis, 1, 189–195.

    PubMed  CAS  Google Scholar 

  • Gebhardt, R. and Schafer-Degenhart, I. (1988) Monoclonal antibodies directed against rat liver epithelial cell lines selectively recognize bile duct epithelium in livers of adult rats. Cell Biology and Toxicology, 4, 379–392.

    PubMed  CAS  Google Scholar 

  • Gerlyng, P., Grotmol, T., Stokke, T. et al. (1994) Flow cytometric investigation of a possible precursor-product relationship between oval cells and parenchymal cells in the rat liver. Carcinogenesis, 15, 53–59.

    PubMed  CAS  Google Scholar 

  • Germain, L., Blouin, M.-J. and Marceau, N. (1988) Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, α-fetoprotein, albumin, and cell surface-exposed components. Cancer Research, 48, 4909–4918.

    PubMed  CAS  Google Scholar 

  • Germain, L., Noel, M., Gourdeau, H. and Marceau, N. (1988) Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Research, 48, 368–378.

    PubMed  CAS  Google Scholar 

  • Golding, M., Sarraf, C.E., Lalani, E.-N. et al. (1995) Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver. Hepatology, 22, 1243–1253.

    PubMed  CAS  Google Scholar 

  • Golding, M., Sarraf, C., Lalani, E.-N. and Alison, M.R. (1996) Reactive biliary epithelium: the product of a pluripotential stem cell compartment? Human Pathology, 27, 872–884.

    PubMed  CAS  Google Scholar 

  • Goyette, M., Faris, R., Braun, L. et al. (1990) Expression of hepatocyte and oval cell antigens in hepatocellular carcinomas produced by oncogene-transfected liver epithelial cells. Cancer Research, 50, 4809–4817.

    PubMed  CAS  Google Scholar 

  • Graham, G.J. and Pragnell, I.B. (1992) SCI/MIP-1 alpha: a potent stem cell inhibitor with potential roles in development. Developmental Biology, 151, 377–381.

    PubMed  CAS  Google Scholar 

  • Greengard, O. (1969) Enzymic differentiation in mammalian liver. Science, 163, 891–895.

    PubMed  CAS  Google Scholar 

  • Grisham, J.W. (1962) A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver. Autoradiography with thymidine-H3. Cancer Research, 26, 842–849.

    Google Scholar 

  • Grisham, J.W. (1969) Cellular proliferation in the liver. Recent Results in Cancer Research, 17, 28–43.

    Google Scholar 

  • Grisham, J.W. (1979) Use of hepatic cell cultures to detect and evaluate the mechanisms of action of toxic chemicals. International Review of Experimental Pathology, 20, 123–210.

    PubMed  CAS  Google Scholar 

  • Grisham, J.W. (1980) Cell types in long-term propagable cultures of rat liver. Annals of the New York Academy of Sciences, 349, 128–137.

    PubMed  CAS  Google Scholar 

  • Grisham, J.W. (1983) Cell types in rat liver cultures: their identification and isolation. Molecular and Cellular Biochemistry, 53/54, 23–33.

    PubMed  Google Scholar 

  • Grisham, J.W. (1994) Migration of hepatocytes along hepatic plates and stem cell-fed hepatocyte lineages. American Journal of Pathology, 144, 849–854.

    PubMed  CAS  Google Scholar 

  • Grisham, J.W. and Hartroft, W.S. (1961) Morphologic identification by electron microscopy of ‘oval’ cells in experimental hepatic degeneration. Laboratory Investigation, 10, 317–332.

    PubMed  CAS  Google Scholar 

  • Grisham, J.W. and Porta, E.A. (1964) Origin and fate of proliferated hepatic ductal cells in the rat: electron microscopic and autoradiographic studies. Experimental and Molecular Pathology, 3, 242–261.

    Google Scholar 

  • Grisham, J.W. and Coleman, W.B. (1996) Neoformation of liver epithelial cells: progenitor cells, stem cells, and phenotypic transitions. Gastroenterology, 110, 1311–1313.

    PubMed  CAS  Google Scholar 

  • Grisham, J.W. and Thorgeirsson, S.S. (1997) Liver stem cells, in Stem Cells (ed C.S. Potten), Academic Press, London, pp. 233–282.

    Google Scholar 

  • Grisham, J.W., Thal, S.B. and Nagel, A. (1975) Cellular derivation of continuously cultured epithelial cells from normal rat liver, in Gene Expression and Carcinogenesis in Cultured Liver (eds L.E. Gerschenson and E.B. Thompson), Academic Press, New York, pp. 1–23.

    Google Scholar 

  • Grisham, J.W., Coleman, W.B. and Smith, G.J. (1993) Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proceedings of the Society for Experimental Biology and Medicine, 204, 270–279.

    PubMed  CAS  Google Scholar 

  • Grompe, M., Al-Dhalimy, M., Finegold, M. et al. (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes and Development, 7, 2298–2307.

    PubMed  CAS  Google Scholar 

  • Gupta, S., Rajvanshi, P. and Lee, C.-D. (1995) Integration of transplanted hepatocytes into host liver plates demonstrated with dipeptidyl peptidase IV-deficient rats. Proceedings of the National Academy of Sciences USA, 92, 5860–5864.

    CAS  Google Scholar 

  • Hall, P.A. and Watt, F.M. (1989) Stem cells: the generation and maintenance of cellular diversity. Development, 106, 619–633.

    PubMed  CAS  Google Scholar 

  • Hargrove, J.L. and Mackin, R.B. (1984) Organ specificity of glucocorticoid-sensitive tyrosine aminotransferase: separation from aspartate aminotransferase isozymes. Journal of Biological Chemistry, 259, 386–393.

    PubMed  CAS  Google Scholar 

  • Hargrove, J.L. and Granner, D.K. (1985) Biosynthesis and intracellular processing of tyrosine aminotransferase, in Transaminases (eds P. Christen and P.E. Metzler), John Wiley and Sons, New York, pp. 511–532.

    Google Scholar 

  • Hata, M., Nanno, M., Doi, H. et al. (1993) Establishment of a hepatocytic epithelial cell line from the murine fetal liver capable of promoting hematopoietic cell proliferation. Journal of Cellular Physiology, 154, 381–392.

    PubMed  CAS  Google Scholar 

  • Hayner, N.T., Braun, L., Yaswen, P. et al. (1984) Isozyme profiles of oval cells, parenchymal cells, and biliary cells isolated by centrifugal elutriation from normal and preneoplastic livers. Cancer Research, 44, 332–338.

    PubMed  CAS  Google Scholar 

  • He, X.Y., Smith, G.J., Enno, A. and Nicholson, R.C. (1994) Short-term diethylnitrosamine-induced oval cell responses in three strains of mice. Pathology, 26, 154–160.

    PubMed  CAS  Google Scholar 

  • Heimfeld, S. and Weissman, I. (1991) Development of mouse hematopoietic lineages. Current Topics in Developmental Biology, 25, 155–175.

    PubMed  CAS  Google Scholar 

  • Heiniger, H.J., Friedrich, G., Feinendegen, L.E. and Cantelmo, F. (1971) Reutilization of 5-125iodo-2′-deoxyuridine and 3H-thymidine in regenerating liver of mice. Proceedings of the Society for Experimental Biology and Medicine, 137, 1381–1384.

    PubMed  CAS  Google Scholar 

  • Herring, A.S., Raychaudhuri, R., Kelley, S.P. and Iype, P.T. (1983) Repeated establishment of diploid epithelial cell cultures from normal and partially hepatectomized rats. In Vitro, 19, 576–588.

    Google Scholar 

  • Hixson, D.C. and Allison, J.P. (1985) Monoclonal antibodies recognizing oval cells induced in the liver of rats by N-2-fluorenylacetamide or ethionine in a choline-deficient diet. Cancer Research, 45, 3750–3760.

    PubMed  CAS  Google Scholar 

  • Hixson, D.C., Faris, R.A. and Thompson, N.L. (1990) An antigenic portrait of the liver during carcinogenesis. Pathobiology, 58, 65–77.

    PubMed  CAS  Google Scholar 

  • Hixson, D.C., Faris, R.A., Yang, L. and Novikoff, P. (1992) Antigenic clues to liver development, renewal, and carcinogenesis: an integrated model, in The Role of Cell Types in Hepatocarcinogenesis (ed A.E. Sirica). CRC Press, Boca Raton, Florida, pp. 151–182.

    Google Scholar 

  • Ho, K.K.W., Cake, M.H., Yeoh, G.C.T. and Oliver, I.T. (1981) Insulin antagonism of glucocorticoid induction of tyrosine aminotransferase in cultured foetal hepatocytes. European Journal of Biochemistry, 118, 137–142.

    PubMed  CAS  Google Scholar 

  • Hong, W. and Doyle, D. (1987) cDNA cloning for a bile canaliculus domain-specific membrane glycoprotein of rat hepatocytes. Proceedings of the National Academy of Sciences USA, 84, 7962–7966.

    CAS  Google Scholar 

  • Houssaint, E. (1980) Differentiation of the mouse hepatic primordium I: an analysis of tissue interactions in hepatocyte differentiation. Cell Differentiation, 9, 269–279.

    PubMed  CAS  Google Scholar 

  • Houssaint, E. (1981) Differentiation of mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differentiation, 10, 243–252.

    PubMed  CAS  Google Scholar 

  • Huggett, A.C., Ford, C.P. and Thorgeirsson, S.S. (1989) Effects of interleukin-6 on the growth of normal and transformed rat liver cells in culture. Growth Factors, 2, 83–89.

    PubMed  CAS  Google Scholar 

  • Huggett, A.C., Ellis, P.A., Ford, C.P. et al. (1991) Development of resistance to the growth inhibitory effects of transforming growth factor β1 during the spontaneous transformation of rat liver epithelial cells. Cancer Research, 51, 5929–5936.

    PubMed  CAS  Google Scholar 

  • Hwang, S.G., Dabeva, M., Nehra, V. et al. (1994) The potential of pancreatic duct-like cells in rats as faculative hepatocyte progenitors. Hepatology, 20, 225a (abstract).

    Google Scholar 

  • Iannaccone, P.M. (1987) The study of mammalian organogenesis by mosaic pattern analysis. Cell Differentiation, 21, 79–91.

    PubMed  CAS  Google Scholar 

  • Iannaccone, P.M. (1990) Fractal geometry in mosaic organs: a new interpretation of mosaic pattern. FASEB Journal, 4, 1508–1512.

    PubMed  CAS  Google Scholar 

  • Idoine, J.B., Elliott, J.M., Wilson, M.J. and Weisburger, E.K. (1976) Rat liver cells in culture: effect of storage, long-term culture, and transformation on some enzyme levels. In Vitro, 12, 541–553.

    PubMed  CAS  Google Scholar 

  • Inaoka, Y. (1967) Significance of the so-called oval cell proliferation during azo-dye hepatocarcinogenesis. Gann, 58, 355–366.

    PubMed  CAS  Google Scholar 

  • Ishii, M., Vroman, B. and LaRusso, N.F. (1989) Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology, 97, 1236–1247.

    PubMed  CAS  Google Scholar 

  • Iype, P.T. (1971) Cultures from adult rat liver cells. I. Establishment of monolayer cell-cultures from normal liver. Journal of Cellular Physiology, 78, 281–288.

    PubMed  CAS  Google Scholar 

  • Johnson, M., Koukoulis, G., Matsumoto, K. et al. (1993) Hepatocyte growth factor induces proliferation and morphogenesis in nonparenchymal liver epithelial cells. Hepatology, 17, 1052–1061.

    PubMed  CAS  Google Scholar 

  • Joplin, R. (1994) Isolation and culture of biliary epithelial cells. Gut, 35, 875–878.

    PubMed  CAS  Google Scholar 

  • Kennedy, S., Rettinger, S., Flye, M.W. and Ponder, K.P. (1995) Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology, 22, 160–168.

    PubMed  CAS  Google Scholar 

  • Khokha, M.K., Landini, G. and Iannoccone, P.M. (1994) Fractal geometry in rat chimeras demonstrates that a repetitive cell division program may generate liver parenchyma. Developmental Biology, 165, 545–555.

    PubMed  CAS  Google Scholar 

  • Kinosita, R. (1937) Studies on the cancerogenic chemical substances. Trans actions for the Society of Pathology Japan, 27, 665–727.

    Google Scholar 

  • Klinman, N.R. and Erslev, A.J. (1963) Cellular response to partial hepatectomy. Proceedings of the Society for Experimental Biology and Medicine, 112, 338–340.

    PubMed  CAS  Google Scholar 

  • Knook, D.L., Blansjaar, N. and Syster, E.C. (1977) Isolation and characterization of Kuppffer and endothelial cells from the rat liver. Experimental Cell Research, 109, 317–329.

    PubMed  CAS  Google Scholar 

  • Kumar, U. and Jordan, T.W. (1986) Isolation and culture of biliary epithelial cells from the biliary tract fraction of normal rats. Liver, 6, 369–378.

    PubMed  CAS  Google Scholar 

  • Kuo, C.F., Xanhthopoulos, K.G. and Darnell, J.E. (1990) Fetal and adult localization of C/EBP: evidence for combinatorial action of transcription factors in cell-specific expression. Development, 109, 473–481.

    PubMed  CAS  Google Scholar 

  • Kusakabe, M., Yokoyama, M., Sakakura, T. et al. (1988) A novel methodology for analysis of cell distribution in chimeric mouse organs using a strain specific antibody. Journal of Cell Biology, 107, 257–265.

    PubMed  CAS  Google Scholar 

  • Lai, E., Clark, K.L., Burley, S.K. and Darnell, J.E. (1993) Hepatocyte nuclear factor 3/fork head or ‘winged helix’ proteins: a family of transcription factors of diverse biologic function. Proceedings of the National Academy of Sciences USA, 90, 10421–10423.

    CAS  Google Scholar 

  • Lambiotte, M., Susor, W.A. and Cahn, R.D. (1972) Morphological and biochemical observations on mammalian liver cells in culture. Isolation of a clonal strain from rat liver. Biochimie, 54, 1179–1187.

    PubMed  CAS  Google Scholar 

  • Lamers, W.H., Gaasbeek-Janzen, J.W., Kortschot, A.T. et al. (1987) Development of enzymatic zonation in liver parenchyma is related to development of acinar architecture. Differentiation, 35, 228–235.

    PubMed  CAS  Google Scholar 

  • Le Douarin, N.M. (1975) An experimental analysis of liver development. Medical Biology, 53, 427–455.

    PubMed  CAS  Google Scholar 

  • Lee, F.D. (1992) The role of interleukin-6 in development. Developmental Biology, 151, 331–338.

    PubMed  CAS  Google Scholar 

  • Lee, L.W., Tsao, M.-S., Grisham, J.W. and Smith, G.J. (1989) Emergence of neoplastic transformants spontaneously or after exposure to N-methyl-N′-nitro-N-nitrosoguanidine in populations of rat liver epithelial cells cultured under selective and nonselective conditions. American Journal of Pathology, 135, 63–71.

    PubMed  CAS  Google Scholar 

  • Lemire, J.M. and Fausto, N. (1991) Multiple α-fetoprotein RNAs in adult rat liver: cell type-specific expression and differential regulation. Cancer Research, 51, 4656–4664.

    PubMed  CAS  Google Scholar 

  • Lemire, J.M., Shiojiri, N. and Fausto, N. (1991) Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. American Journal of Pathology, 139, 535–552.

    PubMed  CAS  Google Scholar 

  • Lenzi, R., Liu, M.H., Tarsetti, F. et al. (1992) Histogenesis of bile duct-like cells proliferating during ethionine hepatocarcinogenesis. Evidence for a biliary epithelial nature of oval cells. Laboratory Investigation, 66, 390–402.

    PubMed  CAS  Google Scholar 

  • Lesch, R., Reutter, W., Keppler, D. and Decker, K. (1970) Liver restitution after acute galactosamine hepatitis. Autoradiographic and biochemical studies in rats. Experimental and Molecular Pathology, 13, 58–69.

    Google Scholar 

  • Lin, P., Liu, C., Tsao, M.-S. and Grisham, J.W. (1987) Inhibition of proliferation of cultured rat liver epithelial cells at specific cell cycle stages by transforming growth factor-β. Biochemical and Biophysical Research Communications, 143, 26–30.

    PubMed  CAS  Google Scholar 

  • Liu, C., Tsao, M.-S. and Grisham, J.W. (1988) Transforming growth factors produced by normal and neoplastically transformed rat liver epithelial cells in culture. Cancer Research, 48, 850–855.

    PubMed  CAS  Google Scholar 

  • Lodja, Z. (1979) Studies on dipeptidyl(amino)peptidase IV (glycyl-proline napthylamidase). II. Blood vessels. Histochemistry, 59, 153–166.

    Google Scholar 

  • Lombardi, B. (1982) On the nature, properties and significance of oval cells, biological mechanisms and environmental factors in pathology, in Recent Trends in Chemical Carcinogenesis, Volume 1 (eds P. Pani, F. Feo and A. Columbano), ESA, Cagliari, pp. 37–56.

    Google Scholar 

  • Luzzatto, A.C. (1981) Hepatocyte differentiation during early fetal development in the rat. Cell and Tissue Research, 215, 133–142.

    PubMed  CAS  Google Scholar 

  • MacCallum, W.G. (1902) Regenerative changes in the liver after acute yellow atrophy. Johns Hopkins Hospital Report, 10, 375–379.

    Google Scholar 

  • MacCallum, W.C. (1904) Regenerative changes in cirrhosis of the liver. Journal of the American Medical Association, 43, 649–654.

    Google Scholar 

  • McMahon, J.B., Richards, W.L., delCampo, A.A. et al. (1986) Differential effects of transforming growth factor-β on proliferation of normal and malignant rat liver epithelial cells in culture. Cancer Research, 46, 4665–4671.

    PubMed  CAS  Google Scholar 

  • Makino, Y., Yamamoto, K. and Tsuji, T. (1988) Three-dimensional arrangement of ductular structures formed by oval cells during hepatocarcinogenesis. Acta Medica Okayama, 42, 143–150.

    PubMed  CAS  Google Scholar 

  • Makino, T., Usuda, N., Rao, S. et al. (1990) Transdifferentiation of ductular cells into hepatocytes in regenerating hamster pancreas. Laboratory Investigation, 62, 552–561.

    PubMed  CAS  Google Scholar 

  • Marceau, N. and Lorganger, A. (1994) Progenitor (stem) cells in developing, regenerating and transforming liver, in Liver Gene Expression (eds F. Tronche and M. Yaniv), R.G. Landes Company, Austin, Texas, pp. 35–49.

    Google Scholar 

  • Marceau, N., Germain, L., Goyette, R. et al. (1986) Cell of origin of distinct cultured rat liver epithelial cells, as typed by cytokeratin and surface component selective expression. Biochemistry and Cell Biology, 64, 788–802.

    PubMed  CAS  Google Scholar 

  • Marceau, N., Blouin, M.-J., Noël, M. et al. (1992) The role of bipotential progenitor cells in liver ontogenesis and reoplasia, in The Role of Cell Types in Hepatocarcinogenesis (ed A.E. Sirica), CRC Press, Boca Raton, Florida, pp. 121–149.

    Google Scholar 

  • Marks, P.A., Sheffery, M. and Rifkind, R.A. (1985) Modulation of gene expression during terminal cell differentiation. Progress in Clinical and Biological Research, 191, 185–203.

    PubMed  CAS  Google Scholar 

  • Martinez-Hernandez, A. and Amenta, P.S. (1993) The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Archiv A, 423, 77–84.

    CAS  Google Scholar 

  • Martinez-Hernandez, A., Delgado, F.M. and Amenta, P.S. (1991) The extracellular matrix in hepatic regeneration. Localization of collagen types I, III, IV, laminin, and fibronectin. Laboratory Investigation, 64, 157–166.

    PubMed  CAS  Google Scholar 

  • Marucci, L., Sregliati Baroni, G., Mancini, R. et al. (1993) Cell proliferation following extrahepatic biliary obstruction. Evaluation by immuno-histochemical methods. Journal of Hepatology, 17, 163–169.

    PubMed  CAS  Google Scholar 

  • Mathis, G.A., Walls, S.A. and Sirica, A.E. (1988) Biochemical characteristics of hyperplastic rat bile ductular epithelial cells cultured ‘on top’ and ‘inside’ different extracellular matrix substitutes. Cancer Research, 48, 6145–6153.

    PubMed  CAS  Google Scholar 

  • Messier, B. and Leblond, C.P. (1960) Cell proliferation and migration as revealed by radio-autography after injection of thymidine-H3 into male rats and mice. American Journal of Anatomy, 160, 247–285.

    Google Scholar 

  • Michalopoulos, G.K. (1990) Liver regeneration: molecular mechanisms of growth control. FASEB Journal, 4, 176–187.

    PubMed  CAS  Google Scholar 

  • Mills, D.M. and Zucker-Franklin, D. (1969) Electron microscopic study of isolated Kupffer cells. American Journal of Pathology, 54, 147–166.

    PubMed  CAS  Google Scholar 

  • Milne, L. (1909) The histology of liver tissue regeneration. Journal of Pathology and Bacteriology, 13, 127–160.

    Google Scholar 

  • Mitaka, T., Mikami, M., Sattler, G.L. et al. (1992) Small cell colonies appear in the primary culture of adult rat hepatocytes in the presence of nicotinamide and epidermal growth factor. Hepatology, 16, 440–447.

    PubMed  CAS  Google Scholar 

  • Mitaka, T., Kojima, T., Mizuguchi, T. and Mochizuki, Y. (1995) Growth and maturation of small hepatocytes isolated from adult rat liver. Biochemical and Biophysical Research Communications, 214, 310–317.

    PubMed  CAS  Google Scholar 

  • Monashaw, A.P., Kaestner, K.H., Grou, E. and Schutz, G. (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3α, β and γ genes in determination of definitive endoderm, chordamesoderm and neuroectoderm. Development, 119, 567–578.

    Google Scholar 

  • Montesano, R., Saint Vincent, L. and Tomatis, L. (1973) Malignant transformation in vitro of rat liver cells by dimethylnitrosamine and N-methyl-N′-nitro-N-nitrosoguanidine. British Journal of Cancer, 28, 215–220.

    PubMed  CAS  Google Scholar 

  • Mori, M., Hattori, A., Sawaki, M, et al. (1994) The LEC rat: a model for human hepatitis, liver cancer, and much more. American Journal, Pathology, 144, 200–204.

    CAS  Google Scholar 

  • Muir, R. (1908) On proliferation of the cells of the liver. Journal of Pathology and Bacteriology, 12, 287–305.

    Google Scholar 

  • Munthe-Kaas, A.C., Berg, T., Seglen, P.O. and Seljelid, R. (1975) Mass isolation and culture of rat Kupffer cells. Journal of Experimental Medicine, 141, 1–10.

    PubMed  CAS  Google Scholar 

  • Nagy, P., Evarts, R.P., McMahon, J.B. and Thorgeirsson, S.S. (1989) Role of TGF-beta in normal differentiation and oncogenesis in rat liver. Molecular Carcinogenesis, 2, 345–354.

    PubMed  CAS  Google Scholar 

  • Nagy, P., Bisgaard, H.C. and Thorgeirsson, S.S. (1994) Expression of hepatic transcription factors during liver development and oval cell differentiation. Journal of Cell Biology, 126, 223–233.

    PubMed  CAS  Google Scholar 

  • Nanno, M., Hata, M., Doi, H. et al. (1994) Stimulation of in vitro hematopoiesis by a murine fetal hepatocyte clone through cell-cell contact. Journal of Cellular Physiology, 160, 445–454.

    PubMed  CAS  Google Scholar 

  • Neveu, M.J., Sattler, C.A., Sattler, G.L. et al. (1994) Differences in the expression of connexin genes in rat hepatomas in vivo and in vitro. Molecular Carcinogenesis, 11, 145–154.

    PubMed  CAS  Google Scholar 

  • Ng, Y.-K. and Iannaccone, P.M. (1992a) Experimantal chimeras: current concepts and controversies in normal development and pathogenesis. Current Topics in Developmental Biology, 27, 235–274.

    PubMed  CAS  Google Scholar 

  • Ng, Y.-K. and Iannaccone, P.M. (1992b) Fractal geometry of mosaic pattern demonstrates liver regeneration is a self-similar process. Developmental Biology, 151, 419–430.

    PubMed  CAS  Google Scholar 

  • Notenboom, R.G.E., de Boer, P.A.J., Moorman, A.F.M. and Lamers, W.H. (1996) The establishment of the hepatic architecture is a prerequisite for the development of a lobular pattern of gene expression. Development, 122, 321–332.

    PubMed  CAS  Google Scholar 

  • Novikoff, P.M., Ikeda, T., Hixson, D.C. and Yam, A. (1991) Characterizations of and interactions between bile ductule cells and hepatocytes in early stages of rat hepatocarcinogenesis induced by ethionine. American Journal of Pathology, 139, 1351–1368.

    PubMed  CAS  Google Scholar 

  • Novikoff, P.M., Yam, A. and Oikawa, I. (1996) Blast-like cell compartment in carcinogen-induced proliferating bile ductules. American Journal of Pathology, 148, 1473–1492.

    PubMed  CAS  Google Scholar 

  • Ogawa, K., Minase, T. and Onoe, T. (1974) Demonstration of glucose-6-phosphatase activity in the oval cells of the rat liver and the significance of oval cells in azo-dye carcinogenesis. Cancer Research, 34, 3379–3386.

    PubMed  CAS  Google Scholar 

  • Onoé, T., Dempo, K., Kaneko, A. and Watabe, H. (1973) Significance of α-fetoprotein appearance in the early stage of azo-dye carcinogenesis. Gann Monographs on Cancer Research, 14, 233–247.

    Google Scholar 

  • Ott, M.-O., Rey-Campos, J., Cereghini, S. and Yaniv, M. (1991) vHNF1 is expressed in epithelial cells of distinct embryonic origin during development and precedes HNF1 expression. Mechanisms of Development, 36, 47–58.

    PubMed  CAS  Google Scholar 

  • Overturf, K., Al-Dhalimy, M., Tanguay, R. (1996) Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nature Genetics, 12, 266–273.

    PubMed  CAS  Google Scholar 

  • Pack, R., Heck, R., Dienes, H.P. et al. (1993) Isolation, biochemical characterization, long-term culture, and phenotype modulation of oval cells from carcinogen-fed rats. Experimental Cell Research, 204, 198–209.

    PubMed  CAS  Google Scholar 

  • Parsa, I. (1974) Liver cell differentiation in a chemically defined medium. American Journal of Pathology, 76, 107–122.

    PubMed  CAS  Google Scholar 

  • Petell, J.K., Quaroni, A., Hong, W. et al. (1990) Alteration in the regulation of plasma membrane glycoproteins of the hepatocyte during ontogeny. Experimental Cell Research, 187, 299–308.

    PubMed  CAS  Google Scholar 

  • Petropoulos, C.J., Yaswen, P., Panzica, M. and Fausto, N. (1985) Cell lineages in liver carcinogenesis: possible clues from studies of the distribution of α-fetoprotein RNA sequences in cell populations isolated from normal, regenerating, and preneoplastic livers. Cancer Research, 45, 5762–5768.

    PubMed  CAS  Google Scholar 

  • Phillips, M.J., Poucell, S., Patterson, J. and Valencia, P. (1987) The Liver — An Atlas and Text of Ultrastructural Pathology, Raven Press, New York.

    Google Scholar 

  • Plenat, F., Braun, L. and Fausto, N. (1988) Demonstration of glucose-6-phosphatase and peroxisomal catalase activity by ultrastructural cytochemistry in oval cells from livers of carcinogen-treated rats. American Journal of Pathology, 130, 91–102.

    PubMed  CAS  Google Scholar 

  • Polimeno, L., Azzarone, A., Zeng, Q.H. et al. (1995) Cell proliferation and oncogene expression after bile-duct ligation in the rat: evidence of a specific growth effect on bile duct cells. Hepatology, 21, 1070–1078.

    PubMed  CAS  Google Scholar 

  • Ponder, K.P. (1996) Analysis of liver development, regeneration, and carcinogenesis by genetic marking studies. FASEB Journal, 10, 673–684.

    PubMed  CAS  Google Scholar 

  • Ponder, K.P., Gupta, S., Leland, F. et al. (1991) Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proceedings of the National Academy of Sciences USA, 88, 1217–1221.

    CAS  Google Scholar 

  • Popper, H., Kent, G. and Stein, R. (1957) Ductular cell reaction in the liver in hepatic injury. Journal of the Mount Sinai Hospital, 24, 551–556.

    CAS  Google Scholar 

  • Potten, C.S. and Morris, R.J. (1988) Epithelial stem cells in vivo. Journal of Cell Science Supplement, 10, 45–62.

    PubMed  CAS  Google Scholar 

  • Potten, C.S. and Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110, 1101–1120.

    Google Scholar 

  • Price, J.M., Harman, J.W., Miller, E.C. and Miller, J.M. (1952) Progressive microscopic alterations in the livers of rats fed and hepatic carcinogens 3′-methyl-4-dimethylaminoazobenzene and 4′-fluoro-4-dimethylaminoazobenzene. Cancer Research, 12, 192–200.

    PubMed  CAS  Google Scholar 

  • Price, J., Turner, D. and Cepko, C. (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proceedings of the National Academy of Sciences USA, 84, 156–160.

    CAS  Google Scholar 

  • Rabes, H. and Tuczek, H.-V. (1970) Quantitative autoradiographic study of heterogeneity of liver cell proliferation after partial hepatectomy. Virchows Archiv B, Cell Pathology, 6, 302–312.

    CAS  Google Scholar 

  • Rabes, H.M., Wirsching, R., Tuczek, H.-Z. and Iseler, G. (1976) Analysis of cell cycle compartments of hepatocytes after partial hepatectomy. Cell and Tissue Kinetics, 9, 517–532.

    PubMed  CAS  Google Scholar 

  • Radaeva, S. and Steinberg, P. (1995) Phenotype and differentiation patterns of the oval cell lines OC/CDE 6 and OC/CDE 22 derived from the livers of carcinogen-treated rats. Cancer Research, 55, 1028–1038.

    PubMed  CAS  Google Scholar 

  • Rao, M.S., Bendayan, M., Kimbrough, R.D. and Reddy, J.K. (1986) Characterization of pancreatic-type specific tissue in the liver of rat induced by polychlorinated biphenyls. Journal of Histochemistry and Cytochemistry, 34, 197–201.

    PubMed  CAS  Google Scholar 

  • Rao, M.S., Dwivedi, R., Subbarao, V. et al. (1988) Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochemical and Biophysical Research Communications, 156, 131–136.

    PubMed  CAS  Google Scholar 

  • Rao, M.S., Dwivedi, R.S., Yeldandi, A.V. et al. (1989) Role of periductal and ductular epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage. A change in the differentiation commitment. American Journal of Pathology, 134, 1069–1086.

    PubMed  CAS  Google Scholar 

  • Ren, D., deFeijter, A.W., Paul, D.L. and Ruch, R.J. (1994) Enhancement of liver cell gap junction protein expression by glucocorticoids. Carcinogenesis, 15, 1801–1813.

    Google Scholar 

  • Rhim, J.A., Sandgren, E.P., Degen, J.L. et al. (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science, 263, 1149–1152.

    PubMed  CAS  Google Scholar 

  • Richards, W.G., Yoder, B.K., Isfort, R.J. et al. (1996) Oval cell proliferation associated with the murine insertional mutation TgN737Rpw. American Journal of Pathology, 149, 1919–1930.

    PubMed  CAS  Google Scholar 

  • Rogers, A.E. (1978) Dietary effects on chemical carcinogenesis in the livers of rats, in Rat Hepatic Neoplasia (eds P.M. Newberne and W.H. Butler), MIT Press, Cambridge, Massachusetts, pp. 243–262.

    Google Scholar 

  • Rogler, L.E. (1997) Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. American Journal of Pathology, 150, 591–602.

    PubMed  CAS  Google Scholar 

  • Sandgren, E.P., Palmiter, R.D., Heckel, J.L. et al. (1991) Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell, 66, 245–256.

    PubMed  CAS  Google Scholar 

  • Sarraf, C., Lalani, E., Golding, M. et al. (1994) Cell behavior in the acetylaminofluorene-treated regenerating rat liver. Light and electron microscopic observations. American Journal of Pathology, 145, 1114–1126.

    PubMed  CAS  Google Scholar 

  • Sasaki, H. and Hogan, B.L.M. (1993) Differential expression of multiple fork head related genes during gastrulation and pattern formation in the mouse embryo. Development, 118, 47–59.

    PubMed  CAS  Google Scholar 

  • Scarpelli, D.G. and Rao, M.S. (1981) Differentiation of regenerating pancreatic cells into hepatocyte-like cells. Proceedings of the National Academy of Sciences USA, 78, 2577–2581.

    CAS  Google Scholar 

  • Schilsky, M.L. (1996) Wilson disease: genetic basis of copper toxicity and natural history. Seminars in Liver Disease, 16, 83–95.

    PubMed  CAS  Google Scholar 

  • Schultze, B. and Oehlert, W. (1960) Autoradiographic investigation of incorporation of 3H-thymidine into cells of the rat and mouse. Science, 131, 737–738.

    PubMed  CAS  Google Scholar 

  • Seglen, P.O. (1976) Preparation of isolated rat liver cells. Methods in Cell Biology, 13, 29–83.

    PubMed  CAS  Google Scholar 

  • Sell, S. (1990) Is there a liver stem cell? Cancer Research, 50, 3811–3815.

    PubMed  CAS  Google Scholar 

  • Sell, S. (1993) The role of determined stem cells in the development of hepatocellular carcinoma. International Journal of Developmental Biology, 37, 189–201.

    PubMed  CAS  Google Scholar 

  • Sell, S. (1994) Liver stem cells. Modern Pathology, 7, 105–112.

    PubMed  CAS  Google Scholar 

  • Sell, S. and Salman, J. (1984) Light-and electron microscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feeding N-2-fluorenylacetamide in a choline-deficient diet. American Journal of Pathology, 114, 287–300.

    PubMed  CAS  Google Scholar 

  • Sell, S. and Leffert, H.L. (1982) An evaluation of the cellular lineages in the pathogenesis of experimental hepatocellular carcinomas. Hepatology, 2, 77–86.

    PubMed  CAS  Google Scholar 

  • Sell, S., Leffert, H.L., Shinozuka, H. et al. (1981) Rapid development of large numbers of α-fetoprotein-containing ‘oval’ cells in the liver of rats fed N-2-fluorenylacetamide in a cholinedevoid diet. Gann, 72, 479–487.

    PubMed  CAS  Google Scholar 

  • Sell, S., Osborn, K. and Leffert, H.L. (1981) Autoradiography of ‘oval cells’ appearing rapidly in the livers of rats fed N-2-fluorenylacetamide in a choline devoid diet. Carcinogenesis, 2, 7–14.

    PubMed  CAS  Google Scholar 

  • Sells, M., Katyal, S.L., Shinozuka, H. et al. (1981) Isolation of oval cells and transitional cells from the livers of rats fed the carcinogen DL-ethionine. Journal of the National Cancer Institute, 66, 355–362.

    PubMed  CAS  Google Scholar 

  • Shepherd, J.G., Chen, J., Tsao, M.-S. and Duguid, W.P. (1993) Neoplastic transformation of propagable cultured rat pancreatic duct epithelial cells by azaserine and streptozotocin. Carcinogenesis, 14, 1027–1033.

    PubMed  CAS  Google Scholar 

  • Shinozuka, H., Lombardi, B., Sell, S. and Iammarino, R.M. (1978) Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet. Cancer Research, 38, 1092–1098.

    PubMed  CAS  Google Scholar 

  • Shiojiri, N. (1981) Enzymo-and immunocytochemical analyses of the differentiation of liver cells in the prenatal mouse. Journal of Embryology and Experimental Morphology, 62, 139–152.

    PubMed  CAS  Google Scholar 

  • Shiojiri, N. (1984) The origin of intrahepatic bile ducts in the mouse. Journal of Embryology and Experimental Morphology, 79, 25–39.

    PubMed  CAS  Google Scholar 

  • Shiojiri, N. and Mizuno, T. (1993) Differentiation of functional hepatocytes and biliary epithelial cells from immature hepatocytes of the fetal mouse in vitro. Anatomy and Embryology, 187, 221–229.

    PubMed  CAS  Google Scholar 

  • Shiojiri, N., Lemire, J.M. and Fausto, N. (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Research, 51, 2611–2620.

    PubMed  CAS  Google Scholar 

  • Sigal, S.H., Brill, S., Fiorino, A.S. and Reid, L.M. (1992) The liver as a stem cell and lineage system. American Journal of Physiology, 263, G139–G148.

    PubMed  CAS  Google Scholar 

  • Sigal, S.H., Rajvanshi, P., Reid, L.M. and Gupta, S. (1995) Demonstration of differentiation in hepatocyte progenitor cells using dipeptidyl peptidase IV deficient mutant rats. Cellular and Molecular Biology Research, 41, 39–47.

    PubMed  CAS  Google Scholar 

  • Simpson, G.E.C. and Finckh, E.S. (1963) The pattern of regeneration of rat liver after repeated partial hepatectomies. Journal of Pathology and Bacteriology, 86, 361–370.

    PubMed  CAS  Google Scholar 

  • Sirica, A.E. (1995) Ductular hepatocytes. Histology and Histopathology, 10, 433–456.

    PubMed  CAS  Google Scholar 

  • Sirica, A.E. and Williams, T.W. (1992) Appearance of ductular hepatocytes in rat liver after bile duct ligation and subsequent zone 3 necrosis by carbon tetrachloride. American Journal of Pathology, 140, 129–136.

    PubMed  CAS  Google Scholar 

  • Sirica, A.E., Sattler, C.A. and Cihla, H.P. (1985) Characterization of a primary bile ductular cell culture from the liver of rats during extrahepatic cholestasis. American Journal of Pathology, 120, 67–78.

    PubMed  CAS  Google Scholar 

  • Sirica, A.E., Mathis, G.A. Sano, N. and Elmore, L.W. (1990) Isolation, culture, and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology, 58, 44–64.

    PubMed  CAS  Google Scholar 

  • Sirica, A.E., Elmore, L.W., Williams, T.W. and Cole, S.L. (1992) Differentiation potential of hyperplastic bile ductular epithelial cells in rat models of hepatic injury and cholangiocarcinogenesis, in The Role of Cell Types in Hepatocarcinogenesis (ed A.E. Sirica), CRC Press, Boca Raton, Florida, pp. 183–208.

    Google Scholar 

  • Sladek, F.M. (1994) Hepatocyte nuclear factor 4 (HNF4), in Liver Gene Expression (eds F. Tronche and M. Yaniv), R.G. Landes, Austin, pp. 207–230.

    Google Scholar 

  • Smith, A.G. and Hooper, M.L. (1987) Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Developmental Biology, 121, 1–9.

    PubMed  CAS  Google Scholar 

  • Smith, A.G., Nichols, J., Robertson, M. and Rathjen, P.D. (1992) Differentiation inhibiting activity (DIA/LIF) and mouse development. Developmental Biology, 151, 339–351.

    PubMed  CAS  Google Scholar 

  • Smith, P.G.J., Tee, L.B.G. and Yeoh, G.C.T. (1996) Appearance of oval cells in the liver of rats after long-term exposure to ethanol. Hepatology, 23, 145–154.

    PubMed  CAS  Google Scholar 

  • Solt, D.B., Medline, A. and Farber, E. (1977) Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for sequential analysis of liver carcinogenesis. American Journal of Pathology, 88, 595–610.

    PubMed  CAS  Google Scholar 

  • Spray, D.C., Chanson, M., Moreno, A.P. et al. (1991) Distinctive gap junction channel types connect WB cells, a clonal cell line derived from rat liver. American Journal of Physiology, 260, C513–C527.

    PubMed  CAS  Google Scholar 

  • Stamatoglou, S.C. and Hughes, R.C. (1994) Cell adhesion molecules in liver function and pattern formation. FASEB Journal, 8, 420–427.

    PubMed  CAS  Google Scholar 

  • Steinberg, P., Steinbrecher, R., Schrenk, D. et al. (1994a) Drug-metabolizing enzyme activities in freshly isolated oval cells and in an established oval cell line from carcinogen-fed rats. Cell Biology and Toxicology, 10, 59–65.

    PubMed  CAS  Google Scholar 

  • Steinberg, P., Steinbrecher, R., Radaeva, S. et al. (1994b) Oval cell lines OC/CDE 6 and OC/ CDE 22 give rise to cholangio-cellular and undifferentiated carcinomas after transformation. Laboratory Investigation, 71, 700–709.

    PubMed  CAS  Google Scholar 

  • Steiner, J.W., Jezequel, A.-M., Phillips, M.J. et al. (1965) Some aspects of the ultrastructural pathology of the liver, in Progress in Liver Diseases, Volume II (eds H. Popper and F. Schaffner), Grune and Stratton, New York, pp. 303–372.

    Google Scholar 

  • Stöcker, E. and Heine, W.-D. (1971) Regeneration of liver parenchyma under normal and pathological conditions. Beitrage zur Pathologie, 144, 400–408.

    PubMed  Google Scholar 

  • Strain, A.J. (1994) Isolated hepatocytes: use in experimental and clinical hepatology. Gut, 35, 433–436.

    PubMed  CAS  Google Scholar 

  • Stutenkamper, R., Geisse, S., Schwarz, H.J. et al. (1992) The hepatocyte-specific phenotype of murine liver cells correlates with high expression of connexin 32 and connexin 26 but very low expression of connexin 43. Experimental Cell Research, 201, 43–54.

    Google Scholar 

  • Sun, T.T., Eichner, R., Nelson, W.G. et al. (1983) Keratin expression during normal epidermal differentiation. Current Problems in Dermatology, 11, 277–291.

    PubMed  CAS  Google Scholar 

  • Swierenga, S.H.H., Whitfield, J.F. and Karasoki, S. (1978) Loss of proliferative calcium dependence: simple in vitro indicator of tumorigenicity. Proceedings of the National Academy of Sciences USA, 75, 6069–6072.

    CAS  Google Scholar 

  • Swierenga, S.H.H., Goyette, R. and Marceau, N. (1984) Differential effects of calcium deprivation on the cytoskeleton of non-tumorigenic and tumorigenic rat liver cells in culture. Experimental Cell Research, 153, 39–49.

    PubMed  CAS  Google Scholar 

  • Tatematsu, M., Ho, R.H., Kaku, T. et al. (1984) Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorene and partial hepatectomy. American Journal of Pathology, 114, 418–430.

    PubMed  CAS  Google Scholar 

  • Tatematsu, M., Kaku, T., Medline, A. and Farber, E. (1985) Intestinal metaplasia as a common option of oval cells in relation to cholangiofibrosis in liver of rats exposed to 2-acetylaminofluorene. Laboratory Investigation, 52, 354–362.

    PubMed  CAS  Google Scholar 

  • Theiler, K. (1989) The House Mouse. Springer Verlag, New York.

    Google Scholar 

  • Thompson, N.L., Hixson, D.C., Callanan, H. et al. (1991) A Fischer rat substrain deficient in dipeptidyl peptidase IV activity makes normal steady-state RNA levels and an altered protein. Biochemical Journal, 273, 497–502.

    PubMed  CAS  Google Scholar 

  • Thorgeirsson, S.S. (1993) Hepatic stem cells. American Journal of Pathology, 142, 1331–1333.

    PubMed  CAS  Google Scholar 

  • Thorgeirsson, S.S. and Evarts, R.P. (1992) Growth and differentiation of stem cells in adult rat liver, in The Role of Cell Types in Hepatocarcinogenesis (ed A.E. Sirica), CRC Press, Boca Raton, Florida, pp. 109–120.

    Google Scholar 

  • Thorgeirsson, S.S., Evarts, R.P., Bisgaard, H.C. et al. (1993) Hepatic stem cell compartment: activation and lineage commitment. Proceedings of the Society for Experimental Biology and Medicine, 204, 253–260.

    PubMed  CAS  Google Scholar 

  • Tournier, L, Legres, L., Schoevaert, D. et al. (1988) Cellular analysis of α-fetoprotein gene activation during carbon tetrachloride and D-galactosamine-induced acute liver injury in rats. Laboratory Investigation, 59, 657–665.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S. and Grisham, J.W. (1987) Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed cultured rat liver epithelial cells — A light-and electron-microscopic analysis. American Journal of Pathology, 127, 168–181.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S. and Liu, C. (1988) Inhibition of growth of early passage normal rat liver epithelial cell lines by epidermal growth factor. Laboratory Investigation, 58, 636–642.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S. and Zhang, X.-Y. (1992) The effects of continuous exposure to epidermal growth factor on the spontaneous transformation of cultured rat liver epithelial cells. American Journal of Pathology, 140, 85–94.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S., Smith, J.D., Nelson, K.G. and Grisham, J.W. (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’ cells. Experimental Cell Research, 154, 38–52.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S., Grisham, J.W., Chou, B.B. and Smith, J.D. (1985) Clonal isolation of populations of γ-glutamyl transpeptidase-positive and-negative cells from rat liver epithelial cells chemically transformed in vitro. Cancer Research, 45, 5134–5138.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S., Earp, H.S. and Grisham, J.W. (1986) The effects of epidermal growth factor and the state of confluence on enzymatic activities of cultured rat liver epithelial cells. Journal of Cellular Physiology, 126, 167–173.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S., Sanders, G.H.S. and Grisham, J.W. (1987) Regulation of growth of cultured hepatic epithelial cells by transferrin. Experimental Cell Research, 171, 52–62.

    PubMed  CAS  Google Scholar 

  • Tsao, M.-S., Shepherd, J. and Batist, G. (1990) Phenotypic expression in spontaneously transformed cultured rat liver epithelial cells. Cancer Research, 50, 1941–1947.

    PubMed  CAS  Google Scholar 

  • Uryvaeva, I.V. and Factor, V.M. (1988) Total replacement of parenchymal liver cells induced by Dipin and partial hepatectomy. Bulletin of Experimental Biology and Medicine, 105, 96–98.

    Google Scholar 

  • Utesch, D., Taiser, M., Gath, I. et al. (1993) Effects of sodium butyrate on DNA content, glutathione S-transferase activities, cell morphology and growth characterisitics of rat liver nonparenchymal epithelial cells in vitro. Carcinogenesis, 14, 457–462.

    PubMed  CAS  Google Scholar 

  • Van Eyken, P., Sciot, R. and Desmet, V. (1988) Intrahepatic bile duct development in the rat: a cytokeratin-immunohistochemical study. Laboratory Investigation, 59, 52–59.

    PubMed  Google Scholar 

  • Wachstein, M. and Meisel, E. (1955) Histochemistry of hepatic phosphatases at a physiological pH. American journal of Clinical Pathology, 27, 13–23.

    Google Scholar 

  • Watanabe, Y., Kojima, T. and Fujimoto, Y. (1987) Deficiency of membrane-bound dipeptidyl aminopeptidase IV in a certain rat strain. Experientia, 43, 400–401.

    PubMed  CAS  Google Scholar 

  • West, J.D. (1976) Patches in the livers of chimaeric mice. Journal of Embryology and Experimental Morphology, 36, 151–161.

    PubMed  CAS  Google Scholar 

  • Williams, A.O., Huggett, A.C. and Thorgeirsson, S.S. (1992) Pathology of spontaneous and oncogene transformed rat liver epithelial cells and derived tumors in nude mice. International Journal of Experimental Pathology, 73, 99–114.

    PubMed  CAS  Google Scholar 

  • Williams, D.E., DeVries, P., Namen, A.E. et al. (1992) The steel factor. Developmental Biology, 15, 368–376.

    CAS  Google Scholar 

  • Williams, G.M. (1976) Primary and long-term culture of adult rat liver epithelial cells. Methods in Cell Biology, 14, 357–364.

    PubMed  CAS  Google Scholar 

  • Williams, G.M., Weisburger, E.K. and Weisburger, J.H. (1971) Isolation and long-term culture of epithelial-like cells from rat liver. Experimental Cell Research, 69, 106–112.

    PubMed  CAS  Google Scholar 

  • Williams, G.M., Elliott, J.M. and Weisburger, J.H. (1973) Carcinoma after malignant conversion in vitro of epithelial-like cells from rat liver following exposure to chemical carcinogens. Cancer Research, 33, 606–612.

    PubMed  CAS  Google Scholar 

  • Wilson, J.W. and Leduc, E.H. (1958) Role of cholangioles in restoration of the liver of the mouse after dietary injury. Journal of Pathology and Bacteriology, 76, 441–449.

    PubMed  CAS  Google Scholar 

  • Wilson, J.W., Groat, C.S. and Leduc, E.H. (1963) Histogenesis of the liver. Annals of the New York Academy of Sciences, 111, 8–24.

    PubMed  CAS  Google Scholar 

  • Wood, R.L. (1975) An electron microscope study of developing bile canaliculi in the rat. Anatomical Record, 151, 507–530.

    Google Scholar 

  • Wright, N. and Alison, M. (1984) The Biology of Epithelial Cell Populations, Volume 2, Clarendon Press, Oxford, pp. 880–980.

    Google Scholar 

  • Wu, J., Forbes, J.R., Chen, H.S. and Cox, D.W. (1994) The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nature Genetics, 7, 541–545.

    PubMed  CAS  Google Scholar 

  • Yang, L., Faris, R.A. and Hixson, D.C. (1993) Long-term culture and characteristics of normal bile duct epithelial cells. Gastroenterology, 104, 840–852.

    PubMed  CAS  Google Scholar 

  • Yasui, O., Miura, N., Terada, K. et al. (1997) Isolation of oval cells from Long-Evans Cinnamon rats and their transformation intohepatocytes in vivo in the rat liver. Hepatology, 25, 329–334.

    PubMed  CAS  Google Scholar 

  • Yaswen, P., Hayner, N.T. and Fausto, N. (1984) Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and preneoplastic livers. Cancer Research, 44, 324–331.

    PubMed  CAS  Google Scholar 

  • Yavorkovsky, L., Lai, E., Ilic, Z. and Sell, S. (1995) Participation of small intraportal stem cells in the restitutive response of the liver to periportal necrosis induced by allyl alcohol. Hepatology, 21, 1702–1712.

    PubMed  CAS  Google Scholar 

  • Yoshimura, H., Harris, R., Yokoyama, S. et al. (1983) Anaplastic carcinomas in nude mice and in original donor strain rats inoculated with cultured oval cells. American journal of Pathology, 110, 322–332.

    PubMed  CAS  Google Scholar 

  • Zajicek, G. (1992) Time dimension in histopathology. Pathology Research and Practice, 188, 410–412.

    CAS  Google Scholar 

  • Zajicek, G., Oren, R. and Weinreb, W. (1985) The streaming liver. Liver, 5, 293–300.

    PubMed  CAS  Google Scholar 

  • Zaret, K.S. (1994a) Early liver development, in Liver Gene Expression (eds F. Tronche and M. Yaniv), R.G. Landes Company, Austin, Texas, pp. 3–16.

    Google Scholar 

  • Zaret, K.S. (1994b) Genetic control of hepatocyte differentiation, in The Liver: Biology and Pathobiology, 3rd edn (eds I.M. Arias, J.L. Boyer, N. Fausto et al.), Raven Press, New York, pp. 53–68.

    Google Scholar 

  • Zhang, X., Wang, T., Batist, G. and Tsao, M.-S. (1994) Transforming growth factor beta 1 promotes spontaneous transformation of cultured rat liver epithelial cells. Cancer Research, 54, 6122–6128.

    PubMed  CAS  Google Scholar 

  • Zsebo, D.M., Wypych, J., McNiece, I.K. et al. (1990) Identification, purification, and biological characteristics of hematopoietic stem cell factor from Buffalo rat-conditioned medium. Cell, 63, 195–201.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alastair Strain Anne Mae Diehl

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coleman, W.B., Grisham, J.W. (1998). Epithelial stem-like cells of the rodent liver. In: Strain, A., Diehl, A.M. (eds) Liver Growth and Repair. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4932-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4932-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6069-1

  • Online ISBN: 978-94-011-4932-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics